mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
afecd85db1
Fixes #15219 Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/15253)
391 lines
11 KiB
C
391 lines
11 KiB
C
/*
|
|
* Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* ECDSA low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include "ec_local.h"
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
|
|
/*-
|
|
* Calculates and sets the affine coordinates of an EC_POINT from the given
|
|
* compressed coordinates. Uses algorithm 2.3.4 of SEC 1.
|
|
* Note that the simple implementation only uses affine coordinates.
|
|
*
|
|
* The method is from the following publication:
|
|
*
|
|
* Harper, Menezes, Vanstone:
|
|
* "Public-Key Cryptosystems with Very Small Key Lengths",
|
|
* EUROCRYPT '92, Springer-Verlag LNCS 658,
|
|
* published February 1993
|
|
*
|
|
* US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe
|
|
* the same method, but claim no priority date earlier than July 29, 1994
|
|
* (and additionally fail to cite the EUROCRYPT '92 publication as prior art).
|
|
*/
|
|
int ossl_ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group,
|
|
EC_POINT *point,
|
|
const BIGNUM *x_, int y_bit,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *tmp, *x, *y, *z;
|
|
int ret = 0, z0;
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
y_bit = (y_bit != 0) ? 1 : 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
tmp = BN_CTX_get(ctx);
|
|
x = BN_CTX_get(ctx);
|
|
y = BN_CTX_get(ctx);
|
|
z = BN_CTX_get(ctx);
|
|
if (z == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(x, x_, group->poly))
|
|
goto err;
|
|
if (BN_is_zero(x)) {
|
|
if (!BN_GF2m_mod_sqrt_arr(y, group->b, group->poly, ctx))
|
|
goto err;
|
|
} else {
|
|
if (!group->meth->field_sqr(group, tmp, x, ctx))
|
|
goto err;
|
|
if (!group->meth->field_div(group, tmp, group->b, tmp, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(tmp, group->a, tmp))
|
|
goto err;
|
|
if (!BN_GF2m_add(tmp, x, tmp))
|
|
goto err;
|
|
ERR_set_mark();
|
|
if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) {
|
|
#ifndef FIPS_MODULE
|
|
unsigned long err = ERR_peek_last_error();
|
|
|
|
if (ERR_GET_LIB(err) == ERR_LIB_BN
|
|
&& ERR_GET_REASON(err) == BN_R_NO_SOLUTION) {
|
|
ERR_pop_to_mark();
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_COMPRESSED_POINT);
|
|
} else
|
|
#endif
|
|
{
|
|
ERR_clear_last_mark();
|
|
ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
|
}
|
|
goto err;
|
|
}
|
|
ERR_clear_last_mark();
|
|
z0 = (BN_is_odd(z)) ? 1 : 0;
|
|
if (!group->meth->field_mul(group, y, x, z, ctx))
|
|
goto err;
|
|
if (z0 != y_bit) {
|
|
if (!BN_GF2m_add(y, y, x))
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX_free(new_ctx);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Converts an EC_POINT to an octet string. If buf is NULL, the encoded
|
|
* length will be returned. If the length len of buf is smaller than required
|
|
* an error will be returned.
|
|
*/
|
|
size_t ossl_ec_GF2m_simple_point2oct(const EC_GROUP *group,
|
|
const EC_POINT *point,
|
|
point_conversion_form_t form,
|
|
unsigned char *buf, size_t len, BN_CTX *ctx)
|
|
{
|
|
size_t ret;
|
|
int used_ctx = 0;
|
|
BIGNUM *x, *y, *yxi;
|
|
size_t field_len, i, skip;
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX *new_ctx = NULL;
|
|
#endif
|
|
|
|
if ((form != POINT_CONVERSION_COMPRESSED)
|
|
&& (form != POINT_CONVERSION_UNCOMPRESSED)
|
|
&& (form != POINT_CONVERSION_HYBRID)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_FORM);
|
|
goto err;
|
|
}
|
|
|
|
if (EC_POINT_is_at_infinity(group, point)) {
|
|
/* encodes to a single 0 octet */
|
|
if (buf != NULL) {
|
|
if (len < 1) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
buf[0] = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* ret := required output buffer length */
|
|
field_len = (EC_GROUP_get_degree(group) + 7) / 8;
|
|
ret =
|
|
(form ==
|
|
POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
|
|
|
|
/* if 'buf' is NULL, just return required length */
|
|
if (buf != NULL) {
|
|
if (len < ret) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_BUFFER_TOO_SMALL);
|
|
goto err;
|
|
}
|
|
|
|
#ifndef FIPS_MODULE
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
BN_CTX_start(ctx);
|
|
used_ctx = 1;
|
|
x = BN_CTX_get(ctx);
|
|
y = BN_CTX_get(ctx);
|
|
yxi = BN_CTX_get(ctx);
|
|
if (yxi == NULL)
|
|
goto err;
|
|
|
|
if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
|
|
goto err;
|
|
|
|
buf[0] = form;
|
|
if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) {
|
|
if (!group->meth->field_div(group, yxi, y, x, ctx))
|
|
goto err;
|
|
if (BN_is_odd(yxi))
|
|
buf[0]++;
|
|
}
|
|
|
|
i = 1;
|
|
|
|
skip = field_len - BN_num_bytes(x);
|
|
if (skip > field_len) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
while (skip > 0) {
|
|
buf[i++] = 0;
|
|
skip--;
|
|
}
|
|
skip = BN_bn2bin(x, buf + i);
|
|
i += skip;
|
|
if (i != 1 + field_len) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (form == POINT_CONVERSION_UNCOMPRESSED
|
|
|| form == POINT_CONVERSION_HYBRID) {
|
|
skip = field_len - BN_num_bytes(y);
|
|
if (skip > field_len) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
while (skip > 0) {
|
|
buf[i++] = 0;
|
|
skip--;
|
|
}
|
|
skip = BN_bn2bin(y, buf + i);
|
|
i += skip;
|
|
}
|
|
|
|
if (i != ret) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (used_ctx)
|
|
BN_CTX_end(ctx);
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX_free(new_ctx);
|
|
#endif
|
|
return ret;
|
|
|
|
err:
|
|
if (used_ctx)
|
|
BN_CTX_end(ctx);
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX_free(new_ctx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Converts an octet string representation to an EC_POINT. Note that the
|
|
* simple implementation only uses affine coordinates.
|
|
*/
|
|
int ossl_ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
|
|
const unsigned char *buf, size_t len,
|
|
BN_CTX *ctx)
|
|
{
|
|
point_conversion_form_t form;
|
|
int y_bit, m;
|
|
BIGNUM *x, *y, *yxi;
|
|
size_t field_len, enc_len;
|
|
int ret = 0;
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX *new_ctx = NULL;
|
|
#endif
|
|
|
|
if (len == 0) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The first octet is the point converison octet PC, see X9.62, page 4
|
|
* and section 4.4.2. It must be:
|
|
* 0x00 for the point at infinity
|
|
* 0x02 or 0x03 for compressed form
|
|
* 0x04 for uncompressed form
|
|
* 0x06 or 0x07 for hybrid form.
|
|
* For compressed or hybrid forms, we store the last bit of buf[0] as
|
|
* y_bit and clear it from buf[0] so as to obtain a POINT_CONVERSION_*.
|
|
* We error if buf[0] contains any but the above values.
|
|
*/
|
|
y_bit = buf[0] & 1;
|
|
form = buf[0] & ~1U;
|
|
|
|
if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED)
|
|
&& (form != POINT_CONVERSION_UNCOMPRESSED)
|
|
&& (form != POINT_CONVERSION_HYBRID)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
return 0;
|
|
}
|
|
if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
return 0;
|
|
}
|
|
|
|
/* The point at infinity is represented by a single zero octet. */
|
|
if (form == 0) {
|
|
if (len != 1) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
return 0;
|
|
}
|
|
|
|
return EC_POINT_set_to_infinity(group, point);
|
|
}
|
|
|
|
m = EC_GROUP_get_degree(group);
|
|
field_len = (m + 7) / 8;
|
|
enc_len =
|
|
(form ==
|
|
POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
|
|
|
|
if (len != enc_len) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef FIPS_MODULE
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
BN_CTX_start(ctx);
|
|
x = BN_CTX_get(ctx);
|
|
y = BN_CTX_get(ctx);
|
|
yxi = BN_CTX_get(ctx);
|
|
if (yxi == NULL)
|
|
goto err;
|
|
|
|
if (!BN_bin2bn(buf + 1, field_len, x))
|
|
goto err;
|
|
if (BN_num_bits(x) > m) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
goto err;
|
|
}
|
|
|
|
if (form == POINT_CONVERSION_COMPRESSED) {
|
|
if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx))
|
|
goto err;
|
|
} else {
|
|
if (!BN_bin2bn(buf + 1 + field_len, field_len, y))
|
|
goto err;
|
|
if (BN_num_bits(y) > m) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
goto err;
|
|
}
|
|
if (form == POINT_CONVERSION_HYBRID) {
|
|
/*
|
|
* Check that the form in the encoding was set correctly
|
|
* according to X9.62 4.4.2.a, 4(c), see also first paragraph
|
|
* of X9.62, 4.4.1.b.
|
|
*/
|
|
if (BN_is_zero(x)) {
|
|
if (y_bit != 0) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (!group->meth->field_div(group, yxi, y, x, ctx))
|
|
goto err;
|
|
if (y_bit != BN_is_odd(yxi)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_ENCODING);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* EC_POINT_set_affine_coordinates is responsible for checking that
|
|
* the point is on the curve.
|
|
*/
|
|
if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
#ifndef FIPS_MODULE
|
|
BN_CTX_free(new_ctx);
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|