openssl/crypto/sparse_array.c
Shane Lontis 04cb5ec0b7 Add 'on demand self test' and status test to providers
The default and legacy providers currently return 1 for status and self test checks.
Added test to show the 3 different stages the self test can be run (for installation, loading and on demand).

For the fips provider:
  - If the on demand self test fails, then any subsequent fetches should also fail. To implement this the
    cached algorithms are flushed on failure.
  - getting the self test callback in the fips provider is a bit complicated since the callback hangs off the core
    libctx (as it is set by the application) not the actual fips library context. Also the callback can be set at
    any time not just during the OSSL_provider_init() so it is calculated each time before doing any self test.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11752)
2020-08-09 18:06:52 +10:00

221 lines
6.0 KiB
C

/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/crypto.h>
#include <openssl/bn.h>
#include "crypto/sparse_array.h"
/*
* How many bits are used to index each level in the tree structure?
* This setting determines the number of pointers stored in each node of the
* tree used to represent the sparse array. Having more pointers reduces the
* depth of the tree but potentially wastes more memory. That is, this is a
* direct space versus time tradeoff.
*
* The large memory model uses twelve bits which means that the are 4096
* pointers in each tree node. This is more than sufficient to hold the
* largest defined NID (as of Feb 2019). This means that using a NID to
* index a sparse array becomes a constant time single array look up.
*
* The small memory model uses four bits which means the tree nodes contain
* sixteen pointers. This reduces the amount of unused space significantly
* at a cost in time.
*
* The library builder is also permitted to define other sizes in the closed
* interval [2, sizeof(ossl_uintmax_t) * 8].
*/
#ifndef OPENSSL_SA_BLOCK_BITS
# ifdef OPENSSL_SMALL_FOOTPRINT
# define OPENSSL_SA_BLOCK_BITS 4
# else
# define OPENSSL_SA_BLOCK_BITS 12
# endif
#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
# error OPENSSL_SA_BLOCK_BITS is out of range
#endif
/*
* From the number of bits, work out:
* the number of pointers in a tree node;
* a bit mask to quickly extract an index and
* the maximum depth of the tree structure.
*/
#define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
#define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
#define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \
+ OPENSSL_SA_BLOCK_BITS - 1) \
/ OPENSSL_SA_BLOCK_BITS)
struct sparse_array_st {
int levels;
ossl_uintmax_t top;
size_t nelem;
void **nodes;
};
OPENSSL_SA *OPENSSL_SA_new(void)
{
OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
return res;
}
static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
{
int i[SA_BLOCK_MAX_LEVELS];
void *nodes[SA_BLOCK_MAX_LEVELS];
ossl_uintmax_t idx = 0;
int l = 0;
i[0] = 0;
nodes[0] = sa->nodes;
while (l >= 0) {
const int n = i[l];
void ** const p = nodes[l];
if (n >= SA_BLOCK_MAX) {
if (p != NULL && node != NULL)
(*node)(p);
l--;
idx >>= OPENSSL_SA_BLOCK_BITS;
} else {
i[l] = n + 1;
if (p != NULL && p[n] != NULL) {
idx = (idx & ~SA_BLOCK_MASK) | n;
if (l < sa->levels - 1) {
i[++l] = 0;
nodes[l] = p[n];
idx <<= OPENSSL_SA_BLOCK_BITS;
} else if (leaf != NULL) {
(*leaf)(idx, p[n], arg);
}
}
}
}
}
static void sa_free_node(void **p)
{
OPENSSL_free(p);
}
static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
{
OPENSSL_free(p);
}
void OPENSSL_SA_free(OPENSSL_SA *sa)
{
sa_doall(sa, &sa_free_node, NULL, NULL);
OPENSSL_free(sa);
}
void OPENSSL_SA_free_leaves(OPENSSL_SA *sa)
{
sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
OPENSSL_free(sa);
}
/* Wrap this in a structure to avoid compiler warnings */
struct trampoline_st {
void (*func)(ossl_uintmax_t, void *);
};
static void trampoline(ossl_uintmax_t n, void *l, void *arg)
{
((const struct trampoline_st *)arg)->func(n, l);
}
void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t,
void *))
{
struct trampoline_st tramp;
tramp.func = leaf;
if (sa != NULL)
sa_doall(sa, NULL, &trampoline, &tramp);
}
void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa,
void (*leaf)(ossl_uintmax_t, void *, void *),
void *arg)
{
if (sa != NULL)
sa_doall(sa, NULL, leaf, arg);
}
size_t OPENSSL_SA_num(const OPENSSL_SA *sa)
{
return sa == NULL ? 0 : sa->nelem;
}
void *OPENSSL_SA_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
{
int level;
void **p, *r = NULL;
if (sa == NULL || sa->nelem == 0)
return NULL;
if (n <= sa->top) {
p = sa->nodes;
for (level = sa->levels - 1; p != NULL && level > 0; level--)
p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
& SA_BLOCK_MASK];
r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
}
return r;
}
static ossl_inline void **alloc_node(void)
{
return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
}
int OPENSSL_SA_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
{
int i, level = 1;
ossl_uintmax_t n = posn;
void **p;
if (sa == NULL)
return 0;
for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
break;
for (;sa->levels < level; sa->levels++) {
p = alloc_node();
if (p == NULL)
return 0;
p[0] = sa->nodes;
sa->nodes = p;
}
if (sa->top < posn)
sa->top = posn;
p = sa->nodes;
for (level = sa->levels - 1; level > 0; level--) {
i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
return 0;
p = p[i];
}
p += posn & SA_BLOCK_MASK;
if (val == NULL && *p != NULL)
sa->nelem--;
else if (val != NULL && *p == NULL)
sa->nelem++;
*p = val;
return 1;
}