openssl/ssl/t1_enc.c
John Baldwin 85773128d0 KTLS: Check for unprocessed receive records in ktls_configure_crypto.
KTLS implementations currently assume that the start of the in-kernel
socket buffer is aligned with the start of a TLS record for the
receive side.  The socket option to enable KTLS specifies the TLS
sequence number of this initial record.

When read ahead is enabled, data can be pending in the SSL read buffer
after negotiating session keys.  This pending data must be examined to
ensurs that the kernel's socket buffer does not contain a partial TLS
record as well as to determine the correct sequence number of the
first TLS record to be processed by the kernel.

In preparation for enabling receive kernel offload for TLS 1.3, move
the existing logic to handle read ahead from t1_enc.c into ktls.c and
invoke it from ktls_configure_crypto().

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17942)
2022-04-06 13:15:27 +02:00

798 lines
27 KiB
C

/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "ssl_local.h"
#include "record/record_local.h"
#include "internal/ktls.h"
#include "internal/cryptlib.h"
#include <openssl/comp.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/rand.h>
#include <openssl/obj_mac.h>
#include <openssl/core_names.h>
#include <openssl/trace.h>
/* seed1 through seed5 are concatenated */
static int tls1_PRF(SSL *s,
const void *seed1, size_t seed1_len,
const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len,
const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len,
const unsigned char *sec, size_t slen,
unsigned char *out, size_t olen, int fatal)
{
const EVP_MD *md = ssl_prf_md(s);
EVP_KDF *kdf;
EVP_KDF_CTX *kctx = NULL;
OSSL_PARAM params[8], *p = params;
const char *mdname;
if (md == NULL) {
/* Should never happen */
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
kdf = EVP_KDF_fetch(s->ctx->libctx, OSSL_KDF_NAME_TLS1_PRF, s->ctx->propq);
if (kdf == NULL)
goto err;
kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (kctx == NULL)
goto err;
mdname = EVP_MD_get0_name(md);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
(char *)mdname, 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET,
(unsigned char *)sec,
(size_t)slen);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed1, (size_t)seed1_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed2, (size_t)seed2_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed3, (size_t)seed3_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed4, (size_t)seed4_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed5, (size_t)seed5_len);
*p = OSSL_PARAM_construct_end();
if (EVP_KDF_derive(kctx, out, olen, params)) {
EVP_KDF_CTX_free(kctx);
return 1;
}
err:
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
EVP_KDF_CTX_free(kctx);
return 0;
}
static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num)
{
int ret;
/* Calls SSLfatal() as required */
ret = tls1_PRF(s,
TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3.server_random,
SSL3_RANDOM_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, s->session->master_key,
s->session->master_key_length, km, num, 1);
return ret;
}
int tls_provider_set_tls_params(SSL *s, EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *ciph,
const EVP_MD *md)
{
/*
* Provided cipher, the TLS padding/MAC removal is performed provider
* side so we need to tell the ctx about our TLS version and mac size
*/
OSSL_PARAM params[3], *pprm = params;
size_t macsize = 0;
int imacsize = -1;
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
/*
* We look at s->ext.use_etm instead of SSL_READ_ETM() or
* SSL_WRITE_ETM() because this test applies to both reading
* and writing.
*/
&& !s->ext.use_etm)
imacsize = EVP_MD_get_size(md);
if (imacsize >= 0)
macsize = (size_t)imacsize;
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&s->version);
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
&macsize);
*pprm = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static int tls_iv_length_within_key_block(const EVP_CIPHER *c)
{
/* If GCM/CCM mode only part of IV comes from PRF */
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE)
return EVP_GCM_TLS_FIXED_IV_LEN;
else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE)
return EVP_CCM_TLS_FIXED_IV_LEN;
else
return EVP_CIPHER_get_iv_length(c);
}
int tls1_change_cipher_state(SSL *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char *ms, *key, *iv;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
const SSL_COMP *comp;
#endif
const EVP_MD *m;
int mac_type;
size_t *mac_secret_size;
EVP_MD_CTX *mac_ctx;
EVP_PKEY *mac_key;
size_t n, i, j, k, cl;
int reuse_dd = 0;
#ifndef OPENSSL_NO_KTLS
ktls_crypto_info_t crypto_info;
void *rl_sequence;
BIO *bio;
#endif
c = s->s3.tmp.new_sym_enc;
m = s->s3.tmp.new_hash;
mac_type = s->s3.tmp.new_mac_pkey_type;
#ifndef OPENSSL_NO_COMP
comp = s->s3.tmp.new_compression;
#endif
if (which & SSL3_CC_READ) {
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_TLSTREE;
if (s->enc_read_ctx != NULL) {
reuse_dd = 1;
} else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
} else {
/*
* make sure it's initialised in case we exit later with an error
*/
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
}
dd = s->enc_read_ctx;
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->expand);
s->expand = NULL;
if (comp != NULL) {
s->expand = COMP_CTX_new(comp->method);
if (s->expand == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_read_sequence(&s->rlayer);
mac_secret = &(s->s3.read_mac_secret[0]);
mac_secret_size = &(s->s3.read_mac_secret_size);
} else {
s->statem.enc_write_state = ENC_WRITE_STATE_INVALID;
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) {
reuse_dd = 1;
} else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
dd = s->enc_write_ctx;
if (SSL_IS_DTLS(s)) {
mac_ctx = EVP_MD_CTX_new();
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
s->write_hash = mac_ctx;
} else {
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
}
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->compress);
s->compress = NULL;
if (comp != NULL) {
s->compress = COMP_CTX_new(comp->method);
if (s->compress == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_write_sequence(&s->rlayer);
mac_secret = &(s->s3.write_mac_secret[0]);
mac_secret_size = &(s->s3.write_mac_secret_size);
}
if (reuse_dd)
EVP_CIPHER_CTX_reset(dd);
p = s->s3.tmp.key_block;
i = *mac_secret_size = s->s3.tmp.new_mac_secret_size;
cl = EVP_CIPHER_get_key_length(c);
j = cl;
k = tls_iv_length_within_key_block(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
}
if (n > s->s3.tmp.key_block_length) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(mac_secret, ms, i);
if (!(EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
if (mac_type == EVP_PKEY_HMAC) {
mac_key = EVP_PKEY_new_raw_private_key_ex(s->ctx->libctx, "HMAC",
s->ctx->propq, mac_secret,
*mac_secret_size);
} else {
/*
* If its not HMAC then the only other types of MAC we support are
* the GOST MACs, so we need to use the old style way of creating
* a MAC key.
*/
mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
(int)*mac_secret_size);
}
if (mac_key == NULL
|| EVP_DigestSignInit_ex(mac_ctx, NULL, EVP_MD_get0_name(m),
s->ctx->libctx, s->ctx->propq, mac_key,
NULL) <= 0) {
EVP_PKEY_free(mac_key);
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
EVP_PKEY_free(mac_key);
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "which = %04X, mac key:\n", which);
BIO_dump_indent(trc_out, ms, i, 4);
} OSSL_TRACE_END(TLS);
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE) {
if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k,
iv)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
} else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) {
int taglen;
if (s->s3.tmp.
new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8))
taglen = EVP_CCM8_TLS_TAG_LEN;
else
taglen = EVP_CCM_TLS_TAG_LEN;
if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv)
|| !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
} else {
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
if ((EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)
&& *mac_secret_size
&& !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
(int)*mac_secret_size, mac_secret)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (EVP_CIPHER_get0_provider(c) != NULL
&& !tls_provider_set_tls_params(s, dd, c, m)) {
/* SSLfatal already called */
goto err;
}
#ifndef OPENSSL_NO_KTLS
if (s->compress || (s->options & SSL_OP_ENABLE_KTLS) == 0)
goto skip_ktls;
/* ktls supports only the maximum fragment size */
if (ssl_get_max_send_fragment(s) != SSL3_RT_MAX_PLAIN_LENGTH)
goto skip_ktls;
/* check that cipher is supported */
if (!ktls_check_supported_cipher(s, c, dd))
goto skip_ktls;
if (which & SSL3_CC_WRITE)
bio = s->wbio;
else
bio = s->rbio;
if (!ossl_assert(bio != NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* All future data will get encrypted by ktls. Flush the BIO or skip ktls */
if (which & SSL3_CC_WRITE) {
if (BIO_flush(bio) <= 0)
goto skip_ktls;
}
/* ktls doesn't support renegotiation */
if ((BIO_get_ktls_send(s->wbio) && (which & SSL3_CC_WRITE)) ||
(BIO_get_ktls_recv(s->rbio) && (which & SSL3_CC_READ))) {
SSLfatal(s, SSL_AD_NO_RENEGOTIATION, ERR_R_INTERNAL_ERROR);
goto err;
}
if (which & SSL3_CC_WRITE)
rl_sequence = RECORD_LAYER_get_write_sequence(&s->rlayer);
else
rl_sequence = RECORD_LAYER_get_read_sequence(&s->rlayer);
if (!ktls_configure_crypto(s, c, dd, rl_sequence, &crypto_info,
which & SSL3_CC_WRITE, iv, key, ms,
*mac_secret_size))
goto skip_ktls;
/* ktls works with user provided buffers directly */
if (BIO_set_ktls(bio, &crypto_info, which & SSL3_CC_WRITE)) {
if (which & SSL3_CC_WRITE)
ssl3_release_write_buffer(s);
SSL_set_options(s, SSL_OP_NO_RENEGOTIATION);
}
skip_ktls:
#endif /* OPENSSL_NO_KTLS */
s->statem.enc_write_state = ENC_WRITE_STATE_VALID;
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "which = %04X, key:\n", which);
BIO_dump_indent(trc_out, key, EVP_CIPHER_get_key_length(c), 4);
BIO_printf(trc_out, "iv:\n");
BIO_dump_indent(trc_out, iv, k, 4);
} OSSL_TRACE_END(TLS);
return 1;
err:
return 0;
}
int tls1_setup_key_block(SSL *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
SSL_COMP *comp;
int mac_type = NID_undef;
size_t num, mac_secret_size = 0;
int ret = 0;
if (s->s3.tmp.key_block_length != 0)
return 1;
if (!ssl_cipher_get_evp(s->ctx, s->session, &c, &hash, &mac_type,
&mac_secret_size, &comp, s->ext.use_etm)) {
/* Error is already recorded */
SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR);
return 0;
}
ssl_evp_cipher_free(s->s3.tmp.new_sym_enc);
s->s3.tmp.new_sym_enc = c;
ssl_evp_md_free(s->s3.tmp.new_hash);
s->s3.tmp.new_hash = hash;
s->s3.tmp.new_mac_pkey_type = mac_type;
s->s3.tmp.new_mac_secret_size = mac_secret_size;
num = mac_secret_size + EVP_CIPHER_get_key_length(c)
+ tls_iv_length_within_key_block(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
s->s3.tmp.key_block_length = num;
s->s3.tmp.key_block = p;
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block length: %zu\n", num);
BIO_printf(trc_out, "client random\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "server random\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "master key\n");
BIO_dump_indent(trc_out,
s->session->master_key,
s->session->master_key_length, 4);
} OSSL_TRACE_END(TLS);
if (!tls1_generate_key_block(s, p, num)) {
/* SSLfatal() already called */
goto err;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block\n");
BIO_dump_indent(trc_out, p, num, 4);
} OSSL_TRACE_END(TLS);
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
&& s->method->version <= TLS1_VERSION) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3.need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3.need_empty_fragments = 0;
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3.need_empty_fragments = 0;
}
}
ret = 1;
err:
return ret;
}
size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen,
unsigned char *out)
{
size_t hashlen;
unsigned char hash[EVP_MAX_MD_SIZE];
size_t finished_size = TLS1_FINISH_MAC_LENGTH;
if (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kGOST18)
finished_size = 32;
if (!ssl3_digest_cached_records(s, 0)) {
/* SSLfatal() already called */
return 0;
}
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0,
s->session->master_key, s->session->master_key_length,
out, finished_size, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
return finished_size;
}
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
size_t len, size_t *secret_size)
{
if (s->session->flags & SSL_SESS_FLAG_EXTMS) {
unsigned char hash[EVP_MAX_MD_SIZE * 2];
size_t hashlen;
/*
* Digest cached records keeping record buffer (if present): this won't
* affect client auth because we're freezing the buffer at the same
* point (after client key exchange and before certificate verify)
*/
if (!ssl3_digest_cached_records(s, 1)
|| !ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Handshake hashes:\n");
BIO_dump(trc_out, (char *)hash, hashlen);
} OSSL_TRACE_END(TLS);
if (!tls1_PRF(s,
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
hash, hashlen,
NULL, 0,
NULL, 0,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
} else {
if (!tls1_PRF(s,
TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0,
s->s3.server_random, SSL3_RANDOM_SIZE,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Premaster Secret:\n");
BIO_dump_indent(trc_out, p, len, 4);
BIO_printf(trc_out, "Client Random:\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Server Random:\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Master Secret:\n");
BIO_dump_indent(trc_out,
s->session->master_key,
SSL3_MASTER_SECRET_SIZE, 4);
} OSSL_TRACE_END(TLS);
*secret_size = SSL3_MASTER_SECRET_SIZE;
return 1;
}
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen,
const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *val = NULL;
size_t vallen = 0, currentvalpos;
int rv;
/*
* construct PRF arguments we construct the PRF argument ourself rather
* than passing separate values into the TLS PRF to ensure that the
* concatenation of values does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL)
goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *)label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3.client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3.server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/*
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
* label len) = 15, so size of val > max(prohibited label len) = 15 and
* the comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(s,
val, vallen,
NULL, 0,
NULL, 0,
NULL, 0,
NULL, 0,
s->session->master_key, s->session->master_key_length,
out, olen, 0);
goto ret;
err1:
ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
OPENSSL_clear_free(val, vallen);
return rv;
}
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return SSL3_AD_CLOSE_NOTIFY;
case SSL_AD_UNEXPECTED_MESSAGE:
return SSL3_AD_UNEXPECTED_MESSAGE;
case SSL_AD_BAD_RECORD_MAC:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_DECRYPTION_FAILED:
return TLS1_AD_DECRYPTION_FAILED;
case SSL_AD_RECORD_OVERFLOW:
return TLS1_AD_RECORD_OVERFLOW;
case SSL_AD_DECOMPRESSION_FAILURE:
return SSL3_AD_DECOMPRESSION_FAILURE;
case SSL_AD_HANDSHAKE_FAILURE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_NO_CERTIFICATE:
return -1;
case SSL_AD_BAD_CERTIFICATE:
return SSL3_AD_BAD_CERTIFICATE;
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return SSL3_AD_UNSUPPORTED_CERTIFICATE;
case SSL_AD_CERTIFICATE_REVOKED:
return SSL3_AD_CERTIFICATE_REVOKED;
case SSL_AD_CERTIFICATE_EXPIRED:
return SSL3_AD_CERTIFICATE_EXPIRED;
case SSL_AD_CERTIFICATE_UNKNOWN:
return SSL3_AD_CERTIFICATE_UNKNOWN;
case SSL_AD_ILLEGAL_PARAMETER:
return SSL3_AD_ILLEGAL_PARAMETER;
case SSL_AD_UNKNOWN_CA:
return TLS1_AD_UNKNOWN_CA;
case SSL_AD_ACCESS_DENIED:
return TLS1_AD_ACCESS_DENIED;
case SSL_AD_DECODE_ERROR:
return TLS1_AD_DECODE_ERROR;
case SSL_AD_DECRYPT_ERROR:
return TLS1_AD_DECRYPT_ERROR;
case SSL_AD_EXPORT_RESTRICTION:
return TLS1_AD_EXPORT_RESTRICTION;
case SSL_AD_PROTOCOL_VERSION:
return TLS1_AD_PROTOCOL_VERSION;
case SSL_AD_INSUFFICIENT_SECURITY:
return TLS1_AD_INSUFFICIENT_SECURITY;
case SSL_AD_INTERNAL_ERROR:
return TLS1_AD_INTERNAL_ERROR;
case SSL_AD_USER_CANCELLED:
return TLS1_AD_USER_CANCELLED;
case SSL_AD_NO_RENEGOTIATION:
return TLS1_AD_NO_RENEGOTIATION;
case SSL_AD_UNSUPPORTED_EXTENSION:
return TLS1_AD_UNSUPPORTED_EXTENSION;
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
case SSL_AD_UNRECOGNIZED_NAME:
return TLS1_AD_UNRECOGNIZED_NAME;
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return TLS1_AD_UNKNOWN_PSK_IDENTITY;
case SSL_AD_INAPPROPRIATE_FALLBACK:
return TLS1_AD_INAPPROPRIATE_FALLBACK;
case SSL_AD_NO_APPLICATION_PROTOCOL:
return TLS1_AD_NO_APPLICATION_PROTOCOL;
case SSL_AD_CERTIFICATE_REQUIRED:
return SSL_AD_HANDSHAKE_FAILURE;
case TLS13_AD_MISSING_EXTENSION:
return SSL_AD_HANDSHAKE_FAILURE;
default:
return -1;
}
}