openssl/INSTALL
Richard Levitte 84f4f0bdd4 NOTES files will contain more requirements, make that explicit
Reviewed-by: Rich Salz <rsalz@openssl.org>
2016-04-18 14:20:41 +02:00

659 lines
25 KiB
Plaintext

OPENSSL INSTALLATION
--------------------
[This document describes installation on the main supported operating
systems, currently the Linux/Unix family, OpenVMS and Windows.
Installation on DOS (with djgpp), MacOS (before MacOS X)
is described in INSTALL.DJGPP or INSTALL.MacOS, respectively.]
To install OpenSSL, you will need:
* make
* Perl 5 with core modules (please read README.PERL)
* The perl module Text::Template (please read README.PERL)
* an ANSI C compiler
* a development environment in the form of development libraries and C
header files
* a supported operating system
For additional platform specific requirements and other details,
please read one of these:
* NOTES.VMS (OpenVMS)
* NOTES.WIN (any Windows except for Windows CE)
Quick Start
-----------
If you want to just get on with it, do:
on Unix:
$ ./config
$ make
$ make test
$ make install
on OpenVMS:
$ @config
$ mms
$ mms test
$ mms install
on Windows (only pick one of the targets for configuration):
$ perl Configure { VC-WIN32 | VC-WIN64A | VC-WIN64I | VC-CE }
$ nmake
$ nmake test
$ nmake install
[If any of these steps fails, see section Installation in Detail below.]
This will build and install OpenSSL in the default location, which is:
Unix: normal installation directories under /usr/local
OpenVMS: SYS$COMMON:[OPENSSL-'version'...], where 'version' is the
OpenSSL version number with underscores instead of periods.
Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL
If you want to install it anywhere else, run config like this:
On Unix:
$ ./config --prefix=/opt/openssl --openssldir=/usr/local/ssl
On OpenVMS:
$ @config --prefix=PROGRAM:[INSTALLS] --openssldir=SYS$MANAGER:[OPENSSL]
Configuration Options
---------------------
There are several options to ./config (or ./Configure) to customize
the build (note that for Windows, the defaults for --prefix and
--openssldir depend in what configuration is used and what Windows
implementation OpenSSL is built on. More notes on this in NOTES.WIN):
--prefix=DIR
The top of the installation directory tree. Defaults are:
Unix: /usr/local
Windows: C:\Program Files\OpenSSL
or C:\Program Files (x86)\OpenSSL
OpenVMS: SYS$COMMON:[OPENSSL-'version']
--openssldir=DIR
Directory for OpenSSL configuration files, and also the
default certificate and key store. Defaults are:
Unix: /usr/local/ssl
Windows: C:\Program Files\Common Files\SSL
or C:\Program Files (x86)\Common Files\SSL
OpenVMS: SYS$COMMON:[OPENSSL-COMMON]
--api=x.y.z
Don't build with support for deprecated APIs below the
specified version number. For example "--api=1.1.0" will
remove support for all APIS that were deprecated in OpenSSL
version 1.1.0 or below.
no-afalgeng
Don't build the AFALG engine. This option will be forced if
on a platform that does not support AFALG.
no-asm
Do not use assembler code. On some platforms a small amount
of assembler code may still be used.
no-async
Do not build support for async operations.
no-autoalginit
Don't automatically load all supported ciphers and digests.
Typically OpenSSL will make available all of its supported
ciphers and digests. For a statically linked application this
may be undesirable if small executable size is an objective.
This only affects libcrypto. Ciphers and digests will have to
be loaded manually using EVP_add_cipher() and
EVP_add_digest() if this option is used. This option will
force a non-shared build.
no-autoerrinit
Don't automatically load all libcrypto/libssl error strings.
Typically OpenSSL will automatically load human readable
error strings. For a statically linked application this may
be undesirable if small executable size is an objective.
no-capieng
Don't build the CAPI engine. This option will be forced if
on a platform that does not support CAPI.
no-cms
Don't build support for CMS features
no-comp
Don't build support for SSL/TLS compression. If this option
is left enabled (the default), then compression will only
work if the zlib or zlib-dynamic options are also chosen.
enable-crypto-mdebug
Build support for debugging memory allocated via
OPENSSL_malloc() or OPENSSL_zalloc().
enable-crypto-mdebug-backtrace
As for crypto-mdebug, but additionally provide backtrace
information for allocated memory.
no-ct
Don't build support for Certificate Transparency.
no-deprecated
Don't build with support for any deprecated APIs. This is the
same as using "--api" and supplying the latest version
number.
no-dgram
Don't build support for datagram based BIOs. Selecting this
option will also force the disabling of DTLS.
no-dso
Don't build support for loading Dynamic Shared Objects.
no-dynamic-engine
Don't build the dynamically loaded engines. This only has an
effect in a "shared" build
no-ec
Don't build support for Elliptic Curves.
no-ec2m
Don't build support for binary Elliptic Curves
enable-ec_nistp_64_gcc_128
Enable support for optimised implementations of some commonly
used NIST elliptic curves. This is only supported on some
platforms.
enable-egd
Build support for gathering entropy from EGD (Entropy
Gathering Daemon).
no-engine
Don't build support for loading engines.
no-err
Don't compile in any error strings.
no-filenames
Don't compile in filename and line number information (e.g.
for errors and memory allocation).
no-gost
Don't build support for GOST based ciphersuites. Note that
if this feature is enabled then GOST ciphersuites are only
available if the GOST algorithms are also available through
loading an externally supplied engine.
enable-heartbeats
Build support for DTLS heartbeats.
no-hw-padlock
Don't build the padlock engine.
no-makedepend
Don't generate dependencies.
no-multiblock
Don't build support for writing multiple records in one
go in libssl (Note: this is a different capability to the
pipelining functionality).
no-nextprotoneg
Don't build support for the NPN TLS extension.
no-ocsp
Don't build support for OCSP.
no-pic
Don't build with support for Position Independent Code.
no-posix-io
Don't use POSIX IO capabilities.
no-psk
Don't build support for Pre-Shared Key based ciphersuites.
no-rdrand
Don't use hardware RDRAND capabilities.
no-rfc3779
Don't build support for RFC3779 ("X.509 Extensions for IP
Addresses and AS Identifiers")
no-sct
??
sctp
Build support for SCTP
no-shared
Do not create shared libraries, only static ones. See "Note
on shared libraries" below.
no-sock
Don't build support for socket BIOs
no-srp
Don't build support for SRP or SRP based ciphersuites.
no-srtp
Don't build SRTP support
no-sse2
Exclude SSE2 code paths. Normally SSE2 extension is
detected at run-time, but the decision whether or not the
machine code will be executed is taken solely on CPU
capability vector. This means that if you happen to run OS
kernel which does not support SSE2 extension on Intel P4
processor, then your application might be exposed to
"illegal instruction" exception. There might be a way
to enable support in kernel, e.g. FreeBSD kernel can be
compiled with CPU_ENABLE_SSE, and there is a way to
disengage SSE2 code pathes upon application start-up,
but if you aim for wider "audience" running such kernel,
consider no-sse2. Both the 386 and no-asm options imply
no-sse2.
enable-ssl-trace
Build with the SSL Trace capabilities (adds the "-trace"
option to s_client and s_server).
no-static-engine
Don't build the statically linked engines. This only
has an impact when not built "shared".
no-stdio
Don't use any C "stdio" features. Only libcrypto and libssl
can be built in this way. Using this option will suppress
building the command line applications. Additionally since
the OpenSSL tests also use the command line applications the
tests will also be skipped.
no-threads
Don't try to build with support for multi-threaded
applications.
threads
Build with support for multi-threaded applications. Most
platforms will enable this by default. However if on a
platform where this is not the case then this will usually
require additional system-dependent options! See "Note on
multi-threading" below.
no-ts
Don't build Time Stamping Authority support.
no-ui
Don't build with the "UI" capability (i.e. the set of
features enabling text based prompts).
enable-unit-test
Enable additional unit test APIs. This should not typically
be used in production deployments.
enable-weak-ssl-ciphers
Build support for SSL/TLS ciphers that are considered "weak"
(e.g. RC4 based ciphersuites).
zlib
Build with support for zlib compression/decompression.
zlib-dynamic
Like "zlib", but has OpenSSL load the zlib library
dynamically when needed. This is only supported on systems
where loading of shared libraries is supported.
386
On Intel hardware, use the 80386 instruction set only
(the default x86 code is more efficient, but requires at
least a 486). Note: Use compiler flags for any other CPU
specific configuration, e.g. "-m32" to build x86 code on
an x64 system.
no-<prot>
Don't build support for negotiating the specified SSL/TLS
protocol (one of ssl, ssl3, tls, tls1, tls1_1, tls1_2, dtls,
dtls1 or dtls1_2). If "no-tls" is selected then all of tls1,
tls1_1 and tls1_2 are disabled. Similarly "no-dtls" will
disable dtls1 and dtls1_2. The "no-ssl" option is synonymous
with "no-ssl3". Note this only affects version negotiation.
OpenSSL will still provide the methods for applications to
explicitly select the individual protocol versions.
no-<prot>-method
As for no-<prot> but in addition do not build the methods for
applications to explicitly select individual protocol
versions.
enable-<alg>
Build with support for the specified algorithm, where <alg>
is one of: md2 or rc5.
no-<alg>
Build without support for the specified algorithm, where
<alg> is one of: bf, blake2, camellia, cast, chacha, cmac,
des, dh, dsa, ecdh, ecdsa, idea, md4, md5, mdc2, ocb,
ploy1305, rc2, rc4, rmd160, scrypt, seed or whirlpool. The
"ripemd" algorithm is deprecated and if used is synonymous
with rmd160.
-Dxxx, -lxxx, -Lxxx, -fxxx, -mXXX, -Kxxx
These system specific options will be passed through to the
compiler to allow you to define preprocessor symbols, specify
additional libraries, library directories or other compiler
options.
Installation in Detail
----------------------
1a. Configure OpenSSL for your operation system automatically:
NOTE: This is not available on Windows.
$ ./config [options] # Unix
or
$ @config [options] ! OpenVMS
For the remainder of this text, the Unix form will be used in all
examples, please use the appropriate form for your platform.
This guesses at your operating system (and compiler, if necessary) and
configures OpenSSL based on this guess. Run ./config -t to see
if it guessed correctly. If you want to use a different compiler, you
are cross-compiling for another platform, or the ./config guess was
wrong for other reasons, go to step 1b. Otherwise go to step 2.
On some systems, you can include debugging information as follows:
$ ./config -d [options]
1b. Configure OpenSSL for your operating system manually
OpenSSL knows about a range of different operating system, hardware and
compiler combinations. To see the ones it knows about, run
$ ./Configure # Unix
or
$ perl Configure # All other platforms
For the remainder of this text, the Unix form will be used in all
examples, please use the appropriate form for your platform.
Pick a suitable name from the list that matches your system. For most
operating systems there is a choice between using "cc" or "gcc". When
you have identified your system (and if necessary compiler) use this name
as the argument to Configure. For example, a "linux-elf" user would
run:
$ ./Configure linux-elf [options]
If your system isn't listed, you will have to create a configuration
file named Configurations/{something}.conf and add the correct
configuration for your system. See the available configs as examples
and read Configurations/README and Configurations/README.design for
more information.
The generic configurations "cc" or "gcc" should usually work on 32 bit
Unix-like systems.
Configure creates a build file ("Makefile" on Unix and "descrip.mms"
on OpenVMS) from a suitable template in Configurations, and
defines various macros in crypto/opensslconf.h (generated from
crypto/opensslconf.h.in).
1c. Configure OpenSSL for building outside of the source tree.
OpenSSL can be configured to build in a build directory separate from
the directory with the source code. It's done by placing yourself in
some other directory and invoking the configuration commands from
there.
Unix example:
$ mkdir /var/tmp/openssl-build
$ cd /var/tmp/openssl-build
$ /PATH/TO/OPENSSL/SOURCE/config [options]
or
$ /PATH/TO/OPENSSL/SOURCE/Configure [target] [options]
OpenVMS example:
$ set default sys$login:
$ create/dir [.tmp.openssl-build]
$ set default [.tmp.openssl-build]
$ @[PATH.TO.OPENSSL.SOURCE]config {options}
or
$ @[PATH.TO.OPENSSL.SOURCE]Configure {target} {options}
Windows example:
$ C:
$ mkdir \temp-openssl
$ cd \temp-openssl
$ perl d:\PATH\TO\OPENSSL\SOURCE\Configure {target} {options}
Paths can be relative just as well as absolute. Configure will
do its best to translate them to relative paths whenever possible.
2. Build OpenSSL by running:
$ make # Unix
$ mms ! (or mmk) OpenVMS
$ nmake # Windows
This will build the OpenSSL libraries (libcrypto.a and libssl.a on
Unix, corresponding on other platforms) and the OpenSSL binary
("openssl"). The libraries will be built in the top-level directory,
and the binary will be in the "apps" subdirectory.
If the build fails, look at the output. There may be reasons for
the failure that aren't problems in OpenSSL itself (like missing
standard headers). If it is a problem with OpenSSL itself, please
report the problem to <rt@openssl.org> (note that your message
will be recorded in the request tracker publicly readable at
https://www.openssl.org/community/index.html#bugs and will be
forwarded to a public mailing list). Please check out the request
tracker. Maybe the bug was already reported or has already been
fixed.
[If you encounter assembler error messages, try the "no-asm"
configuration option as an immediate fix.]
Compiling parts of OpenSSL with gcc and others with the system
compiler will result in unresolved symbols on some systems.
3. After a successful build, the libraries should be tested. Run:
$ make test # Unix
$ mms test ! OpenVMS
$ nmake test # Windows
If some tests fail, look at the output. There may be reasons for
the failure that isn't a problem in OpenSSL itself (like a
malfunction with Perl). You may want increased verbosity, that
can be accomplished like this:
$ HARNESS_VERBOSE=yes make test # Unix
$ DEFINE HARNESS_VERBOSE YES
$ mms test ! OpenVMS
$ set HARNESS_VERBOSE=yes
$ nmake test # Windows
If you want to run just one or a few specific tests, you can use
the make variable TESTS to specify them, like this:
$ make TESTS='test_rsa test_dsa' test # Unix
$ mms/macro="TESTS=test_rsa test_dsa" test ! OpenVMS
$ nmake TESTS='test_rsa test_dsa' test # Windows
And of course, you can combine (Unix example shown):
$ HARNESS_VERBOSE=yes make TESTS='test_rsa test_dsa' test
You can find the list of available tests like this:
$ make list-tests # Unix
$ mms list-tests ! OpenVMS
$ nmake list-tests # Windows
Have a look at the manual for the perl module Test::Harness to
see what other HARNESS_* variables there are.
If you find a problem with OpenSSL itself, try removing any
compiler optimization flags from the CFLAGS line in Makefile and
run "make clean; make" or corresponding.
Please send a bug reports to <rt@openssl.org>.
4. If everything tests ok, install OpenSSL with
$ make install # Unix
$ mms install ! OpenVMS
This will install all the software components in this directory
tree under PREFIX (the directory given with --prefix or its
default):
Unix:
bin/ Contains the openssl binary and a few other
utility scripts.
include/openssl
Contains the header files needed if you want
to build your own programs that use libcrypto
or libssl.
lib Contains the OpenSSL library files.
lib/engines Contains the OpenSSL dynamically loadable engines.
share/man/{man1,man3,man5,man7}
Contains the OpenSSL man-pages.
share/doc/openssl/html/{man1,man3,man5,man7}
Contains the HTML rendition of the man-pages.
OpenVMS ('arch' is replaced with the architecture name, "Alpha"
or "ia64"):
[.EXE.'arch'] Contains the openssl binary and a few other
utility scripts.
[.include.openssl]
Contains the header files needed if you want
to build your own programs that use libcrypto
or libssl.
[.LIB.'arch'] Contains the OpenSSL library files.
[.ENGINES.'arch']
Contains the OpenSSL dynamically loadable engines.
[.SYS$STARTUP] Contains startup, login and shutdown scripts.
These define appropriate logical names and
command symbols.
Additionally, install will add the following directories under
OPENSSLDIR (the directory given with --openssldir or its default)
for you convenience:
certs Initially empty, this is the default location
for certificate files.
private Initially empty, this is the default location
for private key files.
misc Various scripts.
Package builders who want to configure the library for standard
locations, but have the package installed somewhere else so that
it can easily be packaged, can use
$ make DESTDIR=/tmp/package-root install # Unix
$ mms/macro="DESTDIR=TMP:[PACKAGE-ROOT]" install ! OpenVMS
The specified destination directory will be prepended to all
installation target paths.
Compatibility issues with previous OpenSSL versions:
* COMPILING existing applications
OpenSSL 1.1 hides a number of structures that were previously
open. This includes all internal libssl structures and a number
of EVP types. Accessor functions have been added to allow
controlled access to the structures' data.
This means that some software needs to be rewritten to adapt to
the new ways of doing things. This often amounts to allocating
an instance of a structure explicitly where you could previously
allocate them on the stack as automatic variables, and using the
provided accessor functions where you would previously access a
structure's field directly.
<TBA>
Some APIs have changed as well. However, older APIs have been
preserved when possible.
Note on multi-threading
-----------------------
For some systems, the OpenSSL Configure script knows what compiler options
are needed to generate a library that is suitable for multi-threaded
applications. On these systems, support for multi-threading is enabled
by default; use the "no-threads" option to disable (this should never be
necessary).
On other systems, to enable support for multi-threading, you will have
to specify at least two options: "threads", and a system-dependent option.
(The latter is "-D_REENTRANT" on various systems.) The default in this
case, obviously, is not to include support for multi-threading (but
you can still use "no-threads" to suppress an annoying warning message
from the Configure script.)
OpenSSL provides built-in support for two threading models: pthreads (found on
most UNIX/Linux systems), and Windows threads. No other threading models are
supported. If your platform does not provide pthreads or Windows threads then
you should Configure with the "no-threads" option.
Note on shared libraries
------------------------
For most systems the OpenSSL Configure script knows what is needed to
build shared libraries for libcrypto and libssl. On these systems
the shared libraries will be created by default. This can be suppressed and
only static libraries created by using the "no-shared" option. On systems
where OpenSSL does not know how to build shared libraries the "no-shared"
option will be forced and only static libraries will be created.
Note on random number generation
--------------------------------
Availability of cryptographically secure random numbers is required for
secret key generation. OpenSSL provides several options to seed the
internal PRNG. If not properly seeded, the internal PRNG will refuse
to deliver random bytes and a "PRNG not seeded error" will occur.
On systems without /dev/urandom (or similar) device, it may be necessary
to install additional support software to obtain random seed.
Please check out the manual pages for RAND_add(), RAND_bytes(), RAND_egd(),
and the FAQ for more information.