openssl/crypto/evp/e_des3.c
Pauli 4e720f12fa Fix Coverity 1201740 & 1201712: uninitialised values
These are both false positives since the `d` array is initialised by
the `DES_cfb_encrypt()` call via the `l2cn` macro.  Rather than ignoring them
and having them crop up later, it's easier to just add an initialiser.

Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/17894)
2022-05-08 17:50:04 +10:00

427 lines
14 KiB
C

/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#ifndef OPENSSL_NO_DES
# include <openssl/objects.h>
# include "crypto/evp.h"
# include "crypto/sha.h"
# include <openssl/des.h>
# include <openssl/rand.h>
# include "evp_local.h"
typedef struct {
union {
OSSL_UNION_ALIGN;
DES_key_schedule ks[3];
} ks;
union {
void (*cbc) (const void *, void *, size_t,
const DES_key_schedule *, unsigned char *);
} stream;
} DES_EDE_KEY;
# define ks1 ks.ks[0]
# define ks2 ks.ks[1]
# define ks3 ks.ks[2]
# if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
/* ---------^^^ this is not a typo, just a way to detect that
* assembler support was in general requested... */
# include "crypto/sparc_arch.h"
# define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES)
void des_t4_key_expand(const void *key, DES_key_schedule *ks);
void des_t4_ede3_cbc_encrypt(const void *inp, void *out, size_t len,
const DES_key_schedule ks[3], unsigned char iv[8]);
void des_t4_ede3_cbc_decrypt(const void *inp, void *out, size_t len,
const DES_key_schedule ks[3], unsigned char iv[8]);
# endif
static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);
# define data(ctx) EVP_C_DATA(DES_EDE_KEY,ctx)
/*
* Because of various casts and different args can't use
* IMPLEMENT_BLOCK_CIPHER
*/
static int des_ede_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
BLOCK_CIPHER_ecb_loop()
DES_ecb3_encrypt((const_DES_cblock *)(in + i),
(DES_cblock *)(out + i),
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, EVP_CIPHER_CTX_is_encrypting(ctx));
return 1;
}
static int des_ede_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
while (inl >= EVP_MAXCHUNK) {
int num = EVP_CIPHER_CTX_get_num(ctx);
DES_ede3_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3,
(DES_cblock *)ctx->iv,
&num);
EVP_CIPHER_CTX_set_num(ctx, num);
inl -= EVP_MAXCHUNK;
in += EVP_MAXCHUNK;
out += EVP_MAXCHUNK;
}
if (inl) {
int num = EVP_CIPHER_CTX_get_num(ctx);
DES_ede3_ofb64_encrypt(in, out, (long)inl,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3,
(DES_cblock *)ctx->iv,
&num);
EVP_CIPHER_CTX_set_num(ctx, num);
}
return 1;
}
static int des_ede_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
DES_EDE_KEY *dat = data(ctx);
if (dat->stream.cbc != NULL) {
(*dat->stream.cbc) (in, out, inl, dat->ks.ks,
ctx->iv);
return 1;
}
while (inl >= EVP_MAXCHUNK) {
DES_ede3_cbc_encrypt(in, out, (long)EVP_MAXCHUNK,
&dat->ks1, &dat->ks2, &dat->ks3,
(DES_cblock *)ctx->iv,
EVP_CIPHER_CTX_is_encrypting(ctx));
inl -= EVP_MAXCHUNK;
in += EVP_MAXCHUNK;
out += EVP_MAXCHUNK;
}
if (inl)
DES_ede3_cbc_encrypt(in, out, (long)inl,
&dat->ks1, &dat->ks2, &dat->ks3,
(DES_cblock *)ctx->iv,
EVP_CIPHER_CTX_is_encrypting(ctx));
return 1;
}
static int des_ede_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
while (inl >= EVP_MAXCHUNK) {
int num = EVP_CIPHER_CTX_get_num(ctx);
DES_ede3_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, (DES_cblock *)ctx->iv,
&num, EVP_CIPHER_CTX_is_encrypting(ctx));
EVP_CIPHER_CTX_set_num(ctx, num);
inl -= EVP_MAXCHUNK;
in += EVP_MAXCHUNK;
out += EVP_MAXCHUNK;
}
if (inl) {
int num = EVP_CIPHER_CTX_get_num(ctx);
DES_ede3_cfb64_encrypt(in, out, (long)inl,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, (DES_cblock *)ctx->iv,
&num, EVP_CIPHER_CTX_is_encrypting(ctx));
EVP_CIPHER_CTX_set_num(ctx, num);
}
return 1;
}
/*
* Although we have a CFB-r implementation for 3-DES, it doesn't pack the
* right way, so wrap it here
*/
static int des_ede3_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
size_t n;
unsigned char c[1];
unsigned char d[1] = { 0 }; /* Appease Coverity */
if (!EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS))
inl *= 8;
for (n = 0; n < inl; ++n) {
c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
DES_ede3_cfb_encrypt(c, d, 1, 1,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, (DES_cblock *)ctx->iv,
EVP_CIPHER_CTX_is_encrypting(ctx));
out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8)))
| ((d[0] & 0x80) >> (unsigned int)(n % 8));
}
return 1;
}
static int des_ede3_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
while (inl >= EVP_MAXCHUNK) {
DES_ede3_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, (DES_cblock *)ctx->iv,
EVP_CIPHER_CTX_is_encrypting(ctx));
inl -= EVP_MAXCHUNK;
in += EVP_MAXCHUNK;
out += EVP_MAXCHUNK;
}
if (inl)
DES_ede3_cfb_encrypt(in, out, 8, (long)inl,
&data(ctx)->ks1, &data(ctx)->ks2,
&data(ctx)->ks3, (DES_cblock *)ctx->iv,
EVP_CIPHER_CTX_is_encrypting(ctx));
return 1;
}
BLOCK_CIPHER_defs(des_ede, DES_EDE_KEY, NID_des_ede, 8, 16, 8, 64,
EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1,
des_ede_init_key, NULL, NULL, NULL, des3_ctrl)
# define des_ede3_cfb64_cipher des_ede_cfb64_cipher
# define des_ede3_ofb_cipher des_ede_ofb_cipher
# define des_ede3_cbc_cipher des_ede_cbc_cipher
# define des_ede3_ecb_cipher des_ede_ecb_cipher
BLOCK_CIPHER_defs(des_ede3, DES_EDE_KEY, NID_des_ede3, 8, 24, 8, 64,
EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1,
des_ede3_init_key, NULL, NULL, NULL, des3_ctrl)
BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 1,
EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1,
des_ede3_init_key, NULL, NULL, NULL, des3_ctrl)
BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 8,
EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1,
des_ede3_init_key, NULL, NULL, NULL, des3_ctrl)
static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
DES_cblock *deskey = (DES_cblock *)key;
DES_EDE_KEY *dat = data(ctx);
dat->stream.cbc = NULL;
# if defined(SPARC_DES_CAPABLE)
if (SPARC_DES_CAPABLE) {
int mode = EVP_CIPHER_CTX_get_mode(ctx);
if (mode == EVP_CIPH_CBC_MODE) {
des_t4_key_expand(&deskey[0], &dat->ks1);
des_t4_key_expand(&deskey[1], &dat->ks2);
memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1));
dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt :
des_t4_ede3_cbc_decrypt;
return 1;
}
}
# endif
DES_set_key_unchecked(&deskey[0], &dat->ks1);
DES_set_key_unchecked(&deskey[1], &dat->ks2);
memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1));
return 1;
}
static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
DES_cblock *deskey = (DES_cblock *)key;
DES_EDE_KEY *dat = data(ctx);
dat->stream.cbc = NULL;
# if defined(SPARC_DES_CAPABLE)
if (SPARC_DES_CAPABLE) {
int mode = EVP_CIPHER_CTX_get_mode(ctx);
if (mode == EVP_CIPH_CBC_MODE) {
des_t4_key_expand(&deskey[0], &dat->ks1);
des_t4_key_expand(&deskey[1], &dat->ks2);
des_t4_key_expand(&deskey[2], &dat->ks3);
dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt :
des_t4_ede3_cbc_decrypt;
return 1;
}
}
# endif
DES_set_key_unchecked(&deskey[0], &dat->ks1);
DES_set_key_unchecked(&deskey[1], &dat->ks2);
DES_set_key_unchecked(&deskey[2], &dat->ks3);
return 1;
}
static int des3_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
DES_cblock *deskey = ptr;
int kl;
switch (type) {
case EVP_CTRL_RAND_KEY:
kl = EVP_CIPHER_CTX_get_key_length(ctx);
if (kl < 0 || RAND_priv_bytes(ptr, kl) <= 0)
return 0;
DES_set_odd_parity(deskey);
if (kl >= 16)
DES_set_odd_parity(deskey + 1);
if (kl >= 24)
DES_set_odd_parity(deskey + 2);
return 1;
default:
return -1;
}
}
const EVP_CIPHER *EVP_des_ede(void)
{
return &des_ede_ecb;
}
const EVP_CIPHER *EVP_des_ede3(void)
{
return &des_ede3_ecb;
}
# include <openssl/sha.h>
static const unsigned char wrap_iv[8] =
{ 0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05 };
static int des_ede3_unwrap(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
unsigned char icv[8], iv[8], sha1tmp[SHA_DIGEST_LENGTH];
int rv = -1;
if (inl < 24)
return -1;
if (out == NULL)
return inl - 16;
memcpy(ctx->iv, wrap_iv, 8);
/* Decrypt first block which will end up as icv */
des_ede_cbc_cipher(ctx, icv, in, 8);
/* Decrypt central blocks */
/*
* If decrypting in place move whole output along a block so the next
* des_ede_cbc_cipher is in place.
*/
if (out == in) {
memmove(out, out + 8, inl - 8);
in -= 8;
}
des_ede_cbc_cipher(ctx, out, in + 8, inl - 16);
/* Decrypt final block which will be IV */
des_ede_cbc_cipher(ctx, iv, in + inl - 8, 8);
/* Reverse order of everything */
BUF_reverse(icv, NULL, 8);
BUF_reverse(out, NULL, inl - 16);
BUF_reverse(ctx->iv, iv, 8);
/* Decrypt again using new IV */
des_ede_cbc_cipher(ctx, out, out, inl - 16);
des_ede_cbc_cipher(ctx, icv, icv, 8);
if (ossl_sha1(out, inl - 16, sha1tmp) /* Work out hash of first portion */
&& CRYPTO_memcmp(sha1tmp, icv, 8) == 0)
rv = inl - 16;
OPENSSL_cleanse(icv, 8);
OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH);
OPENSSL_cleanse(iv, 8);
OPENSSL_cleanse(ctx->iv, 8);
if (rv == -1)
OPENSSL_cleanse(out, inl - 16);
return rv;
}
static int des_ede3_wrap(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
unsigned char sha1tmp[SHA_DIGEST_LENGTH];
if (out == NULL)
return inl + 16;
/* Copy input to output buffer + 8 so we have space for IV */
memmove(out + 8, in, inl);
/* Work out ICV */
if (!ossl_sha1(in, inl, sha1tmp))
return -1;
memcpy(out + inl + 8, sha1tmp, 8);
OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH);
/* Generate random IV */
if (RAND_bytes(ctx->iv, 8) <= 0)
return -1;
memcpy(out, ctx->iv, 8);
/* Encrypt everything after IV in place */
des_ede_cbc_cipher(ctx, out + 8, out + 8, inl + 8);
BUF_reverse(out, NULL, inl + 16);
memcpy(ctx->iv, wrap_iv, 8);
des_ede_cbc_cipher(ctx, out, out, inl + 16);
return inl + 16;
}
static int des_ede3_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
/*
* Sanity check input length: we typically only wrap keys so EVP_MAXCHUNK
* is more than will ever be needed. Also input length must be a multiple
* of 8 bits.
*/
if (inl >= EVP_MAXCHUNK || inl % 8)
return -1;
if (ossl_is_partially_overlapping(out, in, inl)) {
ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
if (EVP_CIPHER_CTX_is_encrypting(ctx))
return des_ede3_wrap(ctx, out, in, inl);
else
return des_ede3_unwrap(ctx, out, in, inl);
}
static const EVP_CIPHER des3_wrap = {
NID_id_smime_alg_CMS3DESwrap,
8, 24, 0,
EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_FLAG_DEFAULT_ASN1,
EVP_ORIG_GLOBAL,
des_ede3_init_key, des_ede3_wrap_cipher,
NULL,
sizeof(DES_EDE_KEY),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_des_ede3_wrap(void)
{
return &des3_wrap;
}
#endif