mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
aa8f3d76fc
Approved by Oracle. Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/3585)
405 lines
11 KiB
C
405 lines
11 KiB
C
/*
|
|
* Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include "internal/bn_int.h"
|
|
#include "ec_lcl.h"
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
|
|
/*-
|
|
* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
|
|
* coordinates.
|
|
* Uses algorithm Mdouble in appendix of
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
|
* modified to not require precomputation of c=b^{2^{m-1}}.
|
|
*/
|
|
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t1;
|
|
int ret = 0;
|
|
|
|
/* Since Mdouble is static we can guarantee that ctx != NULL. */
|
|
BN_CTX_start(ctx);
|
|
t1 = BN_CTX_get(ctx);
|
|
if (t1 == NULL)
|
|
goto err;
|
|
|
|
if (!group->meth->field_sqr(group, x, x, ctx))
|
|
goto err;
|
|
if (!group->meth->field_sqr(group, t1, z, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, z, x, t1, ctx))
|
|
goto err;
|
|
if (!group->meth->field_sqr(group, x, x, ctx))
|
|
goto err;
|
|
if (!group->meth->field_sqr(group, t1, t1, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, t1, group->b, t1, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(x, x, t1))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
|
|
* projective coordinates.
|
|
* Uses algorithm Madd in appendix of
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
|
*/
|
|
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
|
|
BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t1, *t2;
|
|
int ret = 0;
|
|
|
|
/* Since Madd is static we can guarantee that ctx != NULL. */
|
|
BN_CTX_start(ctx);
|
|
t1 = BN_CTX_get(ctx);
|
|
t2 = BN_CTX_get(ctx);
|
|
if (t2 == NULL)
|
|
goto err;
|
|
|
|
if (!BN_copy(t1, x))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, x1, x1, z2, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, z1, z1, x2, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, t2, x1, z1, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z1, z1, x1))
|
|
goto err;
|
|
if (!group->meth->field_sqr(group, z1, z1, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, x1, z1, t1, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(x1, x1, t2))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
|
|
* using Montgomery point multiplication algorithm Mxy() in appendix of
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
|
* Returns:
|
|
* 0 on error
|
|
* 1 if return value should be the point at infinity
|
|
* 2 otherwise
|
|
*/
|
|
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
|
|
BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t3, *t4, *t5;
|
|
int ret = 0;
|
|
|
|
if (BN_is_zero(z1)) {
|
|
BN_zero(x2);
|
|
BN_zero(z2);
|
|
return 1;
|
|
}
|
|
|
|
if (BN_is_zero(z2)) {
|
|
if (!BN_copy(x2, x))
|
|
return 0;
|
|
if (!BN_GF2m_add(z2, x, y))
|
|
return 0;
|
|
return 2;
|
|
}
|
|
|
|
/* Since Mxy is static we can guarantee that ctx != NULL. */
|
|
BN_CTX_start(ctx);
|
|
t3 = BN_CTX_get(ctx);
|
|
t4 = BN_CTX_get(ctx);
|
|
t5 = BN_CTX_get(ctx);
|
|
if (t5 == NULL)
|
|
goto err;
|
|
|
|
if (!BN_one(t5))
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, t3, z1, z2, ctx))
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, z1, z1, x, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z1, z1, x1))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, z2, z2, x, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, x1, z2, x1, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z2, z2, x2))
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, z2, z2, z1, ctx))
|
|
goto err;
|
|
if (!group->meth->field_sqr(group, t4, x, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(t4, t4, y))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, t4, t4, t3, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(t4, t4, z2))
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, t3, t3, x, ctx))
|
|
goto err;
|
|
if (!group->meth->field_div(group, t3, t5, t3, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, t4, t3, t4, ctx))
|
|
goto err;
|
|
if (!group->meth->field_mul(group, x2, x1, t3, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z2, x2, x))
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, z2, z2, t4, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z2, z2, y))
|
|
goto err;
|
|
|
|
ret = 2;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Computes scalar*point and stores the result in r.
|
|
* point can not equal r.
|
|
* Uses a modified algorithm 2P of
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
|
*
|
|
* To protect against side-channel attack the function uses constant time swap,
|
|
* avoiding conditional branches.
|
|
*/
|
|
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
|
|
EC_POINT *r,
|
|
const BIGNUM *scalar,
|
|
const EC_POINT *point,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *x1, *x2, *z1, *z2;
|
|
int ret = 0, i, group_top;
|
|
BN_ULONG mask, word;
|
|
|
|
if (r == point) {
|
|
ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
|
|
return 0;
|
|
}
|
|
|
|
/* if result should be point at infinity */
|
|
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
|
|
EC_POINT_is_at_infinity(group, point)) {
|
|
return EC_POINT_set_to_infinity(group, r);
|
|
}
|
|
|
|
/* only support affine coordinates */
|
|
if (!point->Z_is_one)
|
|
return 0;
|
|
|
|
/*
|
|
* Since point_multiply is static we can guarantee that ctx != NULL.
|
|
*/
|
|
BN_CTX_start(ctx);
|
|
x1 = BN_CTX_get(ctx);
|
|
z1 = BN_CTX_get(ctx);
|
|
if (z1 == NULL)
|
|
goto err;
|
|
|
|
x2 = r->X;
|
|
z2 = r->Y;
|
|
|
|
group_top = bn_get_top(group->field);
|
|
if (bn_wexpand(x1, group_top) == NULL
|
|
|| bn_wexpand(z1, group_top) == NULL
|
|
|| bn_wexpand(x2, group_top) == NULL
|
|
|| bn_wexpand(z2, group_top) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(x1, point->X, group->poly))
|
|
goto err; /* x1 = x */
|
|
if (!BN_one(z1))
|
|
goto err; /* z1 = 1 */
|
|
if (!group->meth->field_sqr(group, z2, x1, ctx))
|
|
goto err; /* z2 = x1^2 = x^2 */
|
|
if (!group->meth->field_sqr(group, x2, z2, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(x2, x2, group->b))
|
|
goto err; /* x2 = x^4 + b */
|
|
|
|
/* find top most bit and go one past it */
|
|
i = bn_get_top(scalar) - 1;
|
|
mask = BN_TBIT;
|
|
word = bn_get_words(scalar)[i];
|
|
while (!(word & mask))
|
|
mask >>= 1;
|
|
mask >>= 1;
|
|
/* if top most bit was at word break, go to next word */
|
|
if (!mask) {
|
|
i--;
|
|
mask = BN_TBIT;
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
word = bn_get_words(scalar)[i];
|
|
while (mask) {
|
|
BN_consttime_swap(word & mask, x1, x2, group_top);
|
|
BN_consttime_swap(word & mask, z1, z2, group_top);
|
|
if (!gf2m_Madd(group, point->X, x2, z2, x1, z1, ctx))
|
|
goto err;
|
|
if (!gf2m_Mdouble(group, x1, z1, ctx))
|
|
goto err;
|
|
BN_consttime_swap(word & mask, x1, x2, group_top);
|
|
BN_consttime_swap(word & mask, z1, z2, group_top);
|
|
mask >>= 1;
|
|
}
|
|
mask = BN_TBIT;
|
|
}
|
|
|
|
/* convert out of "projective" coordinates */
|
|
i = gf2m_Mxy(group, point->X, point->Y, x1, z1, x2, z2, ctx);
|
|
if (i == 0)
|
|
goto err;
|
|
else if (i == 1) {
|
|
if (!EC_POINT_set_to_infinity(group, r))
|
|
goto err;
|
|
} else {
|
|
if (!BN_one(r->Z))
|
|
goto err;
|
|
r->Z_is_one = 1;
|
|
}
|
|
|
|
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
|
BN_set_negative(r->X, 0);
|
|
BN_set_negative(r->Y, 0);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Computes the sum
|
|
* scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
|
|
* gracefully ignoring NULL scalar values.
|
|
*/
|
|
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *ctx)
|
|
{
|
|
BN_CTX *new_ctx = NULL;
|
|
int ret = 0;
|
|
size_t i;
|
|
EC_POINT *p = NULL;
|
|
EC_POINT *acc = NULL;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This implementation is more efficient than the wNAF implementation for
|
|
* 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more
|
|
* points, or if we can perform a fast multiplication based on
|
|
* precomputation.
|
|
*/
|
|
if ((scalar && (num > 1)) || (num > 2)
|
|
|| (num == 0 && EC_GROUP_have_precompute_mult(group))) {
|
|
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
|
goto err;
|
|
}
|
|
|
|
if ((p = EC_POINT_new(group)) == NULL)
|
|
goto err;
|
|
if ((acc = EC_POINT_new(group)) == NULL)
|
|
goto err;
|
|
|
|
if (!EC_POINT_set_to_infinity(group, acc))
|
|
goto err;
|
|
|
|
if (scalar) {
|
|
if (!ec_GF2m_montgomery_point_multiply
|
|
(group, p, scalar, group->generator, ctx))
|
|
goto err;
|
|
if (BN_is_negative(scalar))
|
|
if (!group->meth->invert(group, p, ctx))
|
|
goto err;
|
|
if (!group->meth->add(group, acc, acc, p, ctx))
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
if (!ec_GF2m_montgomery_point_multiply
|
|
(group, p, scalars[i], points[i], ctx))
|
|
goto err;
|
|
if (BN_is_negative(scalars[i]))
|
|
if (!group->meth->invert(group, p, ctx))
|
|
goto err;
|
|
if (!group->meth->add(group, acc, acc, p, ctx))
|
|
goto err;
|
|
}
|
|
|
|
if (!EC_POINT_copy(r, acc))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
EC_POINT_free(p);
|
|
EC_POINT_free(acc);
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Precomputation for point multiplication: fall back to wNAF methods because
|
|
* ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
|
|
*/
|
|
|
|
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
|
{
|
|
return ec_wNAF_precompute_mult(group, ctx);
|
|
}
|
|
|
|
int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
|
|
{
|
|
return ec_wNAF_have_precompute_mult(group);
|
|
}
|
|
|
|
#endif
|