openssl/crypto/sha/asm/sha512-sparcv9.pl
Matt Caswell 54b4053130 Update copyright year
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16176)
2021-07-29 15:41:35 +01:00

863 lines
22 KiB
Raku

#! /usr/bin/env perl
# Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
#
# Hardware SPARC T4 support by David S. Miller
# ====================================================================
# SHA256 performance improvement over compiler generated code varies
# from 40% for Sun C [32-bit build] to 70% for gcc [3.3, 64-bit
# build]. Just like in SHA1 module I aim to ensure scalability on
# UltraSPARC T1 by packing X[16] to 8 64-bit registers.
# SHA512 on pre-T1 UltraSPARC.
#
# Performance is >75% better than 64-bit code generated by Sun C and
# over 2x than 32-bit code. X[16] resides on stack, but access to it
# is scheduled for L2 latency and staged through 32 least significant
# bits of %l0-%l7. The latter is done to achieve 32-/64-bit ABI
# duality. Nevertheless it's ~40% faster than SHA256, which is pretty
# good [optimal coefficient is 50%].
#
# SHA512 on UltraSPARC T1.
#
# It's not any faster than 64-bit code generated by Sun C 5.8. This is
# because 64-bit code generator has the advantage of using 64-bit
# loads(*) to access X[16], which I consciously traded for 32-/64-bit
# ABI duality [as per above]. But it surpasses 32-bit Sun C generated
# code by 60%, not to mention that it doesn't suffer from severe decay
# when running 4 times physical cores threads and that it leaves gcc
# [3.4] behind by over 4x factor! If compared to SHA256, single thread
# performance is only 10% better, but overall throughput for maximum
# amount of threads for given CPU exceeds corresponding one of SHA256
# by 30% [again, optimal coefficient is 50%].
#
# (*) Unlike pre-T1 UltraSPARC loads on T1 are executed strictly
# in-order, i.e. load instruction has to complete prior next
# instruction in given thread is executed, even if the latter is
# not dependent on load result! This means that on T1 two 32-bit
# loads are always slower than one 64-bit load. Once again this
# is unlike pre-T1 UltraSPARC, where, if scheduled appropriately,
# 2x32-bit loads can be as fast as 1x64-bit ones.
#
# SPARC T4 SHA256/512 hardware achieves 3.17/2.01 cycles per byte,
# which is 9.3x/11.1x faster than software. Multi-process benchmark
# saturates at 11.5x single-process result on 8-core processor, or
# ~11/16GBps per 2.85GHz socket.
# $output is the last argument if it looks like a file (it has an extension)
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$output and open STDOUT,">$output";
if ($output =~ /512/) {
$label="512";
$SZ=8;
$LD="ldx"; # load from memory
$ST="stx"; # store to memory
$SLL="sllx"; # shift left logical
$SRL="srlx"; # shift right logical
@Sigma0=(28,34,39);
@Sigma1=(14,18,41);
@sigma0=( 7, 1, 8); # right shift first
@sigma1=( 6,19,61); # right shift first
$lastK=0x817;
$rounds=80;
$align=4;
$locals=16*$SZ; # X[16]
$A="%o0";
$B="%o1";
$C="%o2";
$D="%o3";
$E="%o4";
$F="%o5";
$G="%g1";
$H="%o7";
@V=($A,$B,$C,$D,$E,$F,$G,$H);
} else {
$label="256";
$SZ=4;
$LD="ld"; # load from memory
$ST="st"; # store to memory
$SLL="sll"; # shift left logical
$SRL="srl"; # shift right logical
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 3, 7,18); # right shift first
@sigma1=(10,17,19); # right shift first
$lastK=0x8f2;
$rounds=64;
$align=8;
$locals=0; # X[16] is register resident
@X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7");
$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
$F="%l5";
$G="%l6";
$H="%l7";
@V=($A,$B,$C,$D,$E,$F,$G,$H);
}
$T1="%g2";
$tmp0="%g3";
$tmp1="%g4";
$tmp2="%g5";
$ctx="%i0";
$inp="%i1";
$len="%i2";
$Ktbl="%i3";
$tmp31="%i4";
$tmp32="%i5";
########### SHA256
$Xload = sub {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
if ($i==0) {
$code.=<<___;
ldx [$inp+0],@X[0]
ldx [$inp+16],@X[2]
ldx [$inp+32],@X[4]
ldx [$inp+48],@X[6]
ldx [$inp+8],@X[1]
ldx [$inp+24],@X[3]
subcc %g0,$tmp31,$tmp32 ! should be 64-$tmp31, but -$tmp31 works too
ldx [$inp+40],@X[5]
bz,pt %icc,.Laligned
ldx [$inp+56],@X[7]
sllx @X[0],$tmp31,@X[0]
ldx [$inp+64],$T1
___
for($j=0;$j<7;$j++)
{ $code.=<<___;
srlx @X[$j+1],$tmp32,$tmp1
sllx @X[$j+1],$tmp31,@X[$j+1]
or $tmp1,@X[$j],@X[$j]
___
}
$code.=<<___;
srlx $T1,$tmp32,$T1
or $T1,@X[7],@X[7]
.Laligned:
___
}
if ($i&1) {
$code.="\tadd @X[$i/2],$h,$T1\n";
} else {
$code.="\tsrlx @X[$i/2],32,$T1\n\tadd $h,$T1,$T1\n";
}
} if ($SZ==4);
########### SHA512
$Xload = sub {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
my @pair=("%l".eval(($i*2)%8),"%l".eval(($i*2)%8+1),"%l".eval((($i+1)*2)%8));
$code.=<<___ if ($i==0);
ld [$inp+0],%l0
ld [$inp+4],%l1
ld [$inp+8],%l2
ld [$inp+12],%l3
ld [$inp+16],%l4
ld [$inp+20],%l5
ld [$inp+24],%l6
cmp $tmp31,0
ld [$inp+28],%l7
___
$code.=<<___ if ($i<15);
sllx @pair[1],$tmp31,$tmp2 ! Xload($i)
add $tmp31,32,$tmp0
sllx @pair[0],$tmp0,$tmp1
`"ld [$inp+".eval(32+0+$i*8)."],@pair[0]" if ($i<12)`
srlx @pair[2],$tmp32,@pair[1]
or $tmp1,$tmp2,$tmp2
or @pair[1],$tmp2,$tmp2
`"ld [$inp+".eval(32+4+$i*8)."],@pair[1]" if ($i<12)`
add $h,$tmp2,$T1
$ST $tmp2,[%sp+STACK_BIAS+STACK_FRAME+`$i*$SZ`]
___
$code.=<<___ if ($i==12);
bnz,a,pn %icc,.+8
ld [$inp+128],%l0
___
$code.=<<___ if ($i==15);
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+0`],%l2
sllx @pair[1],$tmp31,$tmp2 ! Xload($i)
add $tmp31,32,$tmp0
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+4`],%l3
sllx @pair[0],$tmp0,$tmp1
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+0`],%l4
srlx @pair[2],$tmp32,@pair[1]
or $tmp1,$tmp2,$tmp2
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+4`],%l5
or @pair[1],$tmp2,$tmp2
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+0`],%l6
add $h,$tmp2,$T1
$ST $tmp2,[%sp+STACK_BIAS+STACK_FRAME+`$i*$SZ`]
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+4`],%l7
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+0`],%l0
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+4`],%l1
___
} if ($SZ==8);
########### common
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
if ($i<16) {
&$Xload(@_);
} else {
$code.="\tadd $h,$T1,$T1\n";
}
$code.=<<___;
$SRL $e,@Sigma1[0],$h !! $i
xor $f,$g,$tmp2
$SLL $e,`$SZ*8-@Sigma1[2]`,$tmp1
and $e,$tmp2,$tmp2
$SRL $e,@Sigma1[1],$tmp0
xor $tmp1,$h,$h
$SLL $e,`$SZ*8-@Sigma1[1]`,$tmp1
xor $tmp0,$h,$h
$SRL $e,@Sigma1[2],$tmp0
xor $tmp1,$h,$h
$SLL $e,`$SZ*8-@Sigma1[0]`,$tmp1
xor $tmp0,$h,$h
xor $g,$tmp2,$tmp2 ! Ch(e,f,g)
xor $tmp1,$h,$tmp0 ! Sigma1(e)
$SRL $a,@Sigma0[0],$h
add $tmp2,$T1,$T1
$LD [$Ktbl+`$i*$SZ`],$tmp2 ! K[$i]
$SLL $a,`$SZ*8-@Sigma0[2]`,$tmp1
add $tmp0,$T1,$T1
$SRL $a,@Sigma0[1],$tmp0
xor $tmp1,$h,$h
$SLL $a,`$SZ*8-@Sigma0[1]`,$tmp1
xor $tmp0,$h,$h
$SRL $a,@Sigma0[2],$tmp0
xor $tmp1,$h,$h
$SLL $a,`$SZ*8-@Sigma0[0]`,$tmp1
xor $tmp0,$h,$h
xor $tmp1,$h,$h ! Sigma0(a)
or $a,$b,$tmp0
and $a,$b,$tmp1
and $c,$tmp0,$tmp0
or $tmp0,$tmp1,$tmp1 ! Maj(a,b,c)
add $tmp2,$T1,$T1 ! +=K[$i]
add $tmp1,$h,$h
add $T1,$d,$d
add $T1,$h,$h
___
}
########### SHA256
$BODY_16_XX = sub {
my $i=@_[0];
my $xi;
if ($i&1) {
$xi=$tmp32;
$code.="\tsrlx @X[(($i+1)/2)%8],32,$xi\n";
} else {
$xi=@X[(($i+1)/2)%8];
}
$code.=<<___;
srl $xi,@sigma0[0],$T1 !! Xupdate($i)
sll $xi,`32-@sigma0[2]`,$tmp1
srl $xi,@sigma0[1],$tmp0
xor $tmp1,$T1,$T1
sll $tmp1,`@sigma0[2]-@sigma0[1]`,$tmp1
xor $tmp0,$T1,$T1
srl $xi,@sigma0[2],$tmp0
xor $tmp1,$T1,$T1
___
if ($i&1) {
$xi=@X[(($i+14)/2)%8];
} else {
$xi=$tmp32;
$code.="\tsrlx @X[(($i+14)/2)%8],32,$xi\n";
}
$code.=<<___;
srl $xi,@sigma1[0],$tmp2
xor $tmp0,$T1,$T1 ! T1=sigma0(X[i+1])
sll $xi,`32-@sigma1[2]`,$tmp1
srl $xi,@sigma1[1],$tmp0
xor $tmp1,$tmp2,$tmp2
sll $tmp1,`@sigma1[2]-@sigma1[1]`,$tmp1
xor $tmp0,$tmp2,$tmp2
srl $xi,@sigma1[2],$tmp0
xor $tmp1,$tmp2,$tmp2
___
if ($i&1) {
$xi=@X[($i/2)%8];
$code.=<<___;
srlx @X[(($i+9)/2)%8],32,$tmp1 ! X[i+9]
xor $tmp0,$tmp2,$tmp2 ! sigma1(X[i+14])
srl @X[($i/2)%8],0,$tmp0
add $tmp2,$tmp1,$tmp1
add $xi,$T1,$T1 ! +=X[i]
xor $tmp0,@X[($i/2)%8],@X[($i/2)%8]
add $tmp1,$T1,$T1
srl $T1,0,$T1
or $T1,@X[($i/2)%8],@X[($i/2)%8]
___
} else {
$xi=@X[(($i+9)/2)%8];
$code.=<<___;
srlx @X[($i/2)%8],32,$tmp1 ! X[i]
xor $tmp0,$tmp2,$tmp2 ! sigma1(X[i+14])
add $xi,$T1,$T1 ! +=X[i+9]
add $tmp2,$tmp1,$tmp1
srl @X[($i/2)%8],0,@X[($i/2)%8]
add $tmp1,$T1,$T1
sllx $T1,32,$tmp0
or $tmp0,@X[($i/2)%8],@X[($i/2)%8]
___
}
&BODY_00_15(@_);
} if ($SZ==4);
########### SHA512
$BODY_16_XX = sub {
my $i=@_[0];
my @pair=("%l".eval(($i*2)%8),"%l".eval(($i*2)%8+1));
$code.=<<___;
sllx %l2,32,$tmp0 !! Xupdate($i)
or %l3,$tmp0,$tmp0
srlx $tmp0,@sigma0[0],$T1
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+0`],%l2
sllx $tmp0,`64-@sigma0[2]`,$tmp1
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+4`],%l3
srlx $tmp0,@sigma0[1],$tmp0
xor $tmp1,$T1,$T1
sllx $tmp1,`@sigma0[2]-@sigma0[1]`,$tmp1
xor $tmp0,$T1,$T1
srlx $tmp0,`@sigma0[2]-@sigma0[1]`,$tmp0
xor $tmp1,$T1,$T1
sllx %l6,32,$tmp2
xor $tmp0,$T1,$T1 ! sigma0(X[$i+1])
or %l7,$tmp2,$tmp2
srlx $tmp2,@sigma1[0],$tmp1
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+0`],%l6
sllx $tmp2,`64-@sigma1[2]`,$tmp0
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+4`],%l7
srlx $tmp2,@sigma1[1],$tmp2
xor $tmp0,$tmp1,$tmp1
sllx $tmp0,`@sigma1[2]-@sigma1[1]`,$tmp0
xor $tmp2,$tmp1,$tmp1
srlx $tmp2,`@sigma1[2]-@sigma1[1]`,$tmp2
xor $tmp0,$tmp1,$tmp1
sllx %l4,32,$tmp0
xor $tmp2,$tmp1,$tmp1 ! sigma1(X[$i+14])
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+0`],%l4
or %l5,$tmp0,$tmp0
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+4`],%l5
sllx %l0,32,$tmp2
add $tmp1,$T1,$T1
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+0`],%l0
or %l1,$tmp2,$tmp2
add $tmp0,$T1,$T1 ! +=X[$i+9]
ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+4`],%l1
add $tmp2,$T1,$T1 ! +=X[$i]
$ST $T1,[%sp+STACK_BIAS+STACK_FRAME+`($i%16)*$SZ`]
___
&BODY_00_15(@_);
} if ($SZ==8);
$code.=<<___;
#ifndef __ASSEMBLER__
# define __ASSEMBLER__ 1
#endif
#include "crypto/sparc_arch.h"
#ifdef __arch64__
.register %g2,#scratch
.register %g3,#scratch
#endif
.section ".text",#alloc,#execinstr
.align 64
K${label}:
.type K${label},#object
___
if ($SZ==4) {
$code.=<<___;
.long 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5
.long 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
.long 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3
.long 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
.long 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc
.long 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
.long 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7
.long 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
.long 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13
.long 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
.long 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3
.long 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
.long 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5
.long 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
.long 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208
.long 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
___
} else {
$code.=<<___;
.long 0x428a2f98,0xd728ae22, 0x71374491,0x23ef65cd
.long 0xb5c0fbcf,0xec4d3b2f, 0xe9b5dba5,0x8189dbbc
.long 0x3956c25b,0xf348b538, 0x59f111f1,0xb605d019
.long 0x923f82a4,0xaf194f9b, 0xab1c5ed5,0xda6d8118
.long 0xd807aa98,0xa3030242, 0x12835b01,0x45706fbe
.long 0x243185be,0x4ee4b28c, 0x550c7dc3,0xd5ffb4e2
.long 0x72be5d74,0xf27b896f, 0x80deb1fe,0x3b1696b1
.long 0x9bdc06a7,0x25c71235, 0xc19bf174,0xcf692694
.long 0xe49b69c1,0x9ef14ad2, 0xefbe4786,0x384f25e3
.long 0x0fc19dc6,0x8b8cd5b5, 0x240ca1cc,0x77ac9c65
.long 0x2de92c6f,0x592b0275, 0x4a7484aa,0x6ea6e483
.long 0x5cb0a9dc,0xbd41fbd4, 0x76f988da,0x831153b5
.long 0x983e5152,0xee66dfab, 0xa831c66d,0x2db43210
.long 0xb00327c8,0x98fb213f, 0xbf597fc7,0xbeef0ee4
.long 0xc6e00bf3,0x3da88fc2, 0xd5a79147,0x930aa725
.long 0x06ca6351,0xe003826f, 0x14292967,0x0a0e6e70
.long 0x27b70a85,0x46d22ffc, 0x2e1b2138,0x5c26c926
.long 0x4d2c6dfc,0x5ac42aed, 0x53380d13,0x9d95b3df
.long 0x650a7354,0x8baf63de, 0x766a0abb,0x3c77b2a8
.long 0x81c2c92e,0x47edaee6, 0x92722c85,0x1482353b
.long 0xa2bfe8a1,0x4cf10364, 0xa81a664b,0xbc423001
.long 0xc24b8b70,0xd0f89791, 0xc76c51a3,0x0654be30
.long 0xd192e819,0xd6ef5218, 0xd6990624,0x5565a910
.long 0xf40e3585,0x5771202a, 0x106aa070,0x32bbd1b8
.long 0x19a4c116,0xb8d2d0c8, 0x1e376c08,0x5141ab53
.long 0x2748774c,0xdf8eeb99, 0x34b0bcb5,0xe19b48a8
.long 0x391c0cb3,0xc5c95a63, 0x4ed8aa4a,0xe3418acb
.long 0x5b9cca4f,0x7763e373, 0x682e6ff3,0xd6b2b8a3
.long 0x748f82ee,0x5defb2fc, 0x78a5636f,0x43172f60
.long 0x84c87814,0xa1f0ab72, 0x8cc70208,0x1a6439ec
.long 0x90befffa,0x23631e28, 0xa4506ceb,0xde82bde9
.long 0xbef9a3f7,0xb2c67915, 0xc67178f2,0xe372532b
.long 0xca273ece,0xea26619c, 0xd186b8c7,0x21c0c207
.long 0xeada7dd6,0xcde0eb1e, 0xf57d4f7f,0xee6ed178
.long 0x06f067aa,0x72176fba, 0x0a637dc5,0xa2c898a6
.long 0x113f9804,0xbef90dae, 0x1b710b35,0x131c471b
.long 0x28db77f5,0x23047d84, 0x32caab7b,0x40c72493
.long 0x3c9ebe0a,0x15c9bebc, 0x431d67c4,0x9c100d4c
.long 0x4cc5d4be,0xcb3e42b6, 0x597f299c,0xfc657e2a
.long 0x5fcb6fab,0x3ad6faec, 0x6c44198c,0x4a475817
___
}
$code.=<<___;
.size K${label},.-K${label}
#ifdef __PIC__
SPARC_PIC_THUNK(%g1)
#endif
.globl sha${label}_block_data_order
.align 32
sha${label}_block_data_order:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1]
andcc %g1, CFR_SHA${label}, %g0
be .Lsoftware
nop
___
$code.=<<___ if ($SZ==8); # SHA512
ldd [%o0 + 0x00], %f0 ! load context
ldd [%o0 + 0x08], %f2
ldd [%o0 + 0x10], %f4
ldd [%o0 + 0x18], %f6
ldd [%o0 + 0x20], %f8
ldd [%o0 + 0x28], %f10
andcc %o1, 0x7, %g0
ldd [%o0 + 0x30], %f12
bne,pn %icc, .Lhwunaligned
ldd [%o0 + 0x38], %f14
.Lhwaligned_loop:
ldd [%o1 + 0x00], %f16
ldd [%o1 + 0x08], %f18
ldd [%o1 + 0x10], %f20
ldd [%o1 + 0x18], %f22
ldd [%o1 + 0x20], %f24
ldd [%o1 + 0x28], %f26
ldd [%o1 + 0x30], %f28
ldd [%o1 + 0x38], %f30
ldd [%o1 + 0x40], %f32
ldd [%o1 + 0x48], %f34
ldd [%o1 + 0x50], %f36
ldd [%o1 + 0x58], %f38
ldd [%o1 + 0x60], %f40
ldd [%o1 + 0x68], %f42
ldd [%o1 + 0x70], %f44
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x78], %f46
add %o1, 0x80, %o1
prefetch [%o1 + 63], 20
prefetch [%o1 + 64+63], 20
.word 0x81b02860 ! SHA512
bne,pt SIZE_T_CC, .Lhwaligned_loop
nop
.Lhwfinish:
std %f0, [%o0 + 0x00] ! store context
std %f2, [%o0 + 0x08]
std %f4, [%o0 + 0x10]
std %f6, [%o0 + 0x18]
std %f8, [%o0 + 0x20]
std %f10, [%o0 + 0x28]
std %f12, [%o0 + 0x30]
retl
std %f14, [%o0 + 0x38]
.align 16
.Lhwunaligned:
alignaddr %o1, %g0, %o1
ldd [%o1 + 0x00], %f18
.Lhwunaligned_loop:
ldd [%o1 + 0x08], %f20
ldd [%o1 + 0x10], %f22
ldd [%o1 + 0x18], %f24
ldd [%o1 + 0x20], %f26
ldd [%o1 + 0x28], %f28
ldd [%o1 + 0x30], %f30
ldd [%o1 + 0x38], %f32
ldd [%o1 + 0x40], %f34
ldd [%o1 + 0x48], %f36
ldd [%o1 + 0x50], %f38
ldd [%o1 + 0x58], %f40
ldd [%o1 + 0x60], %f42
ldd [%o1 + 0x68], %f44
ldd [%o1 + 0x70], %f46
ldd [%o1 + 0x78], %f48
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x80], %f50
add %o1, 0x80, %o1
prefetch [%o1 + 63], 20
prefetch [%o1 + 64+63], 20
faligndata %f18, %f20, %f16
faligndata %f20, %f22, %f18
faligndata %f22, %f24, %f20
faligndata %f24, %f26, %f22
faligndata %f26, %f28, %f24
faligndata %f28, %f30, %f26
faligndata %f30, %f32, %f28
faligndata %f32, %f34, %f30
faligndata %f34, %f36, %f32
faligndata %f36, %f38, %f34
faligndata %f38, %f40, %f36
faligndata %f40, %f42, %f38
faligndata %f42, %f44, %f40
faligndata %f44, %f46, %f42
faligndata %f46, %f48, %f44
faligndata %f48, %f50, %f46
.word 0x81b02860 ! SHA512
bne,pt SIZE_T_CC, .Lhwunaligned_loop
for %f50, %f50, %f18 ! %f18=%f50
ba .Lhwfinish
nop
___
$code.=<<___ if ($SZ==4); # SHA256
ld [%o0 + 0x00], %f0
ld [%o0 + 0x04], %f1
ld [%o0 + 0x08], %f2
ld [%o0 + 0x0c], %f3
ld [%o0 + 0x10], %f4
ld [%o0 + 0x14], %f5
andcc %o1, 0x7, %g0
ld [%o0 + 0x18], %f6
bne,pn %icc, .Lhwunaligned
ld [%o0 + 0x1c], %f7
.Lhwloop:
ldd [%o1 + 0x00], %f8
ldd [%o1 + 0x08], %f10
ldd [%o1 + 0x10], %f12
ldd [%o1 + 0x18], %f14
ldd [%o1 + 0x20], %f16
ldd [%o1 + 0x28], %f18
ldd [%o1 + 0x30], %f20
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x38], %f22
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
.word 0x81b02840 ! SHA256
bne,pt SIZE_T_CC, .Lhwloop
nop
.Lhwfinish:
st %f0, [%o0 + 0x00] ! store context
st %f1, [%o0 + 0x04]
st %f2, [%o0 + 0x08]
st %f3, [%o0 + 0x0c]
st %f4, [%o0 + 0x10]
st %f5, [%o0 + 0x14]
st %f6, [%o0 + 0x18]
retl
st %f7, [%o0 + 0x1c]
.align 8
.Lhwunaligned:
alignaddr %o1, %g0, %o1
ldd [%o1 + 0x00], %f10
.Lhwunaligned_loop:
ldd [%o1 + 0x08], %f12
ldd [%o1 + 0x10], %f14
ldd [%o1 + 0x18], %f16
ldd [%o1 + 0x20], %f18
ldd [%o1 + 0x28], %f20
ldd [%o1 + 0x30], %f22
ldd [%o1 + 0x38], %f24
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x40], %f26
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
faligndata %f10, %f12, %f8
faligndata %f12, %f14, %f10
faligndata %f14, %f16, %f12
faligndata %f16, %f18, %f14
faligndata %f18, %f20, %f16
faligndata %f20, %f22, %f18
faligndata %f22, %f24, %f20
faligndata %f24, %f26, %f22
.word 0x81b02840 ! SHA256
bne,pt SIZE_T_CC, .Lhwunaligned_loop
for %f26, %f26, %f10 ! %f10=%f26
ba .Lhwfinish
nop
___
$code.=<<___;
.align 16
.Lsoftware:
save %sp,-STACK_FRAME-$locals,%sp
and $inp,`$align-1`,$tmp31
sllx $len,`log(16*$SZ)/log(2)`,$len
andn $inp,`$align-1`,$inp
sll $tmp31,3,$tmp31
add $inp,$len,$len
___
$code.=<<___ if ($SZ==8); # SHA512
mov 32,$tmp32
sub $tmp32,$tmp31,$tmp32
___
$code.=<<___;
.Lpic: call .+8
add %o7,K${label}-.Lpic,$Ktbl
$LD [$ctx+`0*$SZ`],$A
$LD [$ctx+`1*$SZ`],$B
$LD [$ctx+`2*$SZ`],$C
$LD [$ctx+`3*$SZ`],$D
$LD [$ctx+`4*$SZ`],$E
$LD [$ctx+`5*$SZ`],$F
$LD [$ctx+`6*$SZ`],$G
$LD [$ctx+`7*$SZ`],$H
.Lloop:
___
for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
$code.=".L16_xx:\n";
for (;$i<32;$i++) { &$BODY_16_XX($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
and $tmp2,0xfff,$tmp2
cmp $tmp2,$lastK
bne .L16_xx
add $Ktbl,`16*$SZ`,$Ktbl ! Ktbl+=16
___
$code.=<<___ if ($SZ==4); # SHA256
$LD [$ctx+`0*$SZ`],@X[0]
$LD [$ctx+`1*$SZ`],@X[1]
$LD [$ctx+`2*$SZ`],@X[2]
$LD [$ctx+`3*$SZ`],@X[3]
$LD [$ctx+`4*$SZ`],@X[4]
$LD [$ctx+`5*$SZ`],@X[5]
$LD [$ctx+`6*$SZ`],@X[6]
$LD [$ctx+`7*$SZ`],@X[7]
add $A,@X[0],$A
$ST $A,[$ctx+`0*$SZ`]
add $B,@X[1],$B
$ST $B,[$ctx+`1*$SZ`]
add $C,@X[2],$C
$ST $C,[$ctx+`2*$SZ`]
add $D,@X[3],$D
$ST $D,[$ctx+`3*$SZ`]
add $E,@X[4],$E
$ST $E,[$ctx+`4*$SZ`]
add $F,@X[5],$F
$ST $F,[$ctx+`5*$SZ`]
add $G,@X[6],$G
$ST $G,[$ctx+`6*$SZ`]
add $H,@X[7],$H
$ST $H,[$ctx+`7*$SZ`]
___
$code.=<<___ if ($SZ==8); # SHA512
ld [$ctx+`0*$SZ+0`],%l0
ld [$ctx+`0*$SZ+4`],%l1
ld [$ctx+`1*$SZ+0`],%l2
ld [$ctx+`1*$SZ+4`],%l3
ld [$ctx+`2*$SZ+0`],%l4
ld [$ctx+`2*$SZ+4`],%l5
ld [$ctx+`3*$SZ+0`],%l6
sllx %l0,32,$tmp0
ld [$ctx+`3*$SZ+4`],%l7
sllx %l2,32,$tmp1
or %l1,$tmp0,$tmp0
or %l3,$tmp1,$tmp1
add $tmp0,$A,$A
add $tmp1,$B,$B
$ST $A,[$ctx+`0*$SZ`]
sllx %l4,32,$tmp2
$ST $B,[$ctx+`1*$SZ`]
sllx %l6,32,$T1
or %l5,$tmp2,$tmp2
or %l7,$T1,$T1
add $tmp2,$C,$C
$ST $C,[$ctx+`2*$SZ`]
add $T1,$D,$D
$ST $D,[$ctx+`3*$SZ`]
ld [$ctx+`4*$SZ+0`],%l0
ld [$ctx+`4*$SZ+4`],%l1
ld [$ctx+`5*$SZ+0`],%l2
ld [$ctx+`5*$SZ+4`],%l3
ld [$ctx+`6*$SZ+0`],%l4
ld [$ctx+`6*$SZ+4`],%l5
ld [$ctx+`7*$SZ+0`],%l6
sllx %l0,32,$tmp0
ld [$ctx+`7*$SZ+4`],%l7
sllx %l2,32,$tmp1
or %l1,$tmp0,$tmp0
or %l3,$tmp1,$tmp1
add $tmp0,$E,$E
add $tmp1,$F,$F
$ST $E,[$ctx+`4*$SZ`]
sllx %l4,32,$tmp2
$ST $F,[$ctx+`5*$SZ`]
sllx %l6,32,$T1
or %l5,$tmp2,$tmp2
or %l7,$T1,$T1
add $tmp2,$G,$G
$ST $G,[$ctx+`6*$SZ`]
add $T1,$H,$H
$ST $H,[$ctx+`7*$SZ`]
___
$code.=<<___;
add $inp,`16*$SZ`,$inp ! advance inp
cmp $inp,$len
bne SIZE_T_CC,.Lloop
sub $Ktbl,`($rounds-16)*$SZ`,$Ktbl ! rewind Ktbl
ret
restore
.type sha${label}_block_data_order,#function
.size sha${label}_block_data_order,(.-sha${label}_block_data_order)
.asciz "SHA${label} block transform for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my $ref,$opf;
my %visopf = ( "faligndata" => 0x048,
"for" => 0x07c );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";
foreach ($rs1,$rs2,$rd) {
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
else { return $ref; }
}
return sprintf ".word\t0x%08x !%s",
0x81b00300|$rd<<25|$rs1<<14|$rs2,
$ref;
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
&unvis($1,$2,$3,$4)
/ge;
s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unalignaddr($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT or die "error closing STDOUT: $!";