mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
26a7d938c9
Since return is inconsistent, I removed unnecessary parentheses and unified them. Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/4541)
617 lines
17 KiB
C
617 lines
17 KiB
C
/*
|
|
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
|
|
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
|
|
|
|
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *t;
|
|
int ret = 0;
|
|
|
|
bn_check_top(in_a);
|
|
bn_check_top(in_b);
|
|
|
|
BN_CTX_start(ctx);
|
|
a = BN_CTX_get(ctx);
|
|
b = BN_CTX_get(ctx);
|
|
if (b == NULL)
|
|
goto err;
|
|
|
|
if (BN_copy(a, in_a) == NULL)
|
|
goto err;
|
|
if (BN_copy(b, in_b) == NULL)
|
|
goto err;
|
|
a->neg = 0;
|
|
b->neg = 0;
|
|
|
|
if (BN_cmp(a, b) < 0) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
t = euclid(a, b);
|
|
if (t == NULL)
|
|
goto err;
|
|
|
|
if (BN_copy(r, t) == NULL)
|
|
goto err;
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(r);
|
|
return ret;
|
|
}
|
|
|
|
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
|
|
{
|
|
BIGNUM *t;
|
|
int shifts = 0;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
/* 0 <= b <= a */
|
|
while (!BN_is_zero(b)) {
|
|
/* 0 < b <= a */
|
|
|
|
if (BN_is_odd(a)) {
|
|
if (BN_is_odd(b)) {
|
|
if (!BN_sub(a, a, b))
|
|
goto err;
|
|
if (!BN_rshift1(a, a))
|
|
goto err;
|
|
if (BN_cmp(a, b) < 0) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
} else { /* a odd - b even */
|
|
|
|
if (!BN_rshift1(b, b))
|
|
goto err;
|
|
if (BN_cmp(a, b) < 0) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
}
|
|
} else { /* a is even */
|
|
|
|
if (BN_is_odd(b)) {
|
|
if (!BN_rshift1(a, a))
|
|
goto err;
|
|
if (BN_cmp(a, b) < 0) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
} else { /* a even - b even */
|
|
|
|
if (!BN_rshift1(a, a))
|
|
goto err;
|
|
if (!BN_rshift1(b, b))
|
|
goto err;
|
|
shifts++;
|
|
}
|
|
}
|
|
/* 0 <= b <= a */
|
|
}
|
|
|
|
if (shifts) {
|
|
if (!BN_lshift(a, a, shifts))
|
|
goto err;
|
|
}
|
|
bn_check_top(a);
|
|
return a;
|
|
err:
|
|
return NULL;
|
|
}
|
|
|
|
/* solves ax == 1 (mod n) */
|
|
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
|
|
const BIGNUM *a, const BIGNUM *n,
|
|
BN_CTX *ctx);
|
|
|
|
BIGNUM *BN_mod_inverse(BIGNUM *in,
|
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *rv;
|
|
int noinv;
|
|
rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
|
|
if (noinv)
|
|
BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
|
|
return rv;
|
|
}
|
|
|
|
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
|
|
int *pnoinv)
|
|
{
|
|
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
|
BIGNUM *ret = NULL;
|
|
int sign;
|
|
|
|
if (pnoinv)
|
|
*pnoinv = 0;
|
|
|
|
if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
|
|
|| (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
|
|
return BN_mod_inverse_no_branch(in, a, n, ctx);
|
|
}
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(n);
|
|
|
|
BN_CTX_start(ctx);
|
|
A = BN_CTX_get(ctx);
|
|
B = BN_CTX_get(ctx);
|
|
X = BN_CTX_get(ctx);
|
|
D = BN_CTX_get(ctx);
|
|
M = BN_CTX_get(ctx);
|
|
Y = BN_CTX_get(ctx);
|
|
T = BN_CTX_get(ctx);
|
|
if (T == NULL)
|
|
goto err;
|
|
|
|
if (in == NULL)
|
|
R = BN_new();
|
|
else
|
|
R = in;
|
|
if (R == NULL)
|
|
goto err;
|
|
|
|
BN_one(X);
|
|
BN_zero(Y);
|
|
if (BN_copy(B, a) == NULL)
|
|
goto err;
|
|
if (BN_copy(A, n) == NULL)
|
|
goto err;
|
|
A->neg = 0;
|
|
if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
|
if (!BN_nnmod(B, B, A, ctx))
|
|
goto err;
|
|
}
|
|
sign = -1;
|
|
/*-
|
|
* From B = a mod |n|, A = |n| it follows that
|
|
*
|
|
* 0 <= B < A,
|
|
* -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|).
|
|
*/
|
|
|
|
if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
|
|
/*
|
|
* Binary inversion algorithm; requires odd modulus. This is faster
|
|
* than the general algorithm if the modulus is sufficiently small
|
|
* (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
|
|
* systems)
|
|
*/
|
|
int shift;
|
|
|
|
while (!BN_is_zero(B)) {
|
|
/*-
|
|
* 0 < B < |n|,
|
|
* 0 < A <= |n|,
|
|
* (1) -sign*X*a == B (mod |n|),
|
|
* (2) sign*Y*a == A (mod |n|)
|
|
*/
|
|
|
|
/*
|
|
* Now divide B by the maximum possible power of two in the
|
|
* integers, and divide X by the same value mod |n|. When we're
|
|
* done, (1) still holds.
|
|
*/
|
|
shift = 0;
|
|
while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
|
|
shift++;
|
|
|
|
if (BN_is_odd(X)) {
|
|
if (!BN_uadd(X, X, n))
|
|
goto err;
|
|
}
|
|
/*
|
|
* now X is even, so we can easily divide it by two
|
|
*/
|
|
if (!BN_rshift1(X, X))
|
|
goto err;
|
|
}
|
|
if (shift > 0) {
|
|
if (!BN_rshift(B, B, shift))
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Same for A and Y. Afterwards, (2) still holds.
|
|
*/
|
|
shift = 0;
|
|
while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
|
|
shift++;
|
|
|
|
if (BN_is_odd(Y)) {
|
|
if (!BN_uadd(Y, Y, n))
|
|
goto err;
|
|
}
|
|
/* now Y is even */
|
|
if (!BN_rshift1(Y, Y))
|
|
goto err;
|
|
}
|
|
if (shift > 0) {
|
|
if (!BN_rshift(A, A, shift))
|
|
goto err;
|
|
}
|
|
|
|
/*-
|
|
* We still have (1) and (2).
|
|
* Both A and B are odd.
|
|
* The following computations ensure that
|
|
*
|
|
* 0 <= B < |n|,
|
|
* 0 < A < |n|,
|
|
* (1) -sign*X*a == B (mod |n|),
|
|
* (2) sign*Y*a == A (mod |n|),
|
|
*
|
|
* and that either A or B is even in the next iteration.
|
|
*/
|
|
if (BN_ucmp(B, A) >= 0) {
|
|
/* -sign*(X + Y)*a == B - A (mod |n|) */
|
|
if (!BN_uadd(X, X, Y))
|
|
goto err;
|
|
/*
|
|
* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
|
|
* actually makes the algorithm slower
|
|
*/
|
|
if (!BN_usub(B, B, A))
|
|
goto err;
|
|
} else {
|
|
/* sign*(X + Y)*a == A - B (mod |n|) */
|
|
if (!BN_uadd(Y, Y, X))
|
|
goto err;
|
|
/*
|
|
* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
|
|
*/
|
|
if (!BN_usub(A, A, B))
|
|
goto err;
|
|
}
|
|
}
|
|
} else {
|
|
/* general inversion algorithm */
|
|
|
|
while (!BN_is_zero(B)) {
|
|
BIGNUM *tmp;
|
|
|
|
/*-
|
|
* 0 < B < A,
|
|
* (*) -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|)
|
|
*/
|
|
|
|
/* (D, M) := (A/B, A%B) ... */
|
|
if (BN_num_bits(A) == BN_num_bits(B)) {
|
|
if (!BN_one(D))
|
|
goto err;
|
|
if (!BN_sub(M, A, B))
|
|
goto err;
|
|
} else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
|
|
/* A/B is 1, 2, or 3 */
|
|
if (!BN_lshift1(T, B))
|
|
goto err;
|
|
if (BN_ucmp(A, T) < 0) {
|
|
/* A < 2*B, so D=1 */
|
|
if (!BN_one(D))
|
|
goto err;
|
|
if (!BN_sub(M, A, B))
|
|
goto err;
|
|
} else {
|
|
/* A >= 2*B, so D=2 or D=3 */
|
|
if (!BN_sub(M, A, T))
|
|
goto err;
|
|
if (!BN_add(D, T, B))
|
|
goto err; /* use D (:= 3*B) as temp */
|
|
if (BN_ucmp(A, D) < 0) {
|
|
/* A < 3*B, so D=2 */
|
|
if (!BN_set_word(D, 2))
|
|
goto err;
|
|
/*
|
|
* M (= A - 2*B) already has the correct value
|
|
*/
|
|
} else {
|
|
/* only D=3 remains */
|
|
if (!BN_set_word(D, 3))
|
|
goto err;
|
|
/*
|
|
* currently M = A - 2*B, but we need M = A - 3*B
|
|
*/
|
|
if (!BN_sub(M, M, B))
|
|
goto err;
|
|
}
|
|
}
|
|
} else {
|
|
if (!BN_div(D, M, A, B, ctx))
|
|
goto err;
|
|
}
|
|
|
|
/*-
|
|
* Now
|
|
* A = D*B + M;
|
|
* thus we have
|
|
* (**) sign*Y*a == D*B + M (mod |n|).
|
|
*/
|
|
|
|
tmp = A; /* keep the BIGNUM object, the value does not matter */
|
|
|
|
/* (A, B) := (B, A mod B) ... */
|
|
A = B;
|
|
B = M;
|
|
/* ... so we have 0 <= B < A again */
|
|
|
|
/*-
|
|
* Since the former M is now B and the former B is now A,
|
|
* (**) translates into
|
|
* sign*Y*a == D*A + B (mod |n|),
|
|
* i.e.
|
|
* sign*Y*a - D*A == B (mod |n|).
|
|
* Similarly, (*) translates into
|
|
* -sign*X*a == A (mod |n|).
|
|
*
|
|
* Thus,
|
|
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
|
* i.e.
|
|
* sign*(Y + D*X)*a == B (mod |n|).
|
|
*
|
|
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
|
* -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|).
|
|
* Note that X and Y stay non-negative all the time.
|
|
*/
|
|
|
|
/*
|
|
* most of the time D is very small, so we can optimize tmp := D*X+Y
|
|
*/
|
|
if (BN_is_one(D)) {
|
|
if (!BN_add(tmp, X, Y))
|
|
goto err;
|
|
} else {
|
|
if (BN_is_word(D, 2)) {
|
|
if (!BN_lshift1(tmp, X))
|
|
goto err;
|
|
} else if (BN_is_word(D, 4)) {
|
|
if (!BN_lshift(tmp, X, 2))
|
|
goto err;
|
|
} else if (D->top == 1) {
|
|
if (!BN_copy(tmp, X))
|
|
goto err;
|
|
if (!BN_mul_word(tmp, D->d[0]))
|
|
goto err;
|
|
} else {
|
|
if (!BN_mul(tmp, D, X, ctx))
|
|
goto err;
|
|
}
|
|
if (!BN_add(tmp, tmp, Y))
|
|
goto err;
|
|
}
|
|
|
|
M = Y; /* keep the BIGNUM object, the value does not matter */
|
|
Y = X;
|
|
X = tmp;
|
|
sign = -sign;
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* The while loop (Euclid's algorithm) ends when
|
|
* A == gcd(a,n);
|
|
* we have
|
|
* sign*Y*a == A (mod |n|),
|
|
* where Y is non-negative.
|
|
*/
|
|
|
|
if (sign < 0) {
|
|
if (!BN_sub(Y, n, Y))
|
|
goto err;
|
|
}
|
|
/* Now Y*a == A (mod |n|). */
|
|
|
|
if (BN_is_one(A)) {
|
|
/* Y*a == 1 (mod |n|) */
|
|
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
|
if (!BN_copy(R, Y))
|
|
goto err;
|
|
} else {
|
|
if (!BN_nnmod(R, Y, n, ctx))
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (pnoinv)
|
|
*pnoinv = 1;
|
|
goto err;
|
|
}
|
|
ret = R;
|
|
err:
|
|
if ((ret == NULL) && (in == NULL))
|
|
BN_free(R);
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
|
|
* not contain branches that may leak sensitive information.
|
|
*/
|
|
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
|
|
const BIGNUM *a, const BIGNUM *n,
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
|
BIGNUM *ret = NULL;
|
|
int sign;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(n);
|
|
|
|
BN_CTX_start(ctx);
|
|
A = BN_CTX_get(ctx);
|
|
B = BN_CTX_get(ctx);
|
|
X = BN_CTX_get(ctx);
|
|
D = BN_CTX_get(ctx);
|
|
M = BN_CTX_get(ctx);
|
|
Y = BN_CTX_get(ctx);
|
|
T = BN_CTX_get(ctx);
|
|
if (T == NULL)
|
|
goto err;
|
|
|
|
if (in == NULL)
|
|
R = BN_new();
|
|
else
|
|
R = in;
|
|
if (R == NULL)
|
|
goto err;
|
|
|
|
BN_one(X);
|
|
BN_zero(Y);
|
|
if (BN_copy(B, a) == NULL)
|
|
goto err;
|
|
if (BN_copy(A, n) == NULL)
|
|
goto err;
|
|
A->neg = 0;
|
|
|
|
if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
|
/*
|
|
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
|
* BN_div_no_branch will be called eventually.
|
|
*/
|
|
{
|
|
BIGNUM local_B;
|
|
bn_init(&local_B);
|
|
BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
|
|
if (!BN_nnmod(B, &local_B, A, ctx))
|
|
goto err;
|
|
/* Ensure local_B goes out of scope before any further use of B */
|
|
}
|
|
}
|
|
sign = -1;
|
|
/*-
|
|
* From B = a mod |n|, A = |n| it follows that
|
|
*
|
|
* 0 <= B < A,
|
|
* -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|).
|
|
*/
|
|
|
|
while (!BN_is_zero(B)) {
|
|
BIGNUM *tmp;
|
|
|
|
/*-
|
|
* 0 < B < A,
|
|
* (*) -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|)
|
|
*/
|
|
|
|
/*
|
|
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
|
* BN_div_no_branch will be called eventually.
|
|
*/
|
|
{
|
|
BIGNUM local_A;
|
|
bn_init(&local_A);
|
|
BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
|
|
|
|
/* (D, M) := (A/B, A%B) ... */
|
|
if (!BN_div(D, M, &local_A, B, ctx))
|
|
goto err;
|
|
/* Ensure local_A goes out of scope before any further use of A */
|
|
}
|
|
|
|
/*-
|
|
* Now
|
|
* A = D*B + M;
|
|
* thus we have
|
|
* (**) sign*Y*a == D*B + M (mod |n|).
|
|
*/
|
|
|
|
tmp = A; /* keep the BIGNUM object, the value does not
|
|
* matter */
|
|
|
|
/* (A, B) := (B, A mod B) ... */
|
|
A = B;
|
|
B = M;
|
|
/* ... so we have 0 <= B < A again */
|
|
|
|
/*-
|
|
* Since the former M is now B and the former B is now A,
|
|
* (**) translates into
|
|
* sign*Y*a == D*A + B (mod |n|),
|
|
* i.e.
|
|
* sign*Y*a - D*A == B (mod |n|).
|
|
* Similarly, (*) translates into
|
|
* -sign*X*a == A (mod |n|).
|
|
*
|
|
* Thus,
|
|
* sign*Y*a + D*sign*X*a == B (mod |n|),
|
|
* i.e.
|
|
* sign*(Y + D*X)*a == B (mod |n|).
|
|
*
|
|
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
|
* -sign*X*a == B (mod |n|),
|
|
* sign*Y*a == A (mod |n|).
|
|
* Note that X and Y stay non-negative all the time.
|
|
*/
|
|
|
|
if (!BN_mul(tmp, D, X, ctx))
|
|
goto err;
|
|
if (!BN_add(tmp, tmp, Y))
|
|
goto err;
|
|
|
|
M = Y; /* keep the BIGNUM object, the value does not
|
|
* matter */
|
|
Y = X;
|
|
X = tmp;
|
|
sign = -sign;
|
|
}
|
|
|
|
/*-
|
|
* The while loop (Euclid's algorithm) ends when
|
|
* A == gcd(a,n);
|
|
* we have
|
|
* sign*Y*a == A (mod |n|),
|
|
* where Y is non-negative.
|
|
*/
|
|
|
|
if (sign < 0) {
|
|
if (!BN_sub(Y, n, Y))
|
|
goto err;
|
|
}
|
|
/* Now Y*a == A (mod |n|). */
|
|
|
|
if (BN_is_one(A)) {
|
|
/* Y*a == 1 (mod |n|) */
|
|
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
|
if (!BN_copy(R, Y))
|
|
goto err;
|
|
} else {
|
|
if (!BN_nnmod(R, Y, n, ctx))
|
|
goto err;
|
|
}
|
|
} else {
|
|
BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
|
|
goto err;
|
|
}
|
|
ret = R;
|
|
err:
|
|
if ((ret == NULL) && (in == NULL))
|
|
BN_free(R);
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(ret);
|
|
return ret;
|
|
}
|