mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
09ff84bd27
The demo code is quite often block copied for new demos, so this PR changes demos to use EXIT_SUCCESS & EXIT_FAILURE instead of using 0 and 1. Internal functions use the normal notation of 0 = error, 1 = success, but the value returned by main() must use EXIT_SUCCESS and EXIT_FAILURE. Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/20545)
279 lines
8.8 KiB
C
279 lines
8.8 KiB
C
/*
|
|
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/evp.h>
|
|
|
|
/*
|
|
* This is a demonstration of key exchange using X25519.
|
|
*
|
|
* The variables beginning `peer1_` / `peer2_` are data which would normally be
|
|
* accessible to that peer.
|
|
*
|
|
* Ordinarily you would use random keys, which are demonstrated
|
|
* below when use_kat=0. A known answer test is demonstrated
|
|
* when use_kat=1.
|
|
*/
|
|
|
|
/* A property query used for selecting the X25519 implementation. */
|
|
static const char *propq = NULL;
|
|
|
|
static const unsigned char peer1_privk_data[32] = {
|
|
0x80, 0x5b, 0x30, 0x20, 0x25, 0x4a, 0x70, 0x2c,
|
|
0xad, 0xa9, 0x8d, 0x7d, 0x47, 0xf8, 0x1b, 0x20,
|
|
0x89, 0xd2, 0xf9, 0x14, 0xac, 0x92, 0x27, 0xf2,
|
|
0x10, 0x7e, 0xdb, 0x21, 0xbd, 0x73, 0x73, 0x5d
|
|
};
|
|
|
|
static const unsigned char peer2_privk_data[32] = {
|
|
0xf8, 0x84, 0x19, 0x69, 0x79, 0x13, 0x0d, 0xbd,
|
|
0xb1, 0x76, 0xd7, 0x0e, 0x7e, 0x0f, 0xb6, 0xf4,
|
|
0x8c, 0x4a, 0x8c, 0x5f, 0xd8, 0x15, 0x09, 0x0a,
|
|
0x71, 0x78, 0x74, 0x92, 0x0f, 0x85, 0xc8, 0x43
|
|
};
|
|
|
|
static const unsigned char expected_result[32] = {
|
|
0x19, 0x71, 0x26, 0x12, 0x74, 0xb5, 0xb1, 0xce,
|
|
0x77, 0xd0, 0x79, 0x24, 0xb6, 0x0a, 0x5c, 0x72,
|
|
0x0c, 0xa6, 0x56, 0xc0, 0x11, 0xeb, 0x43, 0x11,
|
|
0x94, 0x3b, 0x01, 0x45, 0xca, 0x19, 0xfe, 0x09
|
|
};
|
|
|
|
typedef struct peer_data_st {
|
|
const char *name; /* name of peer */
|
|
EVP_PKEY *privk; /* privk generated for peer */
|
|
unsigned char pubk_data[32]; /* generated pubk to send to other peer */
|
|
|
|
unsigned char *secret; /* allocated shared secret buffer */
|
|
size_t secret_len;
|
|
} PEER_DATA;
|
|
|
|
/*
|
|
* Prepare for X25519 key exchange. The public key to be sent to the remote peer
|
|
* is put in pubk_data, which should be a 32-byte buffer. Returns 1 on success.
|
|
*/
|
|
static int keyexch_x25519_before(
|
|
OSSL_LIB_CTX *libctx,
|
|
const unsigned char *kat_privk_data,
|
|
PEER_DATA *local_peer)
|
|
{
|
|
int ret = 0;
|
|
size_t pubk_data_len = 0;
|
|
|
|
/* Generate or load X25519 key for the peer */
|
|
if (kat_privk_data != NULL)
|
|
local_peer->privk =
|
|
EVP_PKEY_new_raw_private_key_ex(libctx, "X25519", propq,
|
|
kat_privk_data,
|
|
sizeof(peer1_privk_data));
|
|
else
|
|
local_peer->privk = EVP_PKEY_Q_keygen(libctx, propq, "X25519");
|
|
|
|
if (local_peer->privk == NULL) {
|
|
fprintf(stderr, "Could not load or generate private key\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Get public key corresponding to the private key */
|
|
if (EVP_PKEY_get_octet_string_param(local_peer->privk,
|
|
OSSL_PKEY_PARAM_PUB_KEY,
|
|
local_peer->pubk_data,
|
|
sizeof(local_peer->pubk_data),
|
|
&pubk_data_len) == 0) {
|
|
fprintf(stderr, "EVP_PKEY_get_octet_string_param() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/* X25519 public keys are always 32 bytes */
|
|
if (pubk_data_len != 32) {
|
|
fprintf(stderr, "EVP_PKEY_get_octet_string_param() "
|
|
"yielded wrong length\n");
|
|
goto end;
|
|
}
|
|
|
|
ret = 1;
|
|
end:
|
|
if (ret == 0) {
|
|
EVP_PKEY_free(local_peer->privk);
|
|
local_peer->privk = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Complete X25519 key exchange. remote_peer_pubk_data should be the 32 byte
|
|
* public key value received from the remote peer. On success, returns 1 and the
|
|
* secret is pointed to by *secret. The caller must free it.
|
|
*/
|
|
static int keyexch_x25519_after(
|
|
OSSL_LIB_CTX *libctx,
|
|
int use_kat,
|
|
PEER_DATA *local_peer,
|
|
const unsigned char *remote_peer_pubk_data)
|
|
{
|
|
int ret = 0;
|
|
EVP_PKEY *remote_peer_pubk = NULL;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
|
|
local_peer->secret = NULL;
|
|
|
|
/* Load public key for remote peer. */
|
|
remote_peer_pubk =
|
|
EVP_PKEY_new_raw_public_key_ex(libctx, "X25519", propq,
|
|
remote_peer_pubk_data, 32);
|
|
if (remote_peer_pubk == NULL) {
|
|
fprintf(stderr, "EVP_PKEY_new_raw_public_key_ex() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Create key exchange context. */
|
|
ctx = EVP_PKEY_CTX_new_from_pkey(libctx, local_peer->privk, propq);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "EVP_PKEY_CTX_new_from_pkey() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize derivation process. */
|
|
if (EVP_PKEY_derive_init(ctx) == 0) {
|
|
fprintf(stderr, "EVP_PKEY_derive_init() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Configure each peer with the other peer's public key. */
|
|
if (EVP_PKEY_derive_set_peer(ctx, remote_peer_pubk) == 0) {
|
|
fprintf(stderr, "EVP_PKEY_derive_set_peer() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Determine the secret length. */
|
|
if (EVP_PKEY_derive(ctx, NULL, &local_peer->secret_len) == 0) {
|
|
fprintf(stderr, "EVP_PKEY_derive() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* We are using X25519, so the secret generated will always be 32 bytes.
|
|
* However for exposition, the code below demonstrates a generic
|
|
* implementation for arbitrary lengths.
|
|
*/
|
|
if (local_peer->secret_len != 32) { /* unreachable */
|
|
fprintf(stderr, "Secret is always 32 bytes for X25519\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Allocate memory for shared secrets. */
|
|
local_peer->secret = OPENSSL_malloc(local_peer->secret_len);
|
|
if (local_peer->secret == NULL) {
|
|
fprintf(stderr, "Could not allocate memory for secret\n");
|
|
goto end;
|
|
}
|
|
|
|
/* Derive the shared secret. */
|
|
if (EVP_PKEY_derive(ctx, local_peer->secret,
|
|
&local_peer->secret_len) == 0) {
|
|
fprintf(stderr, "EVP_PKEY_derive() failed\n");
|
|
goto end;
|
|
}
|
|
|
|
printf("Shared secret (%s):\n", local_peer->name);
|
|
BIO_dump_indent_fp(stdout, local_peer->secret, local_peer->secret_len, 2);
|
|
putchar('\n');
|
|
|
|
ret = 1;
|
|
end:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
EVP_PKEY_free(remote_peer_pubk);
|
|
if (ret == 0) {
|
|
OPENSSL_clear_free(local_peer->secret, local_peer->secret_len);
|
|
local_peer->secret = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int keyexch_x25519(int use_kat)
|
|
{
|
|
int ret = 0;
|
|
OSSL_LIB_CTX *libctx = NULL;
|
|
PEER_DATA peer1 = {"peer 1"}, peer2 = {"peer 2"};
|
|
|
|
/*
|
|
* Each peer generates its private key and sends its public key
|
|
* to the other peer. The private key is stored locally for
|
|
* later use.
|
|
*/
|
|
if (keyexch_x25519_before(libctx, use_kat ? peer1_privk_data : NULL,
|
|
&peer1) == 0)
|
|
return 0;
|
|
|
|
if (keyexch_x25519_before(libctx, use_kat ? peer2_privk_data : NULL,
|
|
&peer2) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Each peer uses the other peer's public key to perform key exchange.
|
|
* After this succeeds, each peer has the same secret in its
|
|
* PEER_DATA.
|
|
*/
|
|
if (keyexch_x25519_after(libctx, use_kat, &peer1, peer2.pubk_data) == 0)
|
|
return 0;
|
|
|
|
if (keyexch_x25519_after(libctx, use_kat, &peer2, peer1.pubk_data) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Here we demonstrate the secrets are equal for exposition purposes.
|
|
*
|
|
* Although in practice you will generally not need to compare secrets
|
|
* produced through key exchange, if you do compare cryptographic secrets,
|
|
* always do so using a constant-time function such as CRYPTO_memcmp, never
|
|
* using memcmp(3).
|
|
*/
|
|
if (CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secret_len) != 0) {
|
|
fprintf(stderr, "Negotiated secrets do not match\n");
|
|
goto end;
|
|
}
|
|
|
|
/* If we are doing the KAT, the secret should equal our reference result. */
|
|
if (use_kat && CRYPTO_memcmp(peer1.secret, expected_result,
|
|
peer1.secret_len) != 0) {
|
|
fprintf(stderr, "Did not get expected result\n");
|
|
goto end;
|
|
}
|
|
|
|
ret = 1;
|
|
end:
|
|
/* The secrets are sensitive, so ensure they are erased before freeing. */
|
|
OPENSSL_clear_free(peer1.secret, peer1.secret_len);
|
|
OPENSSL_clear_free(peer2.secret, peer2.secret_len);
|
|
|
|
EVP_PKEY_free(peer1.privk);
|
|
EVP_PKEY_free(peer2.privk);
|
|
OSSL_LIB_CTX_free(libctx);
|
|
return ret;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
/* Test X25519 key exchange with known result. */
|
|
printf("Key exchange using known answer (deterministic):\n");
|
|
if (keyexch_x25519(1) == 0)
|
|
return EXIT_FAILURE;
|
|
|
|
/* Test X25519 key exchange with random keys. */
|
|
printf("Key exchange using random keys:\n");
|
|
if (keyexch_x25519(0) == 0)
|
|
return EXIT_FAILURE;
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|