mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
9e1d5e8dff
BIO_sock_init returns '-1' on error, not '0', so it's needed to check explicitly istead of using '!'. Reviewed-by: Tim Hudson <tjh@openssl.org> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/3766)
1511 lines
50 KiB
C
1511 lines
50 KiB
C
/*
|
|
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bio.h>
|
|
#include <openssl/x509_vfy.h>
|
|
#include <openssl/ssl.h>
|
|
#ifndef OPENSSL_NO_SRP
|
|
#include <openssl/srp.h>
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_SOCK
|
|
# define USE_SOCKETS
|
|
# include "e_os.h"
|
|
#endif
|
|
|
|
#include "handshake_helper.h"
|
|
#include "testutil.h"
|
|
|
|
HANDSHAKE_RESULT *HANDSHAKE_RESULT_new()
|
|
{
|
|
HANDSHAKE_RESULT *ret = OPENSSL_zalloc(sizeof(*ret));
|
|
TEST_check(ret != NULL);
|
|
return ret;
|
|
}
|
|
|
|
void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result)
|
|
{
|
|
if (result == NULL)
|
|
return;
|
|
OPENSSL_free(result->client_npn_negotiated);
|
|
OPENSSL_free(result->server_npn_negotiated);
|
|
OPENSSL_free(result->client_alpn_negotiated);
|
|
OPENSSL_free(result->server_alpn_negotiated);
|
|
sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free);
|
|
sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free);
|
|
OPENSSL_free(result);
|
|
}
|
|
|
|
/*
|
|
* Since there appears to be no way to extract the sent/received alert
|
|
* from the SSL object directly, we use the info callback and stash
|
|
* the result in ex_data.
|
|
*/
|
|
typedef struct handshake_ex_data_st {
|
|
int alert_sent;
|
|
int num_fatal_alerts_sent;
|
|
int alert_received;
|
|
int session_ticket_do_not_call;
|
|
ssl_servername_t servername;
|
|
} HANDSHAKE_EX_DATA;
|
|
|
|
typedef struct ctx_data_st {
|
|
unsigned char *npn_protocols;
|
|
size_t npn_protocols_len;
|
|
unsigned char *alpn_protocols;
|
|
size_t alpn_protocols_len;
|
|
char *srp_user;
|
|
char *srp_password;
|
|
} CTX_DATA;
|
|
|
|
/* |ctx_data| itself is stack-allocated. */
|
|
static void ctx_data_free_data(CTX_DATA *ctx_data)
|
|
{
|
|
OPENSSL_free(ctx_data->npn_protocols);
|
|
ctx_data->npn_protocols = NULL;
|
|
OPENSSL_free(ctx_data->alpn_protocols);
|
|
ctx_data->alpn_protocols = NULL;
|
|
OPENSSL_free(ctx_data->srp_user);
|
|
ctx_data->srp_user = NULL;
|
|
OPENSSL_free(ctx_data->srp_password);
|
|
ctx_data->srp_password = NULL;
|
|
}
|
|
|
|
static int ex_data_idx;
|
|
|
|
static void info_cb(const SSL *s, int where, int ret)
|
|
{
|
|
if (where & SSL_CB_ALERT) {
|
|
HANDSHAKE_EX_DATA *ex_data =
|
|
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
|
|
if (where & SSL_CB_WRITE) {
|
|
ex_data->alert_sent = ret;
|
|
if (strcmp(SSL_alert_type_string(ret), "F") == 0
|
|
|| strcmp(SSL_alert_desc_string(ret), "CN") == 0)
|
|
ex_data->num_fatal_alerts_sent++;
|
|
} else {
|
|
ex_data->alert_received = ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Select the appropriate server CTX.
|
|
* Returns SSL_TLSEXT_ERR_OK if a match was found.
|
|
* If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch.
|
|
* Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch.
|
|
* An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK.
|
|
*/
|
|
static int select_server_ctx(SSL *s, void *arg, int ignore)
|
|
{
|
|
const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
|
|
HANDSHAKE_EX_DATA *ex_data =
|
|
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
|
|
|
|
if (servername == NULL) {
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
|
|
return SSL_TLSEXT_ERR_NOACK;
|
|
}
|
|
|
|
if (strcmp(servername, "server2") == 0) {
|
|
SSL_CTX *new_ctx = (SSL_CTX*)arg;
|
|
SSL_set_SSL_CTX(s, new_ctx);
|
|
/*
|
|
* Copy over all the SSL_CTX options - reasonable behavior
|
|
* allows testing of cases where the options between two
|
|
* contexts differ/conflict
|
|
*/
|
|
SSL_clear_options(s, 0xFFFFFFFFL);
|
|
SSL_set_options(s, SSL_CTX_get_options(new_ctx));
|
|
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
|
|
return SSL_TLSEXT_ERR_OK;
|
|
} else if (strcmp(servername, "server1") == 0) {
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
|
|
return SSL_TLSEXT_ERR_OK;
|
|
} else if (ignore) {
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
|
|
return SSL_TLSEXT_ERR_NOACK;
|
|
} else {
|
|
/* Don't set an explicit alert, to test library defaults. */
|
|
return SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
}
|
|
}
|
|
|
|
static int early_select_server_ctx(SSL *s, void *arg, int ignore)
|
|
{
|
|
const char *servername;
|
|
const unsigned char *p;
|
|
size_t len, remaining;
|
|
HANDSHAKE_EX_DATA *ex_data =
|
|
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
|
|
|
|
/*
|
|
* The server_name extension was given too much extensibility when it
|
|
* was written, so parsing the normal case is a bit complex.
|
|
*/
|
|
if (!SSL_early_get0_ext(s, TLSEXT_TYPE_server_name, &p, &remaining) ||
|
|
remaining <= 2)
|
|
return 0;
|
|
/* Extract the length of the supplied list of names. */
|
|
len = (*(p++) << 1);
|
|
len += *(p++);
|
|
if (len + 2 != remaining)
|
|
return 0;
|
|
remaining = len;
|
|
/*
|
|
* The list in practice only has a single element, so we only consider
|
|
* the first one.
|
|
*/
|
|
if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name)
|
|
return 0;
|
|
remaining--;
|
|
/* Now we can finally pull out the byte array with the actual hostname. */
|
|
if (remaining <= 2)
|
|
return 0;
|
|
len = (*(p++) << 1);
|
|
len += *(p++);
|
|
if (len + 2 > remaining)
|
|
return 0;
|
|
remaining = len;
|
|
servername = (const char *)p;
|
|
|
|
if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) {
|
|
SSL_CTX *new_ctx = arg;
|
|
SSL_set_SSL_CTX(s, new_ctx);
|
|
/*
|
|
* Copy over all the SSL_CTX options - reasonable behavior
|
|
* allows testing of cases where the options between two
|
|
* contexts differ/conflict
|
|
*/
|
|
SSL_clear_options(s, 0xFFFFFFFFL);
|
|
SSL_set_options(s, SSL_CTX_get_options(new_ctx));
|
|
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
|
|
return 1;
|
|
} else if (len == strlen("server1") &&
|
|
strncmp(servername, "server1", len) == 0) {
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
|
|
return 1;
|
|
} else if (ignore) {
|
|
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* (RFC 6066):
|
|
* If the server understood the ClientHello extension but
|
|
* does not recognize the server name, the server SHOULD take one of two
|
|
* actions: either abort the handshake by sending a fatal-level
|
|
* unrecognized_name(112) alert or continue the handshake.
|
|
*
|
|
* This behaviour is up to the application to configure; we test both
|
|
* configurations to ensure the state machine propagates the result
|
|
* correctly.
|
|
*/
|
|
static int servername_ignore_cb(SSL *s, int *ad, void *arg)
|
|
{
|
|
return select_server_ctx(s, arg, 1);
|
|
}
|
|
|
|
static int servername_reject_cb(SSL *s, int *ad, void *arg)
|
|
{
|
|
return select_server_ctx(s, arg, 0);
|
|
}
|
|
|
|
static int early_ignore_cb(SSL *s, int *al, void *arg)
|
|
{
|
|
if (!early_select_server_ctx(s, arg, 1)) {
|
|
*al = SSL_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int early_reject_cb(SSL *s, int *al, void *arg)
|
|
{
|
|
if (!early_select_server_ctx(s, arg, 0)) {
|
|
*al = SSL_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int early_nov12_cb(SSL *s, int *al, void *arg)
|
|
{
|
|
int ret;
|
|
unsigned int v;
|
|
const unsigned char *p;
|
|
|
|
v = SSL_early_get0_legacy_version(s);
|
|
if (v > TLS1_2_VERSION || v < SSL3_VERSION) {
|
|
*al = SSL_AD_PROTOCOL_VERSION;
|
|
return 0;
|
|
}
|
|
(void)SSL_early_get0_session_id(s, &p);
|
|
if (p == NULL ||
|
|
SSL_early_get0_random(s, &p) == 0 ||
|
|
SSL_early_get0_ciphers(s, &p) == 0 ||
|
|
SSL_early_get0_compression_methods(s, &p) == 0) {
|
|
*al = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
ret = early_select_server_ctx(s, arg, 0);
|
|
SSL_set_max_proto_version(s, TLS1_1_VERSION);
|
|
if (!ret)
|
|
*al = SSL_AD_UNRECOGNIZED_NAME;
|
|
return ret;
|
|
}
|
|
|
|
static unsigned char dummy_ocsp_resp_good_val = 0xff;
|
|
static unsigned char dummy_ocsp_resp_bad_val = 0xfe;
|
|
|
|
static int server_ocsp_cb(SSL *s, void *arg)
|
|
{
|
|
unsigned char *resp;
|
|
|
|
resp = OPENSSL_malloc(1);
|
|
if (resp == NULL)
|
|
return SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
/*
|
|
* For the purposes of testing we just send back a dummy OCSP response
|
|
*/
|
|
*resp = *(unsigned char *)arg;
|
|
if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1))
|
|
return SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
|
|
return SSL_TLSEXT_ERR_OK;
|
|
}
|
|
|
|
static int client_ocsp_cb(SSL *s, void *arg)
|
|
{
|
|
const unsigned char *resp;
|
|
int len;
|
|
|
|
len = SSL_get_tlsext_status_ocsp_resp(s, &resp);
|
|
if (len != 1 || *resp != dummy_ocsp_resp_good_val)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) {
|
|
X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION);
|
|
return 0;
|
|
}
|
|
|
|
static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) {
|
|
return 1;
|
|
}
|
|
|
|
static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv,
|
|
EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name,
|
|
unsigned char *iv,
|
|
EVP_CIPHER_CTX *ctx,
|
|
HMAC_CTX *hctx, int enc)
|
|
{
|
|
HANDSHAKE_EX_DATA *ex_data =
|
|
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
|
|
ex_data->session_ticket_do_not_call = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the comma-separated list into TLS format. */
|
|
static void parse_protos(const char *protos, unsigned char **out, size_t *outlen)
|
|
{
|
|
size_t len, i, prefix;
|
|
|
|
len = strlen(protos);
|
|
|
|
/* Should never have reuse. */
|
|
TEST_check(*out == NULL);
|
|
|
|
/* Test values are small, so we omit length limit checks. */
|
|
*out = OPENSSL_malloc(len + 1);
|
|
TEST_check(*out != NULL);
|
|
*outlen = len + 1;
|
|
|
|
/*
|
|
* foo => '3', 'f', 'o', 'o'
|
|
* foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r'
|
|
*/
|
|
memcpy(*out + 1, protos, len);
|
|
|
|
prefix = 0;
|
|
i = prefix + 1;
|
|
while (i <= len) {
|
|
if ((*out)[i] == ',') {
|
|
TEST_check(i - 1 - prefix > 0);
|
|
(*out)[prefix] = i - 1 - prefix;
|
|
prefix = i;
|
|
}
|
|
i++;
|
|
}
|
|
TEST_check(len - prefix > 0);
|
|
(*out)[prefix] = len - prefix;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_NEXTPROTONEG
|
|
/*
|
|
* The client SHOULD select the first protocol advertised by the server that it
|
|
* also supports. In the event that the client doesn't support any of server's
|
|
* protocols, or the server doesn't advertise any, it SHOULD select the first
|
|
* protocol that it supports.
|
|
*/
|
|
static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen,
|
|
const unsigned char *in, unsigned int inlen,
|
|
void *arg)
|
|
{
|
|
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
|
|
int ret;
|
|
|
|
ret = SSL_select_next_proto(out, outlen, in, inlen,
|
|
ctx_data->npn_protocols,
|
|
ctx_data->npn_protocols_len);
|
|
/* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */
|
|
TEST_check(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP);
|
|
return SSL_TLSEXT_ERR_OK;
|
|
}
|
|
|
|
static int server_npn_cb(SSL *s, const unsigned char **data,
|
|
unsigned int *len, void *arg)
|
|
{
|
|
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
|
|
*data = ctx_data->npn_protocols;
|
|
*len = ctx_data->npn_protocols_len;
|
|
return SSL_TLSEXT_ERR_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The server SHOULD select the most highly preferred protocol that it supports
|
|
* and that is also advertised by the client. In the event that the server
|
|
* supports no protocols that the client advertises, then the server SHALL
|
|
* respond with a fatal "no_application_protocol" alert.
|
|
*/
|
|
static int server_alpn_cb(SSL *s, const unsigned char **out,
|
|
unsigned char *outlen, const unsigned char *in,
|
|
unsigned int inlen, void *arg)
|
|
{
|
|
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
|
|
int ret;
|
|
|
|
/* SSL_select_next_proto isn't const-correct... */
|
|
unsigned char *tmp_out;
|
|
|
|
/*
|
|
* The result points either to |in| or to |ctx_data->alpn_protocols|.
|
|
* The callback is allowed to point to |in| or to a long-lived buffer,
|
|
* so we can return directly without storing a copy.
|
|
*/
|
|
ret = SSL_select_next_proto(&tmp_out, outlen,
|
|
ctx_data->alpn_protocols,
|
|
ctx_data->alpn_protocols_len, in, inlen);
|
|
|
|
*out = tmp_out;
|
|
/* Unlike NPN, we don't tolerate a mismatch. */
|
|
return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
|
|
: SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_SRP
|
|
static char *client_srp_cb(SSL *s, void *arg)
|
|
{
|
|
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
|
|
return OPENSSL_strdup(ctx_data->srp_password);
|
|
}
|
|
|
|
static int server_srp_cb(SSL *s, int *ad, void *arg)
|
|
{
|
|
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
|
|
if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0)
|
|
return SSL3_AL_FATAL;
|
|
if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user,
|
|
ctx_data->srp_password,
|
|
"2048" /* known group */) < 0) {
|
|
*ad = SSL_AD_INTERNAL_ERROR;
|
|
return SSL3_AL_FATAL;
|
|
}
|
|
return SSL_ERROR_NONE;
|
|
}
|
|
#endif /* !OPENSSL_NO_SRP */
|
|
|
|
/*
|
|
* Configure callbacks and other properties that can't be set directly
|
|
* in the server/client CONF.
|
|
*/
|
|
static void configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
|
|
SSL_CTX *client_ctx,
|
|
const SSL_TEST_CTX *test,
|
|
const SSL_TEST_EXTRA_CONF *extra,
|
|
CTX_DATA *server_ctx_data,
|
|
CTX_DATA *server2_ctx_data,
|
|
CTX_DATA *client_ctx_data)
|
|
{
|
|
unsigned char *ticket_keys;
|
|
size_t ticket_key_len;
|
|
|
|
TEST_check(SSL_CTX_set_max_send_fragment(server_ctx,
|
|
test->max_fragment_size) == 1);
|
|
if (server2_ctx != NULL) {
|
|
TEST_check(SSL_CTX_set_max_send_fragment(server2_ctx,
|
|
test->max_fragment_size) == 1);
|
|
}
|
|
TEST_check(SSL_CTX_set_max_send_fragment(client_ctx,
|
|
test->max_fragment_size) == 1);
|
|
|
|
switch (extra->client.verify_callback) {
|
|
case SSL_TEST_VERIFY_ACCEPT_ALL:
|
|
SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb,
|
|
NULL);
|
|
break;
|
|
case SSL_TEST_VERIFY_REJECT_ALL:
|
|
SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb,
|
|
NULL);
|
|
break;
|
|
case SSL_TEST_VERIFY_NONE:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Link the two contexts for SNI purposes.
|
|
* Also do early callbacks here, as setting both early and SNI is bad.
|
|
*/
|
|
switch (extra->server.servername_callback) {
|
|
case SSL_TEST_SERVERNAME_IGNORE_MISMATCH:
|
|
SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb);
|
|
SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
|
|
break;
|
|
case SSL_TEST_SERVERNAME_REJECT_MISMATCH:
|
|
SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb);
|
|
SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
|
|
break;
|
|
case SSL_TEST_SERVERNAME_CB_NONE:
|
|
break;
|
|
case SSL_TEST_SERVERNAME_EARLY_IGNORE_MISMATCH:
|
|
SSL_CTX_set_early_cb(server_ctx, early_ignore_cb, server2_ctx);
|
|
break;
|
|
case SSL_TEST_SERVERNAME_EARLY_REJECT_MISMATCH:
|
|
SSL_CTX_set_early_cb(server_ctx, early_reject_cb, server2_ctx);
|
|
break;
|
|
case SSL_TEST_SERVERNAME_EARLY_NO_V12:
|
|
SSL_CTX_set_early_cb(server_ctx, early_nov12_cb, server2_ctx);
|
|
}
|
|
|
|
if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) {
|
|
SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp);
|
|
SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb);
|
|
SSL_CTX_set_tlsext_status_arg(client_ctx, NULL);
|
|
SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb);
|
|
SSL_CTX_set_tlsext_status_arg(server_ctx,
|
|
((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE)
|
|
? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val));
|
|
}
|
|
|
|
/*
|
|
* The initial_ctx/session_ctx always handles the encrypt/decrypt of the
|
|
* session ticket. This ticket_key callback is assigned to the second
|
|
* session (assigned via SNI), and should never be invoked
|
|
*/
|
|
if (server2_ctx != NULL)
|
|
SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx,
|
|
do_not_call_session_ticket_cb);
|
|
|
|
if (extra->server.broken_session_ticket) {
|
|
SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb);
|
|
}
|
|
#ifndef OPENSSL_NO_NEXTPROTONEG
|
|
if (extra->server.npn_protocols != NULL) {
|
|
parse_protos(extra->server.npn_protocols,
|
|
&server_ctx_data->npn_protocols,
|
|
&server_ctx_data->npn_protocols_len);
|
|
SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb,
|
|
server_ctx_data);
|
|
}
|
|
if (extra->server2.npn_protocols != NULL) {
|
|
parse_protos(extra->server2.npn_protocols,
|
|
&server2_ctx_data->npn_protocols,
|
|
&server2_ctx_data->npn_protocols_len);
|
|
TEST_check(server2_ctx != NULL);
|
|
SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb,
|
|
server2_ctx_data);
|
|
}
|
|
if (extra->client.npn_protocols != NULL) {
|
|
parse_protos(extra->client.npn_protocols,
|
|
&client_ctx_data->npn_protocols,
|
|
&client_ctx_data->npn_protocols_len);
|
|
SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb,
|
|
client_ctx_data);
|
|
}
|
|
#endif
|
|
if (extra->server.alpn_protocols != NULL) {
|
|
parse_protos(extra->server.alpn_protocols,
|
|
&server_ctx_data->alpn_protocols,
|
|
&server_ctx_data->alpn_protocols_len);
|
|
SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data);
|
|
}
|
|
if (extra->server2.alpn_protocols != NULL) {
|
|
TEST_check(server2_ctx != NULL);
|
|
parse_protos(extra->server2.alpn_protocols,
|
|
&server2_ctx_data->alpn_protocols,
|
|
&server2_ctx_data->alpn_protocols_len);
|
|
SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, server2_ctx_data);
|
|
}
|
|
if (extra->client.alpn_protocols != NULL) {
|
|
unsigned char *alpn_protos = NULL;
|
|
size_t alpn_protos_len;
|
|
parse_protos(extra->client.alpn_protocols,
|
|
&alpn_protos, &alpn_protos_len);
|
|
/* Reversed return value convention... */
|
|
TEST_check(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos,
|
|
alpn_protos_len) == 0);
|
|
OPENSSL_free(alpn_protos);
|
|
}
|
|
|
|
/*
|
|
* Use fixed session ticket keys so that we can decrypt a ticket created with
|
|
* one CTX in another CTX. Don't address server2 for the moment.
|
|
*/
|
|
ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0);
|
|
ticket_keys = OPENSSL_zalloc(ticket_key_len);
|
|
TEST_check(ticket_keys != NULL);
|
|
TEST_check(SSL_CTX_set_tlsext_ticket_keys(server_ctx, ticket_keys,
|
|
ticket_key_len) == 1);
|
|
OPENSSL_free(ticket_keys);
|
|
|
|
/* The default log list includes EC keys, so CT can't work without EC. */
|
|
#if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC)
|
|
TEST_check(SSL_CTX_set_default_ctlog_list_file(client_ctx));
|
|
switch (extra->client.ct_validation) {
|
|
case SSL_TEST_CT_VALIDATION_PERMISSIVE:
|
|
TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_PERMISSIVE));
|
|
break;
|
|
case SSL_TEST_CT_VALIDATION_STRICT:
|
|
TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT));
|
|
break;
|
|
case SSL_TEST_CT_VALIDATION_NONE:
|
|
break;
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_SRP
|
|
if (extra->server.srp_user != NULL) {
|
|
SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb);
|
|
server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user);
|
|
server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password);
|
|
SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data);
|
|
}
|
|
if (extra->server2.srp_user != NULL) {
|
|
TEST_check(server2_ctx != NULL);
|
|
SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb);
|
|
server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user);
|
|
server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password);
|
|
SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data);
|
|
}
|
|
if (extra->client.srp_user != NULL) {
|
|
TEST_check(SSL_CTX_set_srp_username(client_ctx, extra->client.srp_user));
|
|
SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb);
|
|
client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password);
|
|
SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data);
|
|
}
|
|
#endif /* !OPENSSL_NO_SRP */
|
|
}
|
|
|
|
/* Configure per-SSL callbacks and other properties. */
|
|
static void configure_handshake_ssl(SSL *server, SSL *client,
|
|
const SSL_TEST_EXTRA_CONF *extra)
|
|
{
|
|
if (extra->client.servername != SSL_TEST_SERVERNAME_NONE)
|
|
SSL_set_tlsext_host_name(client,
|
|
ssl_servername_name(extra->client.servername));
|
|
}
|
|
|
|
/* The status for each connection phase. */
|
|
typedef enum {
|
|
PEER_SUCCESS,
|
|
PEER_RETRY,
|
|
PEER_ERROR,
|
|
PEER_WAITING
|
|
} peer_status_t;
|
|
|
|
/* An SSL object and associated read-write buffers. */
|
|
typedef struct peer_st {
|
|
SSL *ssl;
|
|
/* Buffer lengths are int to match the SSL read/write API. */
|
|
unsigned char *write_buf;
|
|
int write_buf_len;
|
|
unsigned char *read_buf;
|
|
int read_buf_len;
|
|
int bytes_to_write;
|
|
int bytes_to_read;
|
|
peer_status_t status;
|
|
} PEER;
|
|
|
|
static void create_peer(PEER *peer, SSL_CTX *ctx)
|
|
{
|
|
static const int peer_buffer_size = 64 * 1024;
|
|
|
|
peer->ssl = SSL_new(ctx);
|
|
TEST_check(peer->ssl != NULL);
|
|
peer->write_buf = OPENSSL_zalloc(peer_buffer_size);
|
|
TEST_check(peer->write_buf != NULL);
|
|
peer->read_buf = OPENSSL_zalloc(peer_buffer_size);
|
|
TEST_check(peer->read_buf != NULL);
|
|
peer->write_buf_len = peer->read_buf_len = peer_buffer_size;
|
|
}
|
|
|
|
static void peer_free_data(PEER *peer)
|
|
{
|
|
SSL_free(peer->ssl);
|
|
OPENSSL_free(peer->write_buf);
|
|
OPENSSL_free(peer->read_buf);
|
|
}
|
|
|
|
/*
|
|
* Note that we could do the handshake transparently under an SSL_write,
|
|
* but separating the steps is more helpful for debugging test failures.
|
|
*/
|
|
static void do_handshake_step(PEER *peer)
|
|
{
|
|
int ret;
|
|
|
|
TEST_check(peer->status == PEER_RETRY);
|
|
ret = SSL_do_handshake(peer->ssl);
|
|
|
|
if (ret == 1) {
|
|
peer->status = PEER_SUCCESS;
|
|
} else if (ret == 0) {
|
|
peer->status = PEER_ERROR;
|
|
} else {
|
|
int error = SSL_get_error(peer->ssl, ret);
|
|
/* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
|
|
if (error != SSL_ERROR_WANT_READ)
|
|
peer->status = PEER_ERROR;
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* Send/receive some application data. The read-write sequence is
|
|
* Peer A: (R) W - first read will yield no data
|
|
* Peer B: R W
|
|
* ...
|
|
* Peer A: R W
|
|
* Peer B: R W
|
|
* Peer A: R
|
|
*/
|
|
static void do_app_data_step(PEER *peer)
|
|
{
|
|
int ret = 1, write_bytes;
|
|
|
|
TEST_check(peer->status == PEER_RETRY);
|
|
|
|
/* We read everything available... */
|
|
while (ret > 0 && peer->bytes_to_read) {
|
|
ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len);
|
|
if (ret > 0) {
|
|
TEST_check(ret <= peer->bytes_to_read);
|
|
peer->bytes_to_read -= ret;
|
|
} else if (ret == 0) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
} else {
|
|
int error = SSL_get_error(peer->ssl, ret);
|
|
if (error != SSL_ERROR_WANT_READ) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
} /* Else continue with write. */
|
|
}
|
|
}
|
|
|
|
/* ... but we only write one write-buffer-full of data. */
|
|
write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write :
|
|
peer->write_buf_len;
|
|
if (write_bytes) {
|
|
ret = SSL_write(peer->ssl, peer->write_buf, write_bytes);
|
|
if (ret > 0) {
|
|
/* SSL_write will only succeed with a complete write. */
|
|
TEST_check(ret == write_bytes);
|
|
peer->bytes_to_write -= ret;
|
|
} else {
|
|
/*
|
|
* We should perhaps check for SSL_ERROR_WANT_READ/WRITE here
|
|
* but this doesn't yet occur with current app data sizes.
|
|
*/
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We could simply finish when there was nothing to read, and we have
|
|
* nothing left to write. But keeping track of the expected number of bytes
|
|
* to read gives us somewhat better guarantees that all data sent is in fact
|
|
* received.
|
|
*/
|
|
if (!peer->bytes_to_write && !peer->bytes_to_read) {
|
|
peer->status = PEER_SUCCESS;
|
|
}
|
|
}
|
|
|
|
static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer)
|
|
{
|
|
int ret;
|
|
char buf;
|
|
|
|
if (peer->status == PEER_SUCCESS) {
|
|
/*
|
|
* We are a client that succeeded this step previously, but the server
|
|
* wanted to retry. Probably there is a no_renegotiation warning alert
|
|
* waiting for us. Attempt to continue the handshake.
|
|
*/
|
|
peer->status = PEER_RETRY;
|
|
do_handshake_step(peer);
|
|
return;
|
|
}
|
|
|
|
TEST_check(peer->status == PEER_RETRY);
|
|
TEST_check(test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
|
|
|| test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT);
|
|
|
|
/* Reset the count of the amount of app data we need to read/write */
|
|
peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size;
|
|
|
|
/* Check if we are the peer that is going to initiate */
|
|
if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
|
|
&& SSL_is_server(peer->ssl))
|
|
|| (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
|
|
&& !SSL_is_server(peer->ssl))) {
|
|
/*
|
|
* If we already asked for a renegotiation then fall through to the
|
|
* SSL_read() below.
|
|
*/
|
|
if (!SSL_renegotiate_pending(peer->ssl)) {
|
|
/*
|
|
* If we are the client we will always attempt to resume the
|
|
* session. The server may or may not resume dependant on the
|
|
* setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
|
|
*/
|
|
if (SSL_is_server(peer->ssl)) {
|
|
ret = SSL_renegotiate(peer->ssl);
|
|
} else {
|
|
if (test_ctx->extra.client.reneg_ciphers != NULL) {
|
|
if (!SSL_set_cipher_list(peer->ssl,
|
|
test_ctx->extra.client.reneg_ciphers)) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
ret = SSL_renegotiate(peer->ssl);
|
|
} else {
|
|
ret = SSL_renegotiate_abbreviated(peer->ssl);
|
|
}
|
|
}
|
|
if (!ret) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
do_handshake_step(peer);
|
|
/*
|
|
* If status is PEER_RETRY it means we're waiting on the peer to
|
|
* continue the handshake. As far as setting up the renegotiation is
|
|
* concerned that is a success. The next step will continue the
|
|
* handshake to its conclusion.
|
|
*
|
|
* If status is PEER_SUCCESS then we are the server and we have
|
|
* successfully sent the HelloRequest. We need to continue to wait
|
|
* until the handshake arrives from the client.
|
|
*/
|
|
if (peer->status == PEER_RETRY)
|
|
peer->status = PEER_SUCCESS;
|
|
else if (peer->status == PEER_SUCCESS)
|
|
peer->status = PEER_RETRY;
|
|
return;
|
|
}
|
|
} else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) {
|
|
if (SSL_is_server(peer->ssl)
|
|
!= (test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) {
|
|
peer->status = PEER_SUCCESS;
|
|
return;
|
|
}
|
|
|
|
ret = SSL_key_update(peer->ssl, test_ctx->key_update_type);
|
|
if (!ret) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
do_handshake_step(peer);
|
|
/*
|
|
* This is a one step handshake. We shouldn't get anything other than
|
|
* PEER_SUCCESS
|
|
*/
|
|
if (peer->status != PEER_SUCCESS)
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The SSL object is still expecting app data, even though it's going to
|
|
* get a handshake message. We try to read, and it should fail - after which
|
|
* we should be in a handshake
|
|
*/
|
|
ret = SSL_read(peer->ssl, &buf, sizeof(buf));
|
|
if (ret >= 0) {
|
|
/*
|
|
* We're not actually expecting data - we're expecting a reneg to
|
|
* start
|
|
*/
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
} else {
|
|
int error = SSL_get_error(peer->ssl, ret);
|
|
if (error != SSL_ERROR_WANT_READ) {
|
|
peer->status = PEER_ERROR;
|
|
return;
|
|
}
|
|
/* If we're not in init yet then we're not done with setup yet */
|
|
if (!SSL_in_init(peer->ssl))
|
|
return;
|
|
}
|
|
|
|
peer->status = PEER_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* RFC 5246 says:
|
|
*
|
|
* Note that as of TLS 1.1,
|
|
* failure to properly close a connection no longer requires that a
|
|
* session not be resumed. This is a change from TLS 1.0 to conform
|
|
* with widespread implementation practice.
|
|
*
|
|
* However,
|
|
* (a) OpenSSL requires that a connection be shutdown for all protocol versions.
|
|
* (b) We test lower versions, too.
|
|
* So we just implement shutdown. We do a full bidirectional shutdown so that we
|
|
* can compare sent and received close_notify alerts and get some test coverage
|
|
* for SSL_shutdown as a bonus.
|
|
*/
|
|
static void do_shutdown_step(PEER *peer)
|
|
{
|
|
int ret;
|
|
|
|
TEST_check(peer->status == PEER_RETRY);
|
|
ret = SSL_shutdown(peer->ssl);
|
|
|
|
if (ret == 1) {
|
|
peer->status = PEER_SUCCESS;
|
|
} else if (ret < 0) { /* On 0, we retry. */
|
|
int error = SSL_get_error(peer->ssl, ret);
|
|
|
|
if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE)
|
|
peer->status = PEER_ERROR;
|
|
}
|
|
}
|
|
|
|
typedef enum {
|
|
HANDSHAKE,
|
|
RENEG_APPLICATION_DATA,
|
|
RENEG_SETUP,
|
|
RENEG_HANDSHAKE,
|
|
APPLICATION_DATA,
|
|
SHUTDOWN,
|
|
CONNECTION_DONE
|
|
} connect_phase_t;
|
|
|
|
static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx,
|
|
connect_phase_t phase)
|
|
{
|
|
switch (phase) {
|
|
case HANDSHAKE:
|
|
if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
|
|
|| test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)
|
|
return RENEG_APPLICATION_DATA;
|
|
return APPLICATION_DATA;
|
|
case RENEG_APPLICATION_DATA:
|
|
return RENEG_SETUP;
|
|
case RENEG_SETUP:
|
|
if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
|
|
|| test_ctx->handshake_mode
|
|
== SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT)
|
|
return APPLICATION_DATA;
|
|
return RENEG_HANDSHAKE;
|
|
case RENEG_HANDSHAKE:
|
|
return APPLICATION_DATA;
|
|
case APPLICATION_DATA:
|
|
return SHUTDOWN;
|
|
case SHUTDOWN:
|
|
return CONNECTION_DONE;
|
|
case CONNECTION_DONE:
|
|
TEST_check(0);
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer,
|
|
connect_phase_t phase)
|
|
{
|
|
switch (phase) {
|
|
case HANDSHAKE:
|
|
do_handshake_step(peer);
|
|
break;
|
|
case RENEG_APPLICATION_DATA:
|
|
do_app_data_step(peer);
|
|
break;
|
|
case RENEG_SETUP:
|
|
do_reneg_setup_step(test_ctx, peer);
|
|
break;
|
|
case RENEG_HANDSHAKE:
|
|
do_handshake_step(peer);
|
|
break;
|
|
case APPLICATION_DATA:
|
|
do_app_data_step(peer);
|
|
break;
|
|
case SHUTDOWN:
|
|
do_shutdown_step(peer);
|
|
break;
|
|
case CONNECTION_DONE:
|
|
TEST_check(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
typedef enum {
|
|
/* Both parties succeeded. */
|
|
HANDSHAKE_SUCCESS,
|
|
/* Client errored. */
|
|
CLIENT_ERROR,
|
|
/* Server errored. */
|
|
SERVER_ERROR,
|
|
/* Peers are in inconsistent state. */
|
|
INTERNAL_ERROR,
|
|
/* One or both peers not done. */
|
|
HANDSHAKE_RETRY
|
|
} handshake_status_t;
|
|
|
|
/*
|
|
* Determine the handshake outcome.
|
|
* last_status: the status of the peer to have acted last.
|
|
* previous_status: the status of the peer that didn't act last.
|
|
* client_spoke_last: 1 if the client went last.
|
|
*/
|
|
static handshake_status_t handshake_status(peer_status_t last_status,
|
|
peer_status_t previous_status,
|
|
int client_spoke_last)
|
|
{
|
|
switch (last_status) {
|
|
case PEER_WAITING:
|
|
/* Shouldn't ever happen */
|
|
return INTERNAL_ERROR;
|
|
|
|
case PEER_SUCCESS:
|
|
switch (previous_status) {
|
|
case PEER_SUCCESS:
|
|
/* Both succeeded. */
|
|
return HANDSHAKE_SUCCESS;
|
|
case PEER_WAITING:
|
|
case PEER_RETRY:
|
|
/* Let the first peer finish. */
|
|
return HANDSHAKE_RETRY;
|
|
case PEER_ERROR:
|
|
/*
|
|
* Second peer succeeded despite the fact that the first peer
|
|
* already errored. This shouldn't happen.
|
|
*/
|
|
return INTERNAL_ERROR;
|
|
}
|
|
|
|
case PEER_RETRY:
|
|
return HANDSHAKE_RETRY;
|
|
|
|
case PEER_ERROR:
|
|
switch (previous_status) {
|
|
case PEER_WAITING:
|
|
/* The client failed immediately before sending the ClientHello */
|
|
return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR;
|
|
case PEER_SUCCESS:
|
|
/*
|
|
* First peer succeeded but second peer errored.
|
|
* TODO(emilia): we should be able to continue here (with some
|
|
* application data?) to ensure the first peer receives the
|
|
* alert / close_notify.
|
|
* (No tests currently exercise this branch.)
|
|
*/
|
|
return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR;
|
|
case PEER_RETRY:
|
|
/* We errored; let the peer finish. */
|
|
return HANDSHAKE_RETRY;
|
|
case PEER_ERROR:
|
|
/* Both peers errored. Return the one that errored first. */
|
|
return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR;
|
|
}
|
|
}
|
|
/* Control should never reach here. */
|
|
return INTERNAL_ERROR;
|
|
}
|
|
|
|
/* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */
|
|
static char *dup_str(const unsigned char *in, size_t len)
|
|
{
|
|
char *ret;
|
|
|
|
if (len == 0)
|
|
return NULL;
|
|
|
|
/* Assert that the string does not contain NUL-bytes. */
|
|
TEST_check(OPENSSL_strnlen((const char*)(in), len) == len);
|
|
ret = OPENSSL_strndup((const char*)(in), len);
|
|
TEST_check(ret != NULL);
|
|
return ret;
|
|
}
|
|
|
|
static int pkey_type(EVP_PKEY *pkey)
|
|
{
|
|
int nid = EVP_PKEY_id(pkey);
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
if (nid == EVP_PKEY_EC) {
|
|
const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
|
|
return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
|
|
}
|
|
#endif
|
|
return nid;
|
|
}
|
|
|
|
static int peer_pkey_type(SSL *s)
|
|
{
|
|
X509 *x = SSL_get_peer_certificate(s);
|
|
|
|
if (x != NULL) {
|
|
int nid = pkey_type(X509_get0_pubkey(x));
|
|
|
|
X509_free(x);
|
|
return nid;
|
|
}
|
|
return NID_undef;
|
|
}
|
|
|
|
#if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK)
|
|
static int set_sock_as_sctp(int sock)
|
|
{
|
|
/*
|
|
* For SCTP we have to set various options on the socket prior to
|
|
* connecting. This is done automatically by BIO_new_dgram_sctp().
|
|
* We don't actually need the created BIO though so we free it again
|
|
* immediately.
|
|
*/
|
|
BIO *tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE);
|
|
|
|
if (tmpbio == NULL)
|
|
return 0;
|
|
BIO_free(tmpbio);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int create_sctp_socks(int *ssock, int *csock)
|
|
{
|
|
BIO_ADDRINFO *res = NULL;
|
|
const BIO_ADDRINFO *ai = NULL;
|
|
int lsock = INVALID_SOCKET, asock = INVALID_SOCKET;
|
|
int consock = INVALID_SOCKET;
|
|
int ret = 0;
|
|
int family = 0;
|
|
|
|
if (BIO_sock_init() != 1)
|
|
return 0;
|
|
|
|
/*
|
|
* Port is 4463. It could be anything. It will fail if it's already being
|
|
* used for some other SCTP service. It seems unlikely though so we don't
|
|
* worry about it here.
|
|
*/
|
|
if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM,
|
|
IPPROTO_SCTP, &res))
|
|
return 0;
|
|
|
|
for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) {
|
|
family = BIO_ADDRINFO_family(ai);
|
|
lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0);
|
|
if (lsock == INVALID_SOCKET) {
|
|
/* Maybe the kernel doesn't support the socket family, even if
|
|
* BIO_lookup() added it in the returned result...
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (!set_sock_as_sctp(lsock)
|
|
|| !BIO_listen(lsock, BIO_ADDRINFO_address(ai),
|
|
BIO_SOCK_REUSEADDR)) {
|
|
BIO_closesocket(lsock);
|
|
lsock = INVALID_SOCKET;
|
|
continue;
|
|
}
|
|
|
|
/* Success, don't try any more addresses */
|
|
break;
|
|
}
|
|
|
|
if (lsock == INVALID_SOCKET)
|
|
goto err;
|
|
|
|
BIO_ADDRINFO_free(res);
|
|
res = NULL;
|
|
|
|
if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM,
|
|
IPPROTO_SCTP, &res))
|
|
goto err;
|
|
|
|
consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0);
|
|
if (consock == INVALID_SOCKET)
|
|
goto err;
|
|
|
|
if (!set_sock_as_sctp(consock)
|
|
|| !BIO_connect(consock, BIO_ADDRINFO_address(res), 0)
|
|
|| !BIO_socket_nbio(consock, 1))
|
|
goto err;
|
|
|
|
asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK);
|
|
if (asock == INVALID_SOCKET)
|
|
goto err;
|
|
|
|
*csock = consock;
|
|
*ssock = asock;
|
|
consock = asock = INVALID_SOCKET;
|
|
ret = 1;
|
|
|
|
err:
|
|
BIO_ADDRINFO_free(res);
|
|
if (consock != INVALID_SOCKET)
|
|
BIO_closesocket(consock);
|
|
if (lsock != INVALID_SOCKET)
|
|
BIO_closesocket(lsock);
|
|
if (asock != INVALID_SOCKET)
|
|
BIO_closesocket(asock);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Note that |extra| points to the correct client/server configuration
|
|
* within |test_ctx|. When configuring the handshake, general mode settings
|
|
* are taken from |test_ctx|, and client/server-specific settings should be
|
|
* taken from |extra|.
|
|
*
|
|
* The configuration code should never reach into |test_ctx->extra| or
|
|
* |test_ctx->resume_extra| directly.
|
|
*
|
|
* (We could refactor test mode settings into a substructure. This would result
|
|
* in cleaner argument passing but would complicate the test configuration
|
|
* parsing.)
|
|
*/
|
|
static HANDSHAKE_RESULT *do_handshake_internal(
|
|
SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx,
|
|
const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra,
|
|
SSL_SESSION *session_in, SSL_SESSION **session_out)
|
|
{
|
|
PEER server, client;
|
|
BIO *client_to_server = NULL, *server_to_client = NULL;
|
|
HANDSHAKE_EX_DATA server_ex_data, client_ex_data;
|
|
CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data;
|
|
HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new();
|
|
int client_turn = 1, client_turn_count = 0;
|
|
connect_phase_t phase = HANDSHAKE;
|
|
handshake_status_t status = HANDSHAKE_RETRY;
|
|
const unsigned char* tick = NULL;
|
|
size_t tick_len = 0;
|
|
SSL_SESSION* sess = NULL;
|
|
const unsigned char *proto = NULL;
|
|
/* API dictates unsigned int rather than size_t. */
|
|
unsigned int proto_len = 0;
|
|
EVP_PKEY *tmp_key;
|
|
const STACK_OF(X509_NAME) *names;
|
|
time_t start;
|
|
|
|
memset(&server_ctx_data, 0, sizeof(server_ctx_data));
|
|
memset(&server2_ctx_data, 0, sizeof(server2_ctx_data));
|
|
memset(&client_ctx_data, 0, sizeof(client_ctx_data));
|
|
memset(&server, 0, sizeof(server));
|
|
memset(&client, 0, sizeof(client));
|
|
|
|
configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, extra,
|
|
&server_ctx_data, &server2_ctx_data, &client_ctx_data);
|
|
|
|
/* Setup SSL and buffers; additional configuration happens below. */
|
|
create_peer(&server, server_ctx);
|
|
create_peer(&client, client_ctx);
|
|
|
|
server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size;
|
|
client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size;
|
|
|
|
configure_handshake_ssl(server.ssl, client.ssl, extra);
|
|
if (session_in != NULL) {
|
|
/* In case we're testing resumption without tickets. */
|
|
TEST_check(SSL_CTX_add_session(server_ctx, session_in));
|
|
TEST_check(SSL_set_session(client.ssl, session_in));
|
|
}
|
|
|
|
memset(&server_ex_data, 0, sizeof(server_ex_data));
|
|
memset(&client_ex_data, 0, sizeof(client_ex_data));
|
|
|
|
ret->result = SSL_TEST_INTERNAL_ERROR;
|
|
|
|
if (test_ctx->use_sctp) {
|
|
#if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK)
|
|
int csock, ssock;
|
|
|
|
if (create_sctp_socks(&ssock, &csock)) {
|
|
client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE);
|
|
server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE);
|
|
}
|
|
#endif
|
|
} else {
|
|
client_to_server = BIO_new(BIO_s_mem());
|
|
server_to_client = BIO_new(BIO_s_mem());
|
|
}
|
|
|
|
TEST_check(client_to_server != NULL);
|
|
TEST_check(server_to_client != NULL);
|
|
|
|
/* Non-blocking bio. */
|
|
BIO_set_nbio(client_to_server, 1);
|
|
BIO_set_nbio(server_to_client, 1);
|
|
|
|
SSL_set_connect_state(client.ssl);
|
|
SSL_set_accept_state(server.ssl);
|
|
|
|
/* The bios are now owned by the SSL object. */
|
|
if (test_ctx->use_sctp) {
|
|
SSL_set_bio(client.ssl, client_to_server, client_to_server);
|
|
SSL_set_bio(server.ssl, server_to_client, server_to_client);
|
|
} else {
|
|
SSL_set_bio(client.ssl, server_to_client, client_to_server);
|
|
TEST_check(BIO_up_ref(server_to_client) > 0);
|
|
TEST_check(BIO_up_ref(client_to_server) > 0);
|
|
SSL_set_bio(server.ssl, client_to_server, server_to_client);
|
|
}
|
|
|
|
ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL);
|
|
TEST_check(ex_data_idx >= 0);
|
|
|
|
TEST_check(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data) == 1);
|
|
TEST_check(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data) == 1);
|
|
|
|
SSL_set_info_callback(server.ssl, &info_cb);
|
|
SSL_set_info_callback(client.ssl, &info_cb);
|
|
|
|
client.status = PEER_RETRY;
|
|
server.status = PEER_WAITING;
|
|
|
|
start = time(NULL);
|
|
|
|
/*
|
|
* Half-duplex handshake loop.
|
|
* Client and server speak to each other synchronously in the same process.
|
|
* We use non-blocking BIOs, so whenever one peer blocks for read, it
|
|
* returns PEER_RETRY to indicate that it's the other peer's turn to write.
|
|
* The handshake succeeds once both peers have succeeded. If one peer
|
|
* errors out, we also let the other peer retry (and presumably fail).
|
|
*/
|
|
for(;;) {
|
|
if (client_turn) {
|
|
do_connect_step(test_ctx, &client, phase);
|
|
status = handshake_status(client.status, server.status,
|
|
1 /* client went last */);
|
|
if (server.status == PEER_WAITING)
|
|
server.status = PEER_RETRY;
|
|
} else {
|
|
do_connect_step(test_ctx, &server, phase);
|
|
status = handshake_status(server.status, client.status,
|
|
0 /* server went last */);
|
|
}
|
|
|
|
switch (status) {
|
|
case HANDSHAKE_SUCCESS:
|
|
client_turn_count = 0;
|
|
phase = next_phase(test_ctx, phase);
|
|
if (phase == CONNECTION_DONE) {
|
|
ret->result = SSL_TEST_SUCCESS;
|
|
goto err;
|
|
} else {
|
|
client.status = server.status = PEER_RETRY;
|
|
/*
|
|
* For now, client starts each phase. Since each phase is
|
|
* started separately, we can later control this more
|
|
* precisely, for example, to test client-initiated and
|
|
* server-initiated shutdown.
|
|
*/
|
|
client_turn = 1;
|
|
break;
|
|
}
|
|
case CLIENT_ERROR:
|
|
ret->result = SSL_TEST_CLIENT_FAIL;
|
|
goto err;
|
|
case SERVER_ERROR:
|
|
ret->result = SSL_TEST_SERVER_FAIL;
|
|
goto err;
|
|
case INTERNAL_ERROR:
|
|
ret->result = SSL_TEST_INTERNAL_ERROR;
|
|
goto err;
|
|
case HANDSHAKE_RETRY:
|
|
if (test_ctx->use_sctp) {
|
|
if (time(NULL) - start > 3) {
|
|
/*
|
|
* We've waited for too long. Give up.
|
|
*/
|
|
ret->result = SSL_TEST_INTERNAL_ERROR;
|
|
goto err;
|
|
}
|
|
/*
|
|
* With "real" sockets we only swap to processing the peer
|
|
* if they are expecting to retry. Otherwise we just retry the
|
|
* same endpoint again.
|
|
*/
|
|
if ((client_turn && server.status == PEER_RETRY)
|
|
|| (!client_turn && client.status == PEER_RETRY))
|
|
client_turn ^= 1;
|
|
} else {
|
|
if (client_turn_count++ >= 2000) {
|
|
/*
|
|
* At this point, there's been so many PEER_RETRY in a row
|
|
* that it's likely both sides are stuck waiting for a read.
|
|
* It's time to give up.
|
|
*/
|
|
ret->result = SSL_TEST_INTERNAL_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
/* Continue. */
|
|
client_turn ^= 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
err:
|
|
ret->server_alert_sent = server_ex_data.alert_sent;
|
|
ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent;
|
|
ret->server_alert_received = client_ex_data.alert_received;
|
|
ret->client_alert_sent = client_ex_data.alert_sent;
|
|
ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent;
|
|
ret->client_alert_received = server_ex_data.alert_received;
|
|
ret->server_protocol = SSL_version(server.ssl);
|
|
ret->client_protocol = SSL_version(client.ssl);
|
|
ret->servername = server_ex_data.servername;
|
|
if ((sess = SSL_get0_session(client.ssl)) != NULL)
|
|
SSL_SESSION_get0_ticket(sess, &tick, &tick_len);
|
|
if (tick == NULL || tick_len == 0)
|
|
ret->session_ticket = SSL_TEST_SESSION_TICKET_NO;
|
|
else
|
|
ret->session_ticket = SSL_TEST_SESSION_TICKET_YES;
|
|
ret->compression = (SSL_get_current_compression(client.ssl) == NULL)
|
|
? SSL_TEST_COMPRESSION_NO
|
|
: SSL_TEST_COMPRESSION_YES;
|
|
ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call;
|
|
|
|
#ifndef OPENSSL_NO_NEXTPROTONEG
|
|
SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len);
|
|
ret->client_npn_negotiated = dup_str(proto, proto_len);
|
|
|
|
SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len);
|
|
ret->server_npn_negotiated = dup_str(proto, proto_len);
|
|
#endif
|
|
|
|
SSL_get0_alpn_selected(client.ssl, &proto, &proto_len);
|
|
ret->client_alpn_negotiated = dup_str(proto, proto_len);
|
|
|
|
SSL_get0_alpn_selected(server.ssl, &proto, &proto_len);
|
|
ret->server_alpn_negotiated = dup_str(proto, proto_len);
|
|
|
|
ret->client_resumed = SSL_session_reused(client.ssl);
|
|
ret->server_resumed = SSL_session_reused(server.ssl);
|
|
|
|
if (session_out != NULL)
|
|
*session_out = SSL_get1_session(client.ssl);
|
|
|
|
if (SSL_get_server_tmp_key(client.ssl, &tmp_key)) {
|
|
ret->tmp_key_type = pkey_type(tmp_key);
|
|
EVP_PKEY_free(tmp_key);
|
|
}
|
|
|
|
SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash);
|
|
SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash);
|
|
|
|
SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type);
|
|
SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type);
|
|
|
|
names = SSL_get0_peer_CA_list(client.ssl);
|
|
if (names == NULL)
|
|
ret->client_ca_names = NULL;
|
|
else
|
|
ret->client_ca_names = SSL_dup_CA_list(names);
|
|
|
|
names = SSL_get0_peer_CA_list(server.ssl);
|
|
if (names == NULL)
|
|
ret->server_ca_names = NULL;
|
|
else
|
|
ret->server_ca_names = SSL_dup_CA_list(names);
|
|
|
|
ret->server_cert_type = peer_pkey_type(client.ssl);
|
|
ret->client_cert_type = peer_pkey_type(server.ssl);
|
|
|
|
ctx_data_free_data(&server_ctx_data);
|
|
ctx_data_free_data(&server2_ctx_data);
|
|
ctx_data_free_data(&client_ctx_data);
|
|
|
|
peer_free_data(&server);
|
|
peer_free_data(&client);
|
|
return ret;
|
|
}
|
|
|
|
HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
|
|
SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx,
|
|
SSL_CTX *resume_client_ctx,
|
|
const SSL_TEST_CTX *test_ctx)
|
|
{
|
|
HANDSHAKE_RESULT *result;
|
|
SSL_SESSION *session = NULL;
|
|
|
|
result = do_handshake_internal(server_ctx, server2_ctx, client_ctx,
|
|
test_ctx, &test_ctx->extra,
|
|
NULL, &session);
|
|
if (test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME)
|
|
goto end;
|
|
|
|
if (result->result != SSL_TEST_SUCCESS) {
|
|
result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED;
|
|
goto end;
|
|
}
|
|
|
|
HANDSHAKE_RESULT_free(result);
|
|
/* We don't support SNI on second handshake yet, so server2_ctx is NULL. */
|
|
result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx,
|
|
test_ctx, &test_ctx->resume_extra,
|
|
session, NULL);
|
|
end:
|
|
SSL_SESSION_free(session);
|
|
return result;
|
|
}
|