openssl/ssl/s3_enc.c
Richard Levitte c48ffbcca1 SSL: refactor all SSLfatal() calls
Since SSLfatal() doesn't take a function code any more, we drop that
argument everywhere.  Also, we convert all combinations of SSLfatal()
and ERR_add_data() to an SSLfatal_data() call.

Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13316)
2020-11-11 12:12:23 +01:00

597 lines
18 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "ssl_local.h"
#include <openssl/evp.h>
#include <openssl/md5.h>
#include <openssl/core_names.h>
#include "internal/cryptlib.h"
static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num)
{
const EVP_MD *md5 = NULL, *sha1 = NULL;
EVP_MD_CTX *m5;
EVP_MD_CTX *s1;
unsigned char buf[16], smd[SHA_DIGEST_LENGTH];
unsigned char c = 'A';
unsigned int i, k;
int ret = 0;
#ifdef CHARSET_EBCDIC
c = os_toascii[c]; /* 'A' in ASCII */
#endif
k = 0;
md5 = ssl_evp_md_fetch(s->ctx->libctx, NID_md5, s->ctx->propq);
sha1 = ssl_evp_md_fetch(s->ctx->libctx, NID_sha1, s->ctx->propq);
m5 = EVP_MD_CTX_new();
s1 = EVP_MD_CTX_new();
if (md5 == NULL || sha1 == NULL || m5 == NULL || s1 == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
for (i = 0; (int)i < num; i += MD5_DIGEST_LENGTH) {
k++;
if (k > sizeof(buf)) {
/* bug: 'buf' is too small for this ciphersuite */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
memset(buf, c, k);
c++;
if (!EVP_DigestInit_ex(s1, sha1, NULL)
|| !EVP_DigestUpdate(s1, buf, k)
|| !EVP_DigestUpdate(s1, s->session->master_key,
s->session->master_key_length)
|| !EVP_DigestUpdate(s1, s->s3.server_random, SSL3_RANDOM_SIZE)
|| !EVP_DigestUpdate(s1, s->s3.client_random, SSL3_RANDOM_SIZE)
|| !EVP_DigestFinal_ex(s1, smd, NULL)
|| !EVP_DigestInit_ex(m5, md5, NULL)
|| !EVP_DigestUpdate(m5, s->session->master_key,
s->session->master_key_length)
|| !EVP_DigestUpdate(m5, smd, SHA_DIGEST_LENGTH)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if ((int)(i + MD5_DIGEST_LENGTH) > num) {
if (!EVP_DigestFinal_ex(m5, smd, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(km, smd, (num - i));
} else {
if (!EVP_DigestFinal_ex(m5, km, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
km += MD5_DIGEST_LENGTH;
}
OPENSSL_cleanse(smd, sizeof(smd));
ret = 1;
err:
EVP_MD_CTX_free(m5);
EVP_MD_CTX_free(s1);
ssl_evp_md_free(md5);
ssl_evp_md_free(sha1);
return ret;
}
int ssl3_change_cipher_state(SSL *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char *ms, *key, *iv;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
COMP_METHOD *comp;
#endif
const EVP_MD *m;
int mdi;
size_t n, i, j, k, cl;
int reuse_dd = 0;
c = s->s3.tmp.new_sym_enc;
m = s->s3.tmp.new_hash;
/* m == NULL will lead to a crash later */
if (!ossl_assert(m != NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
#ifndef OPENSSL_NO_COMP
if (s->s3.tmp.new_compression == NULL)
comp = NULL;
else
comp = s->s3.tmp.new_compression->method;
#endif
if (which & SSL3_CC_READ) {
if (s->enc_read_ctx != NULL) {
reuse_dd = 1;
} else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
} else {
/*
* make sure it's initialised in case we exit later with an error
*/
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
}
dd = s->enc_read_ctx;
if (ssl_replace_hash(&s->read_hash, m) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
#ifndef OPENSSL_NO_COMP
/* COMPRESS */
COMP_CTX_free(s->expand);
s->expand = NULL;
if (comp != NULL) {
s->expand = COMP_CTX_new(comp);
if (s->expand == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
RECORD_LAYER_reset_read_sequence(&s->rlayer);
mac_secret = &(s->s3.read_mac_secret[0]);
} else {
s->statem.enc_write_state = ENC_WRITE_STATE_INVALID;
if (s->enc_write_ctx != NULL) {
reuse_dd = 1;
} else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
} else {
/*
* make sure it's initialised in case we exit later with an error
*/
EVP_CIPHER_CTX_reset(s->enc_write_ctx);
}
dd = s->enc_write_ctx;
if (ssl_replace_hash(&s->write_hash, m) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
#ifndef OPENSSL_NO_COMP
/* COMPRESS */
COMP_CTX_free(s->compress);
s->compress = NULL;
if (comp != NULL) {
s->compress = COMP_CTX_new(comp);
if (s->compress == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
RECORD_LAYER_reset_write_sequence(&s->rlayer);
mac_secret = &(s->s3.write_mac_secret[0]);
}
if (reuse_dd)
EVP_CIPHER_CTX_reset(dd);
p = s->s3.tmp.key_block;
mdi = EVP_MD_size(m);
if (mdi < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
i = mdi;
cl = EVP_CIPHER_key_length(c);
j = cl;
k = EVP_CIPHER_iv_length(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
}
if (n > s->s3.tmp.key_block_length) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(mac_secret, ms, i);
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (EVP_CIPHER_provider(c) != NULL
&& !tls_provider_set_tls_params(s, dd, c, m)) {
/* SSLfatal already called */
goto err;
}
s->statem.enc_write_state = ENC_WRITE_STATE_VALID;
return 1;
err:
return 0;
}
int ssl3_setup_key_block(SSL *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
int num;
int ret = 0;
SSL_COMP *comp;
if (s->s3.tmp.key_block_length != 0)
return 1;
if (!ssl_cipher_get_evp(s->ctx, s->session, &c, &hash, NULL, NULL, &comp,
0)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return 0;
}
ssl_evp_cipher_free(s->s3.tmp.new_sym_enc);
s->s3.tmp.new_sym_enc = c;
ssl_evp_md_free(s->s3.tmp.new_hash);
s->s3.tmp.new_hash = hash;
#ifdef OPENSSL_NO_COMP
s->s3.tmp.new_compression = NULL;
#else
s->s3.tmp.new_compression = comp;
#endif
num = EVP_MD_size(hash);
if (num < 0)
return 0;
num = EVP_CIPHER_key_length(c) + num + EVP_CIPHER_iv_length(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return 0;
}
s->s3.tmp.key_block_length = num;
s->s3.tmp.key_block = p;
/* Calls SSLfatal() as required */
ret = ssl3_generate_key_block(s, p, num);
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3.need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3.need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3.need_empty_fragments = 0;
#endif
}
}
return ret;
}
void ssl3_cleanup_key_block(SSL *s)
{
OPENSSL_clear_free(s->s3.tmp.key_block, s->s3.tmp.key_block_length);
s->s3.tmp.key_block = NULL;
s->s3.tmp.key_block_length = 0;
}
int ssl3_init_finished_mac(SSL *s)
{
BIO *buf = BIO_new(BIO_s_mem());
if (buf == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return 0;
}
ssl3_free_digest_list(s);
s->s3.handshake_buffer = buf;
(void)BIO_set_close(s->s3.handshake_buffer, BIO_CLOSE);
return 1;
}
/*
* Free digest list. Also frees handshake buffer since they are always freed
* together.
*/
void ssl3_free_digest_list(SSL *s)
{
BIO_free(s->s3.handshake_buffer);
s->s3.handshake_buffer = NULL;
EVP_MD_CTX_free(s->s3.handshake_dgst);
s->s3.handshake_dgst = NULL;
}
int ssl3_finish_mac(SSL *s, const unsigned char *buf, size_t len)
{
int ret;
if (s->s3.handshake_dgst == NULL) {
/* Note: this writes to a memory BIO so a failure is a fatal error */
if (len > INT_MAX) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_OVERFLOW_ERROR);
return 0;
}
ret = BIO_write(s->s3.handshake_buffer, (void *)buf, (int)len);
if (ret <= 0 || ret != (int)len) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
ret = EVP_DigestUpdate(s->s3.handshake_dgst, buf, len);
if (!ret) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
return 1;
}
int ssl3_digest_cached_records(SSL *s, int keep)
{
const EVP_MD *md;
long hdatalen;
void *hdata;
if (s->s3.handshake_dgst == NULL) {
hdatalen = BIO_get_mem_data(s->s3.handshake_buffer, &hdata);
if (hdatalen <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_HANDSHAKE_LENGTH);
return 0;
}
s->s3.handshake_dgst = EVP_MD_CTX_new();
if (s->s3.handshake_dgst == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return 0;
}
md = ssl_handshake_md(s);
if (md == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_NO_SUITABLE_DIGEST_ALGORITHM);
return 0;
}
if (!EVP_DigestInit_ex(s->s3.handshake_dgst, md, NULL)
|| !EVP_DigestUpdate(s->s3.handshake_dgst, hdata, hdatalen)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
if (keep == 0) {
BIO_free(s->s3.handshake_buffer);
s->s3.handshake_buffer = NULL;
}
return 1;
}
void ssl3_digest_master_key_set_params(const SSL_SESSION *session,
OSSL_PARAM params[])
{
int n = 0;
params[n++] = OSSL_PARAM_construct_octet_string(OSSL_DIGEST_PARAM_SSL3_MS,
(void *)session->master_key,
session->master_key_length);
params[n++] = OSSL_PARAM_construct_end();
}
size_t ssl3_final_finish_mac(SSL *s, const char *sender, size_t len,
unsigned char *p)
{
int ret;
EVP_MD_CTX *ctx = NULL;
if (!ssl3_digest_cached_records(s, 0)) {
/* SSLfatal() already called */
return 0;
}
if (EVP_MD_CTX_type(s->s3.handshake_dgst) != NID_md5_sha1) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_REQUIRED_DIGEST);
return 0;
}
ctx = EVP_MD_CTX_new();
if (ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!EVP_MD_CTX_copy_ex(ctx, s->s3.handshake_dgst)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
ret = 0;
goto err;
}
ret = EVP_MD_CTX_size(ctx);
if (ret < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
ret = 0;
goto err;
}
if (sender != NULL) {
OSSL_PARAM digest_cmd_params[3];
ssl3_digest_master_key_set_params(s->session, digest_cmd_params);
if (EVP_DigestUpdate(ctx, sender, len) <= 0
|| EVP_MD_CTX_set_params(ctx, digest_cmd_params) <= 0
|| EVP_DigestFinal_ex(ctx, p, NULL) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
ret = 0;
}
}
err:
EVP_MD_CTX_free(ctx);
return ret;
}
int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
size_t len, size_t *secret_size)
{
static const unsigned char *salt[3] = {
#ifndef CHARSET_EBCDIC
(const unsigned char *)"A",
(const unsigned char *)"BB",
(const unsigned char *)"CCC",
#else
(const unsigned char *)"\x41",
(const unsigned char *)"\x42\x42",
(const unsigned char *)"\x43\x43\x43",
#endif
};
unsigned char buf[EVP_MAX_MD_SIZE];
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
int i, ret = 1;
unsigned int n;
size_t ret_secret_size = 0;
if (ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
return 0;
}
for (i = 0; i < 3; i++) {
if (EVP_DigestInit_ex(ctx, s->ctx->sha1, NULL) <= 0
|| EVP_DigestUpdate(ctx, salt[i],
strlen((const char *)salt[i])) <= 0
|| EVP_DigestUpdate(ctx, p, len) <= 0
|| EVP_DigestUpdate(ctx, &(s->s3.client_random[0]),
SSL3_RANDOM_SIZE) <= 0
|| EVP_DigestUpdate(ctx, &(s->s3.server_random[0]),
SSL3_RANDOM_SIZE) <= 0
/* TODO(size_t) : convert me */
|| EVP_DigestFinal_ex(ctx, buf, &n) <= 0
|| EVP_DigestInit_ex(ctx, s->ctx->md5, NULL) <= 0
|| EVP_DigestUpdate(ctx, p, len) <= 0
|| EVP_DigestUpdate(ctx, buf, n) <= 0
|| EVP_DigestFinal_ex(ctx, out, &n) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
ret = 0;
break;
}
out += n;
ret_secret_size += n;
}
EVP_MD_CTX_free(ctx);
OPENSSL_cleanse(buf, sizeof(buf));
if (ret)
*secret_size = ret_secret_size;
return ret;
}
int ssl3_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return SSL3_AD_CLOSE_NOTIFY;
case SSL_AD_UNEXPECTED_MESSAGE:
return SSL3_AD_UNEXPECTED_MESSAGE;
case SSL_AD_BAD_RECORD_MAC:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_DECRYPTION_FAILED:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_RECORD_OVERFLOW:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_DECOMPRESSION_FAILURE:
return SSL3_AD_DECOMPRESSION_FAILURE;
case SSL_AD_HANDSHAKE_FAILURE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_NO_CERTIFICATE:
return SSL3_AD_NO_CERTIFICATE;
case SSL_AD_BAD_CERTIFICATE:
return SSL3_AD_BAD_CERTIFICATE;
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return SSL3_AD_UNSUPPORTED_CERTIFICATE;
case SSL_AD_CERTIFICATE_REVOKED:
return SSL3_AD_CERTIFICATE_REVOKED;
case SSL_AD_CERTIFICATE_EXPIRED:
return SSL3_AD_CERTIFICATE_EXPIRED;
case SSL_AD_CERTIFICATE_UNKNOWN:
return SSL3_AD_CERTIFICATE_UNKNOWN;
case SSL_AD_ILLEGAL_PARAMETER:
return SSL3_AD_ILLEGAL_PARAMETER;
case SSL_AD_UNKNOWN_CA:
return SSL3_AD_BAD_CERTIFICATE;
case SSL_AD_ACCESS_DENIED:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_DECODE_ERROR:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_DECRYPT_ERROR:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_EXPORT_RESTRICTION:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_PROTOCOL_VERSION:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_INSUFFICIENT_SECURITY:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_INTERNAL_ERROR:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_USER_CANCELLED:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_NO_RENEGOTIATION:
return -1; /* Don't send it :-) */
case SSL_AD_UNSUPPORTED_EXTENSION:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_UNRECOGNIZED_NAME:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return TLS1_AD_UNKNOWN_PSK_IDENTITY;
case SSL_AD_INAPPROPRIATE_FALLBACK:
return TLS1_AD_INAPPROPRIATE_FALLBACK;
case SSL_AD_NO_APPLICATION_PROTOCOL:
return TLS1_AD_NO_APPLICATION_PROTOCOL;
case SSL_AD_CERTIFICATE_REQUIRED:
return SSL_AD_HANDSHAKE_FAILURE;
default:
return -1;
}
}