openssl/ssl/record/methods/ktls_meth.c
Matt Caswell 3f9175c7a4 Extend the new_record_layer function
Add the ability to pass the main secret and length, as well as the
digest used for the KDF.

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19748)
2023-01-24 17:16:29 +00:00

612 lines
20 KiB
C

/*
* Copyright 2018-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <openssl/core_names.h>
#include <openssl/rand.h>
#include "../../ssl_local.h"
#include "../record_local.h"
#include "recmethod_local.h"
#include "internal/ktls.h"
static struct record_functions_st ossl_ktls_funcs;
#if defined(__FreeBSD__)
# include "crypto/cryptodev.h"
/*-
* Check if a given cipher is supported by the KTLS interface.
* The kernel might still fail the setsockopt() if no suitable
* provider is found, but this checks if the socket option
* supports the cipher suite used at all.
*/
static int ktls_int_check_supported_cipher(OSSL_RECORD_LAYER *rl,
const EVP_CIPHER *c,
const EVP_MD *md,
size_t taglen)
{
switch (rl->version) {
case TLS1_VERSION:
case TLS1_1_VERSION:
case TLS1_2_VERSION:
#ifdef OPENSSL_KTLS_TLS13
case TLS1_3_VERSION:
#endif
break;
default:
return 0;
}
if (EVP_CIPHER_is_a(c, "AES-128-GCM")
|| EVP_CIPHER_is_a(c, "AES-256-GCM")
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
|| EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")
# endif
)
return 1;
if (!EVP_CIPHER_is_a(c, "AES-128-CBC")
&& !EVP_CIPHER_is_a(c, "AES-256-CBC"))
return 0;
if (rl->use_etm)
return 0;
if (md == NULL)
return 0;
if (EVP_MD_is_a(md, "SHA1")
|| EVP_MD_is_a(md, "SHA2-256")
|| EVP_MD_is_a(md, "SHA2-384"))
return 1;
return 0;
}
/* Function to configure kernel TLS structure */
static
int ktls_configure_crypto(OSSL_LIB_CTX *libctx, int version, const EVP_CIPHER *c,
EVP_MD *md, void *rl_sequence,
ktls_crypto_info_t *crypto_info, int is_tx,
unsigned char *iv, size_t ivlen,
unsigned char *key, size_t keylen,
unsigned char *mac_key, size_t mac_secret_size)
{
memset(crypto_info, 0, sizeof(*crypto_info));
if (EVP_CIPHER_is_a(c, "AES-128-GCM")
|| EVP_CIPHER_is_a(c, "AES-256-GCM")) {
crypto_info->cipher_algorithm = CRYPTO_AES_NIST_GCM_16;
crypto_info->iv_len = ivlen;
} else
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
if (EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")) {
crypto_info->cipher_algorithm = CRYPTO_CHACHA20_POLY1305;
crypto_info->iv_len = ivlen;
} else
# endif
if (EVP_CIPHER_is_a(c, "AES-128-CBC") || EVP_CIPHER_is_a(c, "AES-256-CBC")) {
if (md == NULL)
return 0;
if (EVP_MD_is_a(md, "SHA1"))
crypto_info->auth_algorithm = CRYPTO_SHA1_HMAC;
else if (EVP_MD_is_a(md, "SHA2-256")) {
crypto_info->auth_algorithm = CRYPTO_SHA2_256_HMAC;
else if (EVP_MD_is_a(md, "SHA2-384"))
crypto_info->auth_algorithm = CRYPTO_SHA2_384_HMAC;
else
return 0;
crypto_info->cipher_algorithm = CRYPTO_AES_CBC;
crypto_info->iv_len = ivlen;
crypto_info->auth_key = mac_key;
crypto_info->auth_key_len = mac_secret_size;
} else {
return 0;
}
crypto_info->cipher_key = key;
crypto_info->cipher_key_len = keylen;
crypto_info->iv = iv;
crypto_info->tls_vmajor = (version >> 8) & 0x000000ff;
crypto_info->tls_vminor = (version & 0x000000ff);
# ifdef TCP_RXTLS_ENABLE
memcpy(crypto_info->rec_seq, rl_sequence, sizeof(crypto_info->rec_seq));
# else
if (!is_tx)
return 0;
# endif
return 1;
};
#endif /* __FreeBSD__ */
#if defined(OPENSSL_SYS_LINUX)
/* Function to check supported ciphers in Linux */
static int ktls_int_check_supported_cipher(OSSL_RECORD_LAYER *rl,
const EVP_CIPHER *c,
const EVP_MD *md,
size_t taglen)
{
switch (rl->version) {
case TLS1_2_VERSION:
#ifdef OPENSSL_KTLS_TLS13
case TLS1_3_VERSION:
#endif
break;
default:
return 0;
}
/*
* Check that cipher is AES_GCM_128, AES_GCM_256, AES_CCM_128
* or Chacha20-Poly1305
*/
# ifdef OPENSSL_KTLS_AES_CCM_128
if (EVP_CIPHER_is_a(c, "AES-128-CCM")) {
if (taglen != EVP_CCM_TLS_TAG_LEN)
return 0;
return 1;
} else
# endif
if (0
# ifdef OPENSSL_KTLS_AES_GCM_128
|| EVP_CIPHER_is_a(c, "AES-128-GCM")
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
|| EVP_CIPHER_is_a(c, "AES-256-GCM")
# endif
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
|| EVP_CIPHER_is_a(c, "ChaCha20-Poly1305")
# endif
) {
return 1;
}
return 0;
}
/* Function to configure kernel TLS structure */
static
int ktls_configure_crypto(OSSL_LIB_CTX *libctx, int version, const EVP_CIPHER *c,
const EVP_MD *md, void *rl_sequence,
ktls_crypto_info_t *crypto_info, int is_tx,
unsigned char *iv, size_t ivlen,
unsigned char *key, size_t keylen,
unsigned char *mac_key, size_t mac_secret_size)
{
unsigned char geniv[EVP_GCM_TLS_EXPLICIT_IV_LEN];
unsigned char *eiv = NULL;
# ifdef OPENSSL_NO_KTLS_RX
if (!is_tx)
return 0;
# endif
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE
|| EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) {
if (!ossl_assert(EVP_GCM_TLS_FIXED_IV_LEN == EVP_CCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(EVP_GCM_TLS_EXPLICIT_IV_LEN
== EVP_CCM_TLS_EXPLICIT_IV_LEN))
return 0;
if (version == TLS1_2_VERSION) {
if (!ossl_assert(ivlen == EVP_GCM_TLS_FIXED_IV_LEN))
return 0;
if (is_tx) {
if (RAND_bytes_ex(libctx, geniv,
EVP_GCM_TLS_EXPLICIT_IV_LEN, 0) <= 0)
return 0;
} else {
memset(geniv, 0, EVP_GCM_TLS_EXPLICIT_IV_LEN);
}
eiv = geniv;
} else {
if (!ossl_assert(ivlen == EVP_GCM_TLS_FIXED_IV_LEN
+ EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
eiv = iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE;
}
}
memset(crypto_info, 0, sizeof(*crypto_info));
switch (EVP_CIPHER_get_nid(c)) {
# ifdef OPENSSL_KTLS_AES_GCM_128
case NID_aes_128_gcm:
if (!ossl_assert(TLS_CIPHER_AES_GCM_128_SALT_SIZE
== EVP_GCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_GCM_128_IV_SIZE
== EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->gcm128.info.cipher_type = TLS_CIPHER_AES_GCM_128;
crypto_info->gcm128.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm128);
memcpy(crypto_info->gcm128.iv, eiv, TLS_CIPHER_AES_GCM_128_IV_SIZE);
memcpy(crypto_info->gcm128.salt, iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
memcpy(crypto_info->gcm128.key, key, keylen);
memcpy(crypto_info->gcm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
case NID_aes_256_gcm:
if (!ossl_assert(TLS_CIPHER_AES_GCM_256_SALT_SIZE
== EVP_GCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_GCM_256_IV_SIZE
== EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->gcm256.info.cipher_type = TLS_CIPHER_AES_GCM_256;
crypto_info->gcm256.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm256);
memcpy(crypto_info->gcm256.iv, eiv, TLS_CIPHER_AES_GCM_256_IV_SIZE);
memcpy(crypto_info->gcm256.salt, iv, TLS_CIPHER_AES_GCM_256_SALT_SIZE);
memcpy(crypto_info->gcm256.key, key, keylen);
memcpy(crypto_info->gcm256.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_CCM_128
case NID_aes_128_ccm:
if (!ossl_assert(TLS_CIPHER_AES_CCM_128_SALT_SIZE
== EVP_CCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_CCM_128_IV_SIZE
== EVP_CCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->ccm128.info.cipher_type = TLS_CIPHER_AES_CCM_128;
crypto_info->ccm128.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->ccm128);
memcpy(crypto_info->ccm128.iv, eiv, TLS_CIPHER_AES_CCM_128_IV_SIZE);
memcpy(crypto_info->ccm128.salt, iv, TLS_CIPHER_AES_CCM_128_SALT_SIZE);
memcpy(crypto_info->ccm128.key, key, keylen);
memcpy(crypto_info->ccm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
case NID_chacha20_poly1305:
if (!ossl_assert(ivlen == TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE))
return 0;
crypto_info->chacha20poly1305.info.cipher_type
= TLS_CIPHER_CHACHA20_POLY1305;
crypto_info->chacha20poly1305.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->chacha20poly1305);
memcpy(crypto_info->chacha20poly1305.iv, iv, ivlen);
memcpy(crypto_info->chacha20poly1305.key, key, keylen);
memcpy(crypto_info->chacha20poly1305.rec_seq, rl_sequence,
TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
return 1;
# endif
default:
return 0;
}
}
#endif /* OPENSSL_SYS_LINUX */
static int ktls_set_crypto_state(OSSL_RECORD_LAYER *rl, int level,
unsigned char *key, size_t keylen,
unsigned char *iv, size_t ivlen,
unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph,
size_t taglen,
int mactype,
const EVP_MD *md,
COMP_METHOD *comp)
{
ktls_crypto_info_t crypto_info;
/*
* Check if we are suitable for KTLS. If not suitable we return
* OSSL_RECORD_RETURN_NON_FATAL_ERR so that other record layers can be tried
* instead
*/
if (comp != NULL)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* ktls supports only the maximum fragment size */
if (rl->max_frag_len != SSL3_RT_MAX_PLAIN_LENGTH)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* check that cipher is supported */
if (!ktls_int_check_supported_cipher(rl, ciph, md, taglen))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* All future data will get encrypted by ktls. Flush the BIO or skip ktls */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE) {
if (BIO_flush(rl->bio) <= 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* KTLS does not support record padding */
if (rl->padding != NULL || rl->block_padding > 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
}
if (!ktls_configure_crypto(rl->libctx, rl->version, ciph, md, rl->sequence,
&crypto_info,
rl->direction == OSSL_RECORD_DIRECTION_WRITE,
iv, ivlen, key, keylen, mackey, mackeylen))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
if (!BIO_set_ktls(rl->bio, &crypto_info, rl->direction))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE &&
(rl->options & SSL_OP_ENABLE_KTLS_TX_ZEROCOPY_SENDFILE) != 0)
/* Ignore errors. The application opts in to using the zerocopy
* optimization. If the running kernel doesn't support it, just
* continue without the optimization.
*/
BIO_set_ktls_tx_zerocopy_sendfile(rl->bio);
return OSSL_RECORD_RETURN_SUCCESS;
}
static int ktls_read_n(OSSL_RECORD_LAYER *rl, size_t n, size_t max, int extend,
int clearold, size_t *readbytes)
{
int ret;
ret = tls_default_read_n(rl, n, max, extend, clearold, readbytes);
if (ret < OSSL_RECORD_RETURN_RETRY) {
switch (errno) {
case EBADMSG:
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
break;
case EMSGSIZE:
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
break;
case EINVAL:
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION,
SSL_R_WRONG_VERSION_NUMBER);
break;
default:
break;
}
}
return ret;
}
static int ktls_cipher(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *inrecs,
size_t n_recs, int sending, SSL_MAC_BUF *mac,
size_t macsize)
{
return 1;
}
static int ktls_validate_record_header(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rec->rec_version != TLS1_2_VERSION) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, SSL_R_WRONG_VERSION_NUMBER);
return 0;
}
return 1;
}
static int ktls_post_process_record(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rl->version == TLS1_3_VERSION)
return tls13_common_post_process_record(rl, rec);
return 1;
}
static int
ktls_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level, uint16_t epoch,
unsigned char *secret, size_t secretlen,
unsigned char *key, size_t keylen, unsigned char *iv,
size_t ivlen, unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
int mactype,
const EVP_MD *md, COMP_METHOD *comp,
const EVP_MD *kdfdigest, BIO *prev, BIO *transport,
BIO *next, BIO_ADDR *local, BIO_ADDR *peer,
const OSSL_PARAM *settings, const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg, void *rlarg,
OSSL_RECORD_LAYER **retrl)
{
int ret;
ret = tls_int_new_record_layer(libctx, propq, vers, role, direction, level,
key, keylen, iv, ivlen, mackey, mackeylen,
ciph, taglen, mactype, md, comp, prev,
transport, next, local, peer, settings,
options, fns, cbarg, retrl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
(*retrl)->funcs = &ossl_ktls_funcs;
ret = (*retrl)->funcs->set_crypto_state(*retrl, level, key, keylen, iv,
ivlen, mackey, mackeylen, ciph,
taglen, mactype, md, comp);
if (ret != OSSL_RECORD_RETURN_SUCCESS) {
OPENSSL_free(*retrl);
*retrl = NULL;
} else {
/*
* With KTLS we always try and read as much as possible and fill the
* buffer
*/
(*retrl)->read_ahead = 1;
}
return ret;
}
static int ktls_allocate_write_buffers(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl, size_t *prefix)
{
if (!ossl_assert(numtempl == 1))
return 0;
/*
* We just use the end application buffer in the case of KTLS, so nothing
* to do. We pretend we set up one buffer.
*/
rl->numwpipes = 1;
return 1;
}
static int ktls_initialise_write_packets(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl,
OSSL_RECORD_TEMPLATE *prefixtempl,
WPACKET *pkt,
TLS_BUFFER *bufs,
size_t *wpinited)
{
TLS_BUFFER *wb;
/*
* We just use the application buffer directly and don't use any WPACKET
* structures
*/
wb = &bufs[0];
wb->type = templates[0].type;
/*
* ktls doesn't modify the buffer, but to avoid a warning we need
* to discard the const qualifier.
* This doesn't leak memory because the buffers have never been allocated
* with KTLS
*/
TLS_BUFFER_set_buf(wb, (unsigned char *)templates[0].buf);
TLS_BUFFER_set_offset(wb, 0);
TLS_BUFFER_set_app_buffer(wb, 1);
return 1;
}
static int ktls_prepare_record_header(OSSL_RECORD_LAYER *rl,
WPACKET *thispkt,
OSSL_RECORD_TEMPLATE *templ,
unsigned int rectype,
unsigned char **recdata)
{
/* The kernel writes the record header, so nothing to do */
*recdata = NULL;
return 1;
}
static int ktls_prepare_for_encryption(OSSL_RECORD_LAYER *rl,
size_t mac_size,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
/* No encryption, so nothing to do */
return 1;
}
static int ktls_post_encryption_processing(OSSL_RECORD_LAYER *rl,
size_t mac_size,
OSSL_RECORD_TEMPLATE *templ,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
/* The kernel does anything that is needed, so nothing to do here */
return 1;
}
static int ktls_prepare_write_bio(OSSL_RECORD_LAYER *rl, int type)
{
/*
* To prevent coalescing of control and data messages,
* such as in buffer_write, we flush the BIO
*/
if (type != SSL3_RT_APPLICATION_DATA) {
int ret, i = BIO_flush(rl->bio);
if (i <= 0) {
if (BIO_should_retry(rl->bio))
ret = OSSL_RECORD_RETURN_RETRY;
else
ret = OSSL_RECORD_RETURN_FATAL;
return ret;
}
BIO_set_ktls_ctrl_msg(rl->bio, type);
}
return OSSL_RECORD_RETURN_SUCCESS;
}
static int ktls_alloc_buffers(OSSL_RECORD_LAYER *rl)
{
/* We use the application buffer directly for writing */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE)
return 1;
return tls_alloc_buffers(rl);
}
static int ktls_free_buffers(OSSL_RECORD_LAYER *rl)
{
/* We use the application buffer directly for writing */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE)
return 1;
return tls_free_buffers(rl);
}
static struct record_functions_st ossl_ktls_funcs = {
ktls_set_crypto_state,
ktls_cipher,
NULL,
tls_default_set_protocol_version,
ktls_read_n,
tls_get_more_records,
ktls_validate_record_header,
ktls_post_process_record,
tls_get_max_records_default,
tls_write_records_default,
ktls_allocate_write_buffers,
ktls_initialise_write_packets,
NULL,
ktls_prepare_record_header,
NULL,
ktls_prepare_for_encryption,
ktls_post_encryption_processing,
ktls_prepare_write_bio
};
const OSSL_RECORD_METHOD ossl_ktls_record_method = {
ktls_new_record_layer,
tls_free,
tls_unprocessed_read_pending,
tls_processed_read_pending,
tls_app_data_pending,
tls_get_max_records,
tls_write_records,
tls_retry_write_records,
tls_read_record,
tls_release_record,
tls_get_alert_code,
tls_set1_bio,
tls_set_protocol_version,
tls_set_plain_alerts,
tls_set_first_handshake,
tls_set_max_pipelines,
NULL,
tls_get_state,
tls_set_options,
tls_get_compression,
tls_set_max_frag_len,
NULL,
tls_increment_sequence_ctr,
ktls_alloc_buffers,
ktls_free_buffers
};