mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
8243d8d1a1
This function intialises an EVP_PKEY to contain a provider side internal key. We take the opportunity to also document the older EVP_PKEY_set_type() and EVP_PKEY_set_type_str(). Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/11375)
1450 lines
40 KiB
C
1450 lines
40 KiB
C
/*
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* DSA low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/refcount.h"
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/x509.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/dsa.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/cmac.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/params.h>
|
|
#include <openssl/serializer.h>
|
|
#include <openssl/core_names.h>
|
|
|
|
#include "crypto/asn1.h"
|
|
#include "crypto/evp.h"
|
|
#include "internal/provider.h"
|
|
#include "evp_local.h"
|
|
|
|
static int pkey_set_type(EVP_PKEY *pkey, ENGINE *e, int type, const char *str,
|
|
int len, EVP_KEYMGMT *keymgmt);
|
|
static void evp_pkey_free_it(EVP_PKEY *key);
|
|
|
|
#ifndef FIPS_MODE
|
|
|
|
int EVP_PKEY_bits(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey != NULL) {
|
|
if (pkey->ameth == NULL)
|
|
return pkey->cache.bits;
|
|
else if (pkey->ameth->pkey_bits)
|
|
return pkey->ameth->pkey_bits(pkey);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int EVP_PKEY_security_bits(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey == NULL)
|
|
return 0;
|
|
if (pkey->ameth == NULL)
|
|
return pkey->cache.security_bits;
|
|
if (pkey->ameth->pkey_security_bits == NULL)
|
|
return -2;
|
|
return pkey->ameth->pkey_security_bits(pkey);
|
|
}
|
|
|
|
int EVP_PKEY_save_parameters(EVP_PKEY *pkey, int mode)
|
|
{
|
|
# ifndef OPENSSL_NO_DSA
|
|
if (pkey->type == EVP_PKEY_DSA) {
|
|
int ret = pkey->save_parameters;
|
|
|
|
if (mode >= 0)
|
|
pkey->save_parameters = mode;
|
|
return ret;
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
if (pkey->type == EVP_PKEY_EC) {
|
|
int ret = pkey->save_parameters;
|
|
|
|
if (mode >= 0)
|
|
pkey->save_parameters = mode;
|
|
return ret;
|
|
}
|
|
# endif
|
|
return 0;
|
|
}
|
|
|
|
int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from)
|
|
{
|
|
/*
|
|
* TODO: clean up legacy stuff from this function when legacy support
|
|
* is gone.
|
|
*/
|
|
|
|
/*
|
|
* Only check that type match this early when both keys are legacy.
|
|
* If either of them is provided, we let evp_keymgmt_util_copy()
|
|
* do this check, after having exported either of them that isn't
|
|
* provided.
|
|
*/
|
|
if (to->keymgmt == NULL && from->keymgmt == NULL) {
|
|
if (to->type == EVP_PKEY_NONE) {
|
|
if (EVP_PKEY_set_type(to, from->type) == 0)
|
|
return 0;
|
|
} else if (to->type != from->type) {
|
|
EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_DIFFERENT_KEY_TYPES);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (EVP_PKEY_missing_parameters(from)) {
|
|
EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_MISSING_PARAMETERS);
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_missing_parameters(to)) {
|
|
if (EVP_PKEY_cmp_parameters(to, from) == 1)
|
|
return 1;
|
|
EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_DIFFERENT_PARAMETERS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If |from| is provided, we upgrade |to| to be provided as well.
|
|
* This drops the legacy key from |to|.
|
|
* evp_pkey_upgrade_to_provider() checks if |to| is already provided,
|
|
* we don't need to do that here.
|
|
*
|
|
* TODO(3.0) We should investigate if that's too aggressive and make
|
|
* this scenario unsupported instead.
|
|
*/
|
|
if (from->keymgmt != NULL) {
|
|
EVP_KEYMGMT *tmp_keymgmt = from->keymgmt;
|
|
|
|
/*
|
|
* The returned pointer is known to be cached, so we don't have to
|
|
* save it. However, if it's NULL, something went wrong and we can't
|
|
* copy.
|
|
*/
|
|
if (evp_pkey_upgrade_to_provider(to, NULL,
|
|
&tmp_keymgmt, NULL) == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* For purely provided keys, we just call the keymgmt utility */
|
|
if (to->keymgmt != NULL && from->keymgmt != NULL)
|
|
return evp_keymgmt_util_copy(to, (EVP_PKEY *)from,
|
|
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS);
|
|
|
|
/*
|
|
* If |to| is provided, we know that |from| is legacy at this point.
|
|
* Try exporting |from| to |to|'s keymgmt, then use evp_keymgmt_copy()
|
|
* to copy the appropriate data to |to|'s keydata.
|
|
*/
|
|
if (to->keymgmt != NULL) {
|
|
EVP_KEYMGMT *to_keymgmt = to->keymgmt;
|
|
void *from_keydata =
|
|
evp_pkey_export_to_provider((EVP_PKEY *)from, NULL, &to_keymgmt,
|
|
NULL);
|
|
|
|
if (from_keydata == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
return evp_keymgmt_copy(to->keymgmt, to->keydata, from_keydata,
|
|
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS);
|
|
}
|
|
|
|
/* Both keys are legacy */
|
|
if (from->ameth != NULL && from->ameth->param_copy != NULL)
|
|
return from->ameth->param_copy(to, from);
|
|
err:
|
|
return 0;
|
|
}
|
|
|
|
int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey != NULL) {
|
|
if (pkey->keymgmt != NULL)
|
|
return !evp_keymgmt_util_has((EVP_PKEY *)pkey,
|
|
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS);
|
|
else if (pkey->ameth != NULL && pkey->ameth->param_missing != NULL)
|
|
return pkey->ameth->param_missing(pkey);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called for any mixture of keys except pure legacy pair.
|
|
* TODO When legacy keys are gone, we replace a call to this functions with
|
|
* a call to evp_keymgmt_util_match().
|
|
*/
|
|
static int evp_pkey_cmp_any(const EVP_PKEY *a, const EVP_PKEY *b,
|
|
int selection)
|
|
{
|
|
EVP_KEYMGMT *keymgmt1 = NULL, *keymgmt2 = NULL;
|
|
void *keydata1 = NULL, *keydata2 = NULL, *tmp_keydata = NULL;
|
|
|
|
/* If none of them are provided, this function shouldn't have been called */
|
|
if (!ossl_assert(a->keymgmt != NULL || b->keymgmt != NULL))
|
|
return -2;
|
|
|
|
/* For purely provided keys, we just call the keymgmt utility */
|
|
if (a->keymgmt != NULL && b->keymgmt != NULL)
|
|
return evp_keymgmt_util_match((EVP_PKEY *)a, (EVP_PKEY *)b, selection);
|
|
|
|
/*
|
|
* Here, we know that we have a mixture of legacy and provided keys.
|
|
* Try cross export and compare the resulting key data.
|
|
*/
|
|
keymgmt1 = a->keymgmt;
|
|
keydata1 = a->keydata;
|
|
keymgmt2 = b->keymgmt;
|
|
keydata2 = b->keydata;
|
|
|
|
if ((keymgmt1 == NULL
|
|
&& !EVP_KEYMGMT_is_a(keymgmt2, OBJ_nid2sn(a->type)))
|
|
|| (keymgmt2 == NULL
|
|
&& !EVP_KEYMGMT_is_a(keymgmt1, OBJ_nid2sn(b->type))))
|
|
return -1; /* not the same key type */
|
|
|
|
if (keymgmt2 != NULL && keymgmt2->match != NULL) {
|
|
tmp_keydata =
|
|
evp_pkey_export_to_provider((EVP_PKEY *)a, NULL, &keymgmt2, NULL);
|
|
if (tmp_keydata != NULL) {
|
|
keymgmt1 = keymgmt2;
|
|
keydata1 = tmp_keydata;
|
|
}
|
|
}
|
|
if (tmp_keydata == NULL && keymgmt1 != NULL && keymgmt1->match != NULL) {
|
|
tmp_keydata =
|
|
evp_pkey_export_to_provider((EVP_PKEY *)b, NULL, &keymgmt1, NULL);
|
|
if (tmp_keydata != NULL) {
|
|
keymgmt2 = keymgmt1;
|
|
keydata2 = tmp_keydata;
|
|
}
|
|
}
|
|
|
|
/* If we still don't have matching keymgmt implementations, we give up */
|
|
if (keymgmt1 != keymgmt2)
|
|
return -2;
|
|
|
|
return evp_keymgmt_match(keymgmt1, keydata1, keydata2, selection);
|
|
}
|
|
|
|
int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b)
|
|
{
|
|
/*
|
|
* TODO: clean up legacy stuff from this function when legacy support
|
|
* is gone.
|
|
*/
|
|
|
|
if (a->keymgmt != NULL || b->keymgmt != NULL)
|
|
return evp_pkey_cmp_any(a, b, OSSL_KEYMGMT_SELECT_ALL_PARAMETERS);
|
|
|
|
/* All legacy keys */
|
|
if (a->type != b->type)
|
|
return -1;
|
|
if (a->ameth != NULL && a->ameth->param_cmp != NULL)
|
|
return a->ameth->param_cmp(a, b);
|
|
return -2;
|
|
}
|
|
|
|
int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
|
|
{
|
|
/*
|
|
* TODO: clean up legacy stuff from this function when legacy support
|
|
* is gone.
|
|
*/
|
|
|
|
if (a->keymgmt != NULL || b->keymgmt != NULL)
|
|
return evp_pkey_cmp_any(a, b,
|
|
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
|
|
| OSSL_KEYMGMT_SELECT_PUBLIC_KEY);
|
|
|
|
/* All legacy keys */
|
|
if (a->type != b->type)
|
|
return -1;
|
|
|
|
if (a->ameth != NULL) {
|
|
int ret;
|
|
/* Compare parameters if the algorithm has them */
|
|
if (a->ameth->param_cmp != NULL) {
|
|
ret = a->ameth->param_cmp(a, b);
|
|
if (ret <= 0)
|
|
return ret;
|
|
}
|
|
|
|
if (a->ameth->pub_cmp != NULL)
|
|
return a->ameth->pub_cmp(a, b);
|
|
}
|
|
|
|
return -2;
|
|
}
|
|
|
|
EVP_PKEY *EVP_PKEY_new_raw_private_key(int type, ENGINE *e,
|
|
const unsigned char *priv,
|
|
size_t len)
|
|
{
|
|
EVP_PKEY *ret = EVP_PKEY_new();
|
|
|
|
if (ret == NULL
|
|
|| !pkey_set_type(ret, e, type, NULL, -1, NULL)) {
|
|
/* EVPerr already called */
|
|
goto err;
|
|
}
|
|
|
|
if (ret->ameth->set_priv_key == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY,
|
|
EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
|
|
goto err;
|
|
}
|
|
|
|
if (!ret->ameth->set_priv_key(ret, priv, len)) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY, EVP_R_KEY_SETUP_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err:
|
|
EVP_PKEY_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
EVP_PKEY *EVP_PKEY_new_raw_public_key(int type, ENGINE *e,
|
|
const unsigned char *pub,
|
|
size_t len)
|
|
{
|
|
EVP_PKEY *ret = EVP_PKEY_new();
|
|
|
|
if (ret == NULL
|
|
|| !pkey_set_type(ret, e, type, NULL, -1, NULL)) {
|
|
/* EVPerr already called */
|
|
goto err;
|
|
}
|
|
|
|
if (ret->ameth->set_pub_key == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY,
|
|
EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
|
|
goto err;
|
|
}
|
|
|
|
if (!ret->ameth->set_pub_key(ret, pub, len)) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY, EVP_R_KEY_SETUP_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err:
|
|
EVP_PKEY_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
int EVP_PKEY_get_raw_private_key(const EVP_PKEY *pkey, unsigned char *priv,
|
|
size_t *len)
|
|
{
|
|
if (pkey->ameth->get_priv_key == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY,
|
|
EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
|
|
return 0;
|
|
}
|
|
|
|
if (!pkey->ameth->get_priv_key(pkey, priv, len)) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY, EVP_R_GET_RAW_KEY_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int EVP_PKEY_get_raw_public_key(const EVP_PKEY *pkey, unsigned char *pub,
|
|
size_t *len)
|
|
{
|
|
if (pkey->ameth->get_pub_key == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY,
|
|
EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
|
|
return 0;
|
|
}
|
|
|
|
if (!pkey->ameth->get_pub_key(pkey, pub, len)) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY, EVP_R_GET_RAW_KEY_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
EVP_PKEY *EVP_PKEY_new_CMAC_key(ENGINE *e, const unsigned char *priv,
|
|
size_t len, const EVP_CIPHER *cipher)
|
|
{
|
|
# ifndef OPENSSL_NO_CMAC
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
const char *engine_id = e != NULL ? ENGINE_get_id(e) : NULL;
|
|
# endif
|
|
const char *cipher_name = EVP_CIPHER_name(cipher);
|
|
const OSSL_PROVIDER *prov = EVP_CIPHER_provider(cipher);
|
|
OPENSSL_CTX *libctx =
|
|
prov == NULL ? NULL : ossl_provider_library_context(prov);
|
|
EVP_PKEY *ret = EVP_PKEY_new();
|
|
EVP_MAC *cmac = EVP_MAC_fetch(libctx, OSSL_MAC_NAME_CMAC, NULL);
|
|
EVP_MAC_CTX *cmctx = cmac != NULL ? EVP_MAC_CTX_new(cmac) : NULL;
|
|
OSSL_PARAM params[4];
|
|
size_t paramsn = 0;
|
|
|
|
if (ret == NULL
|
|
|| cmctx == NULL
|
|
|| !pkey_set_type(ret, e, EVP_PKEY_CMAC, NULL, -1, NULL)) {
|
|
/* EVPerr already called */
|
|
goto err;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
if (engine_id != NULL)
|
|
params[paramsn++] =
|
|
OSSL_PARAM_construct_utf8_string("engine", (char *)engine_id, 0);
|
|
# endif
|
|
|
|
params[paramsn++] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
|
|
(char *)cipher_name, 0);
|
|
params[paramsn++] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(char *)priv, len);
|
|
params[paramsn] = OSSL_PARAM_construct_end();
|
|
|
|
if (!EVP_MAC_CTX_set_params(cmctx, params)) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_CMAC_KEY, EVP_R_KEY_SETUP_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
ret->pkey.ptr = cmctx;
|
|
return ret;
|
|
|
|
err:
|
|
EVP_PKEY_free(ret);
|
|
EVP_MAC_CTX_free(cmctx);
|
|
EVP_MAC_free(cmac);
|
|
return NULL;
|
|
# else
|
|
EVPerr(EVP_F_EVP_PKEY_NEW_CMAC_KEY,
|
|
EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
|
|
return NULL;
|
|
# endif
|
|
}
|
|
|
|
int EVP_PKEY_set_type(EVP_PKEY *pkey, int type)
|
|
{
|
|
return pkey_set_type(pkey, NULL, type, NULL, -1, NULL);
|
|
}
|
|
|
|
int EVP_PKEY_set_type_str(EVP_PKEY *pkey, const char *str, int len)
|
|
{
|
|
return pkey_set_type(pkey, NULL, EVP_PKEY_NONE, str, len, NULL);
|
|
}
|
|
|
|
int EVP_PKEY_set_alias_type(EVP_PKEY *pkey, int type)
|
|
{
|
|
if (pkey->type == type) {
|
|
return 1; /* it already is that type */
|
|
}
|
|
|
|
/*
|
|
* The application is requesting to alias this to a different pkey type,
|
|
* but not one that resolves to the base type.
|
|
*/
|
|
if (EVP_PKEY_type(type) != EVP_PKEY_base_id(pkey)) {
|
|
EVPerr(EVP_F_EVP_PKEY_SET_ALIAS_TYPE, EVP_R_UNSUPPORTED_ALGORITHM);
|
|
return 0;
|
|
}
|
|
|
|
pkey->type = type;
|
|
return 1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
int EVP_PKEY_set1_engine(EVP_PKEY *pkey, ENGINE *e)
|
|
{
|
|
if (e != NULL) {
|
|
if (!ENGINE_init(e)) {
|
|
EVPerr(EVP_F_EVP_PKEY_SET1_ENGINE, ERR_R_ENGINE_LIB);
|
|
return 0;
|
|
}
|
|
if (ENGINE_get_pkey_meth(e, pkey->type) == NULL) {
|
|
ENGINE_finish(e);
|
|
EVPerr(EVP_F_EVP_PKEY_SET1_ENGINE, EVP_R_UNSUPPORTED_ALGORITHM);
|
|
return 0;
|
|
}
|
|
}
|
|
ENGINE_finish(pkey->pmeth_engine);
|
|
pkey->pmeth_engine = e;
|
|
return 1;
|
|
}
|
|
|
|
ENGINE *EVP_PKEY_get0_engine(const EVP_PKEY *pkey)
|
|
{
|
|
return pkey->engine;
|
|
}
|
|
# endif
|
|
int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key)
|
|
{
|
|
int alias = type;
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
if (EVP_PKEY_type(type) == EVP_PKEY_EC) {
|
|
const EC_GROUP *group = EC_KEY_get0_group(key);
|
|
|
|
if (group != NULL && EC_GROUP_get_curve_name(group) == NID_sm2)
|
|
alias = EVP_PKEY_SM2;
|
|
}
|
|
#endif
|
|
|
|
if (pkey == NULL || !EVP_PKEY_set_type(pkey, type))
|
|
return 0;
|
|
if (!EVP_PKEY_set_alias_type(pkey, alias))
|
|
return 0;
|
|
pkey->pkey.ptr = key;
|
|
return (key != NULL);
|
|
}
|
|
|
|
void *EVP_PKEY_get0(const EVP_PKEY *pkey)
|
|
{
|
|
return pkey->pkey.ptr;
|
|
}
|
|
|
|
const unsigned char *EVP_PKEY_get0_hmac(const EVP_PKEY *pkey, size_t *len)
|
|
{
|
|
ASN1_OCTET_STRING *os = NULL;
|
|
if (pkey->type != EVP_PKEY_HMAC) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_HMAC, EVP_R_EXPECTING_AN_HMAC_KEY);
|
|
return NULL;
|
|
}
|
|
os = EVP_PKEY_get0(pkey);
|
|
*len = os->length;
|
|
return os->data;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_POLY1305
|
|
const unsigned char *EVP_PKEY_get0_poly1305(const EVP_PKEY *pkey, size_t *len)
|
|
{
|
|
ASN1_OCTET_STRING *os = NULL;
|
|
if (pkey->type != EVP_PKEY_POLY1305) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_POLY1305, EVP_R_EXPECTING_A_POLY1305_KEY);
|
|
return NULL;
|
|
}
|
|
os = EVP_PKEY_get0(pkey);
|
|
*len = os->length;
|
|
return os->data;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_SIPHASH
|
|
const unsigned char *EVP_PKEY_get0_siphash(const EVP_PKEY *pkey, size_t *len)
|
|
{
|
|
ASN1_OCTET_STRING *os = NULL;
|
|
|
|
if (pkey->type != EVP_PKEY_SIPHASH) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_SIPHASH, EVP_R_EXPECTING_A_SIPHASH_KEY);
|
|
return NULL;
|
|
}
|
|
os = EVP_PKEY_get0(pkey);
|
|
*len = os->length;
|
|
return os->data;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key)
|
|
{
|
|
int ret = EVP_PKEY_assign_RSA(pkey, key);
|
|
if (ret)
|
|
RSA_up_ref(key);
|
|
return ret;
|
|
}
|
|
|
|
RSA *EVP_PKEY_get0_RSA(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey->type != EVP_PKEY_RSA && pkey->type != EVP_PKEY_RSA_PSS) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_RSA, EVP_R_EXPECTING_AN_RSA_KEY);
|
|
return NULL;
|
|
}
|
|
return pkey->pkey.rsa;
|
|
}
|
|
|
|
RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey)
|
|
{
|
|
RSA *ret = EVP_PKEY_get0_RSA(pkey);
|
|
if (ret != NULL)
|
|
RSA_up_ref(ret);
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key)
|
|
{
|
|
int ret = EVP_PKEY_assign_DSA(pkey, key);
|
|
if (ret)
|
|
DSA_up_ref(key);
|
|
return ret;
|
|
}
|
|
|
|
DSA *EVP_PKEY_get0_DSA(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey->type != EVP_PKEY_DSA) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_DSA, EVP_R_EXPECTING_A_DSA_KEY);
|
|
return NULL;
|
|
}
|
|
return pkey->pkey.dsa;
|
|
}
|
|
|
|
DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey)
|
|
{
|
|
DSA *ret = EVP_PKEY_get0_DSA(pkey);
|
|
if (ret != NULL)
|
|
DSA_up_ref(ret);
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
|
|
int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key)
|
|
{
|
|
int ret = EVP_PKEY_assign_EC_KEY(pkey, key);
|
|
if (ret)
|
|
EC_KEY_up_ref(key);
|
|
return ret;
|
|
}
|
|
|
|
EC_KEY *EVP_PKEY_get0_EC_KEY(const EVP_PKEY *pkey)
|
|
{
|
|
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_EC) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_EC_KEY, EVP_R_EXPECTING_A_EC_KEY);
|
|
return NULL;
|
|
}
|
|
return pkey->pkey.ec;
|
|
}
|
|
|
|
EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey)
|
|
{
|
|
EC_KEY *ret = EVP_PKEY_get0_EC_KEY(pkey);
|
|
if (ret != NULL)
|
|
EC_KEY_up_ref(ret);
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DH
|
|
|
|
int EVP_PKEY_set1_DH(EVP_PKEY *pkey, DH *key)
|
|
{
|
|
int type = DH_get0_q(key) == NULL ? EVP_PKEY_DH : EVP_PKEY_DHX;
|
|
int ret = EVP_PKEY_assign(pkey, type, key);
|
|
|
|
if (ret)
|
|
DH_up_ref(key);
|
|
return ret;
|
|
}
|
|
|
|
DH *EVP_PKEY_get0_DH(const EVP_PKEY *pkey)
|
|
{
|
|
if (pkey->type != EVP_PKEY_DH && pkey->type != EVP_PKEY_DHX) {
|
|
EVPerr(EVP_F_EVP_PKEY_GET0_DH, EVP_R_EXPECTING_A_DH_KEY);
|
|
return NULL;
|
|
}
|
|
return pkey->pkey.dh;
|
|
}
|
|
|
|
DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey)
|
|
{
|
|
DH *ret = EVP_PKEY_get0_DH(pkey);
|
|
if (ret != NULL)
|
|
DH_up_ref(ret);
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
int EVP_PKEY_type(int type)
|
|
{
|
|
int ret;
|
|
const EVP_PKEY_ASN1_METHOD *ameth;
|
|
ENGINE *e;
|
|
ameth = EVP_PKEY_asn1_find(&e, type);
|
|
if (ameth)
|
|
ret = ameth->pkey_id;
|
|
else
|
|
ret = NID_undef;
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
ENGINE_finish(e);
|
|
# endif
|
|
return ret;
|
|
}
|
|
|
|
int EVP_PKEY_id(const EVP_PKEY *pkey)
|
|
{
|
|
return pkey->type;
|
|
}
|
|
|
|
int EVP_PKEY_base_id(const EVP_PKEY *pkey)
|
|
{
|
|
return EVP_PKEY_type(pkey->type);
|
|
}
|
|
|
|
|
|
static int print_reset_indent(BIO **out, int pop_f_prefix, long saved_indent)
|
|
{
|
|
BIO_set_indent(*out, saved_indent);
|
|
if (pop_f_prefix) {
|
|
BIO *next = BIO_pop(*out);
|
|
|
|
BIO_free(*out);
|
|
*out = next;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int print_set_indent(BIO **out, int *pop_f_prefix, long *saved_indent,
|
|
long indent)
|
|
{
|
|
*pop_f_prefix = 0;
|
|
*saved_indent = 0;
|
|
if (indent > 0) {
|
|
long i = BIO_get_indent(*out);
|
|
|
|
*saved_indent = (i < 0 ? 0 : i);
|
|
if (BIO_set_indent(*out, indent) <= 0) {
|
|
if ((*out = BIO_push(BIO_new(BIO_f_prefix()), *out)) == NULL)
|
|
return 0;
|
|
*pop_f_prefix = 1;
|
|
}
|
|
if (BIO_set_indent(*out, indent) <= 0) {
|
|
print_reset_indent(out, *pop_f_prefix, *saved_indent);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int unsup_alg(BIO *out, const EVP_PKEY *pkey, int indent,
|
|
const char *kstr)
|
|
{
|
|
return BIO_indent(out, indent, 128)
|
|
&& BIO_printf(out, "%s algorithm \"%s\" unsupported\n",
|
|
kstr, OBJ_nid2ln(pkey->type)) > 0;
|
|
}
|
|
|
|
static int print_pkey(const EVP_PKEY *pkey, BIO *out, int indent,
|
|
const char *propquery /* For provided serialization */,
|
|
int (*legacy_print)(BIO *out, const EVP_PKEY *pkey,
|
|
int indent, ASN1_PCTX *pctx),
|
|
ASN1_PCTX *legacy_pctx /* For legacy print */)
|
|
{
|
|
int pop_f_prefix;
|
|
long saved_indent;
|
|
OSSL_SERIALIZER_CTX *ctx = NULL;
|
|
int ret = -2; /* default to unsupported */
|
|
|
|
if (!print_set_indent(&out, &pop_f_prefix, &saved_indent, indent))
|
|
return 0;
|
|
|
|
ctx = OSSL_SERIALIZER_CTX_new_by_EVP_PKEY(pkey, propquery);
|
|
if (OSSL_SERIALIZER_CTX_get_serializer(ctx) != NULL)
|
|
ret = OSSL_SERIALIZER_to_bio(ctx, out);
|
|
OSSL_SERIALIZER_CTX_free(ctx);
|
|
|
|
if (ret != -2)
|
|
goto end;
|
|
|
|
/* legacy fallback */
|
|
if (legacy_print != NULL)
|
|
ret = legacy_print(out, pkey, 0, legacy_pctx);
|
|
else
|
|
ret = unsup_alg(out, pkey, 0, "Public Key");
|
|
|
|
end:
|
|
print_reset_indent(&out, pop_f_prefix, saved_indent);
|
|
return ret;
|
|
}
|
|
|
|
int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
|
|
int indent, ASN1_PCTX *pctx)
|
|
{
|
|
return print_pkey(pkey, out, indent, OSSL_SERIALIZER_PUBKEY_TO_TEXT_PQ,
|
|
(pkey->ameth != NULL ? pkey->ameth->pub_print : NULL),
|
|
pctx);
|
|
}
|
|
|
|
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
|
|
int indent, ASN1_PCTX *pctx)
|
|
{
|
|
return print_pkey(pkey, out, indent, OSSL_SERIALIZER_PrivateKey_TO_TEXT_PQ,
|
|
(pkey->ameth != NULL ? pkey->ameth->priv_print : NULL),
|
|
pctx);
|
|
}
|
|
|
|
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
|
|
int indent, ASN1_PCTX *pctx)
|
|
{
|
|
return print_pkey(pkey, out, indent, OSSL_SERIALIZER_Parameters_TO_TEXT_PQ,
|
|
(pkey->ameth != NULL ? pkey->ameth->param_print : NULL),
|
|
pctx);
|
|
}
|
|
|
|
static int legacy_asn1_ctrl_to_param(EVP_PKEY *pkey, int op,
|
|
int arg1, void *arg2)
|
|
{
|
|
if (pkey->keymgmt == NULL)
|
|
return 0;
|
|
switch (op) {
|
|
case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
|
|
{
|
|
char mdname[80] = "";
|
|
int nid;
|
|
int rv = EVP_PKEY_get_default_digest_name(pkey, mdname,
|
|
sizeof(mdname));
|
|
|
|
if (rv <= 0)
|
|
return rv;
|
|
nid = OBJ_sn2nid(mdname);
|
|
if (nid == NID_undef)
|
|
nid = OBJ_ln2nid(mdname);
|
|
if (nid == NID_undef)
|
|
return 0;
|
|
*(int *)arg2 = nid;
|
|
return 1;
|
|
}
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int evp_pkey_asn1_ctrl(EVP_PKEY *pkey, int op, int arg1, void *arg2)
|
|
{
|
|
if (pkey->ameth == NULL)
|
|
return legacy_asn1_ctrl_to_param(pkey, op, arg1, arg2);
|
|
if (pkey->ameth->pkey_ctrl == NULL)
|
|
return -2;
|
|
return pkey->ameth->pkey_ctrl(pkey, op, arg1, arg2);
|
|
}
|
|
|
|
int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid)
|
|
{
|
|
return evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_DEFAULT_MD_NID, 0, pnid);
|
|
}
|
|
|
|
int EVP_PKEY_get_default_digest_name(EVP_PKEY *pkey,
|
|
char *mdname, size_t mdname_sz)
|
|
{
|
|
if (pkey->ameth == NULL) {
|
|
OSSL_PARAM params[3];
|
|
char mddefault[100] = "";
|
|
char mdmandatory[100] = "";
|
|
|
|
params[0] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_DEFAULT_DIGEST,
|
|
mddefault, sizeof(mddefault));
|
|
params[1] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_MANDATORY_DIGEST,
|
|
mdmandatory,
|
|
sizeof(mdmandatory));
|
|
params[2] = OSSL_PARAM_construct_end();
|
|
if (!evp_keymgmt_get_params(pkey->keymgmt, pkey->keydata, params))
|
|
return 0;
|
|
if (mdmandatory[0] != '\0') {
|
|
OPENSSL_strlcpy(mdname, mdmandatory, mdname_sz);
|
|
return 2;
|
|
}
|
|
OPENSSL_strlcpy(mdname, mddefault, mdname_sz);
|
|
return 1;
|
|
}
|
|
|
|
{
|
|
int nid = NID_undef;
|
|
int rv = EVP_PKEY_get_default_digest_nid(pkey, &nid);
|
|
const char *name = rv > 0 ? OBJ_nid2sn(nid) : NULL;
|
|
|
|
if (rv > 0)
|
|
OPENSSL_strlcpy(mdname, name, mdname_sz);
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
int EVP_PKEY_supports_digest_nid(EVP_PKEY *pkey, int nid)
|
|
{
|
|
int rv, default_nid;
|
|
|
|
rv = evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_SUPPORTS_MD_NID, nid, NULL);
|
|
if (rv == -2) {
|
|
/*
|
|
* If there is a mandatory default digest and this isn't it, then
|
|
* the answer is 'no'.
|
|
*/
|
|
rv = EVP_PKEY_get_default_digest_nid(pkey, &default_nid);
|
|
if (rv == 2)
|
|
return (nid == default_nid);
|
|
/* zero is an error from EVP_PKEY_get_default_digest_nid() */
|
|
if (rv == 0)
|
|
return -1;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
int EVP_PKEY_set1_tls_encodedpoint(EVP_PKEY *pkey,
|
|
const unsigned char *pt, size_t ptlen)
|
|
{
|
|
if (ptlen > INT_MAX)
|
|
return 0;
|
|
if (evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_SET1_TLS_ENCPT, ptlen,
|
|
(void *)pt) <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
size_t EVP_PKEY_get1_tls_encodedpoint(EVP_PKEY *pkey, unsigned char **ppt)
|
|
{
|
|
int rv;
|
|
rv = evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_GET1_TLS_ENCPT, 0, ppt);
|
|
if (rv <= 0)
|
|
return 0;
|
|
return rv;
|
|
}
|
|
|
|
#endif /* FIPS_MODE */
|
|
|
|
/*- All methods below can also be used in FIPS_MODE */
|
|
|
|
EVP_PKEY *EVP_PKEY_new(void)
|
|
{
|
|
EVP_PKEY *ret = OPENSSL_zalloc(sizeof(*ret));
|
|
|
|
if (ret == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
ret->type = EVP_PKEY_NONE;
|
|
ret->save_type = EVP_PKEY_NONE;
|
|
ret->references = 1;
|
|
ret->save_parameters = 1;
|
|
ret->lock = CRYPTO_THREAD_lock_new();
|
|
if (ret->lock == NULL) {
|
|
EVPerr(EVP_F_EVP_PKEY_NEW, ERR_R_MALLOC_FAILURE);
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Setup a public key management method.
|
|
*
|
|
* For legacy keys, either |type| or |str| is expected to have the type
|
|
* information. In this case, the setup consists of finding an ASN1 method
|
|
* and potentially an ENGINE, and setting those fields in |pkey|.
|
|
*
|
|
* For provider side keys, |keymgmt| is expected to be non-NULL. In this
|
|
* case, the setup consists of setting the |keymgmt| field in |pkey|.
|
|
*
|
|
* If pkey is NULL just return 1 or 0 if the key management method exists.
|
|
*/
|
|
|
|
static int pkey_set_type(EVP_PKEY *pkey, ENGINE *e, int type, const char *str,
|
|
int len, EVP_KEYMGMT *keymgmt)
|
|
{
|
|
#ifndef FIPS_MODE
|
|
const EVP_PKEY_ASN1_METHOD *ameth = NULL;
|
|
ENGINE **eptr = (e == NULL) ? &e : NULL;
|
|
#endif
|
|
|
|
/*
|
|
* The setups can't set both legacy and provider side methods.
|
|
* It is forbidden
|
|
*/
|
|
if (!ossl_assert(type == EVP_PKEY_NONE || keymgmt == NULL)
|
|
|| !ossl_assert(e == NULL || keymgmt == NULL)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (pkey != NULL) {
|
|
int free_it = 0;
|
|
|
|
#ifndef FIPS_MODE
|
|
free_it = free_it || pkey->pkey.ptr != NULL;
|
|
#endif
|
|
free_it = free_it || pkey->keydata != NULL;
|
|
if (free_it)
|
|
evp_pkey_free_it(pkey);
|
|
#ifndef FIPS_MODE
|
|
/*
|
|
* If key type matches and a method exists then this lookup has
|
|
* succeeded once so just indicate success.
|
|
*/
|
|
if (pkey->type != EVP_PKEY_NONE
|
|
&& type == pkey->save_type
|
|
&& pkey->ameth != NULL)
|
|
return 1;
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
/* If we have ENGINEs release them */
|
|
ENGINE_finish(pkey->engine);
|
|
pkey->engine = NULL;
|
|
ENGINE_finish(pkey->pmeth_engine);
|
|
pkey->pmeth_engine = NULL;
|
|
# endif
|
|
#endif
|
|
}
|
|
#ifndef FIPS_MODE
|
|
if (str != NULL)
|
|
ameth = EVP_PKEY_asn1_find_str(eptr, str, len);
|
|
else if (type != EVP_PKEY_NONE)
|
|
ameth = EVP_PKEY_asn1_find(eptr, type);
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
if (pkey == NULL && eptr != NULL)
|
|
ENGINE_finish(e);
|
|
# endif
|
|
#endif
|
|
|
|
|
|
{
|
|
int check = 1;
|
|
|
|
#ifndef FIPS_MODE
|
|
check = check && ameth == NULL;
|
|
#endif
|
|
check = check && keymgmt == NULL;
|
|
if (check) {
|
|
EVPerr(EVP_F_PKEY_SET_TYPE, EVP_R_UNSUPPORTED_ALGORITHM);
|
|
return 0;
|
|
}
|
|
}
|
|
if (pkey != NULL) {
|
|
if (keymgmt != NULL && !EVP_KEYMGMT_up_ref(keymgmt)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
pkey->keymgmt = keymgmt;
|
|
|
|
pkey->save_type = type;
|
|
pkey->type = type;
|
|
|
|
#ifndef FIPS_MODE
|
|
/*
|
|
* If the internal "origin" key is provider side, don't save |ameth|.
|
|
* The main reason is that |ameth| is one factor to detect that the
|
|
* internal "origin" key is a legacy one.
|
|
*/
|
|
if (keymgmt == NULL)
|
|
pkey->ameth = ameth;
|
|
pkey->engine = e;
|
|
|
|
/*
|
|
* The EVP_PKEY_ASN1_METHOD |pkey_id| serves different purposes,
|
|
* depending on if we're setting this key to contain a legacy or
|
|
* a provider side "origin" key. For a legacy key, we assign it
|
|
* to the |type| field, but for a provider side key, we assign it
|
|
* to the |save_type| field, because |type| is supposed to be set
|
|
* to EVP_PKEY_NONE in that case.
|
|
*/
|
|
if (keymgmt != NULL)
|
|
pkey->save_type = ameth->pkey_id;
|
|
else if (pkey->ameth != NULL)
|
|
pkey->type = ameth->pkey_id;
|
|
#endif
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef FIPS_MODE
|
|
static void find_ameth(const char *name, void *data)
|
|
{
|
|
const char **str = data;
|
|
|
|
/*
|
|
* The error messages from pkey_set_type() are uninteresting here,
|
|
* and misleading.
|
|
*/
|
|
ERR_set_mark();
|
|
|
|
if (pkey_set_type(NULL, NULL, EVP_PKEY_NONE, name, strlen(name),
|
|
NULL)) {
|
|
if (str[0] == NULL)
|
|
str[0] = name;
|
|
else if (str[1] == NULL)
|
|
str[1] = name;
|
|
}
|
|
|
|
ERR_pop_to_mark();
|
|
}
|
|
#endif
|
|
|
|
int EVP_PKEY_set_type_by_keymgmt(EVP_PKEY *pkey, EVP_KEYMGMT *keymgmt)
|
|
{
|
|
#ifndef FIPS_MODE
|
|
# define EVP_PKEY_TYPE_STR str[0]
|
|
# define EVP_PKEY_TYPE_STRLEN (str[0] == NULL ? -1 : (int)strlen(str[0]))
|
|
/*
|
|
* Find at most two strings that have an associated EVP_PKEY_ASN1_METHOD
|
|
* Ideally, only one should be found. If two (or more) are found, the
|
|
* match is ambiguous. This should never happen, but...
|
|
*/
|
|
const char *str[2] = { NULL, NULL };
|
|
|
|
EVP_KEYMGMT_names_do_all(keymgmt, find_ameth, &str);
|
|
if (str[1] != NULL) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
#else
|
|
# define EVP_PKEY_TYPE_STR NULL
|
|
# define EVP_PKEY_TYPE_STRLEN -1
|
|
#endif
|
|
return pkey_set_type(pkey, NULL, EVP_PKEY_NONE,
|
|
EVP_PKEY_TYPE_STR, EVP_PKEY_TYPE_STRLEN,
|
|
keymgmt);
|
|
|
|
#undef EVP_PKEY_TYPE_STR
|
|
#undef EVP_PKEY_TYPE_STRLEN
|
|
}
|
|
|
|
int EVP_PKEY_up_ref(EVP_PKEY *pkey)
|
|
{
|
|
int i;
|
|
|
|
if (CRYPTO_UP_REF(&pkey->references, &i, pkey->lock) <= 0)
|
|
return 0;
|
|
|
|
REF_PRINT_COUNT("EVP_PKEY", pkey);
|
|
REF_ASSERT_ISNT(i < 2);
|
|
return ((i > 1) ? 1 : 0);
|
|
}
|
|
|
|
#ifndef FIPS_MODE
|
|
void evp_pkey_free_legacy(EVP_PKEY *x)
|
|
{
|
|
if (x->ameth != NULL) {
|
|
if (x->ameth->pkey_free != NULL)
|
|
x->ameth->pkey_free(x);
|
|
x->pkey.ptr = NULL;
|
|
}
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
ENGINE_finish(x->engine);
|
|
x->engine = NULL;
|
|
ENGINE_finish(x->pmeth_engine);
|
|
x->pmeth_engine = NULL;
|
|
# endif
|
|
x->type = EVP_PKEY_NONE;
|
|
}
|
|
#endif /* FIPS_MODE */
|
|
|
|
static void evp_pkey_free_it(EVP_PKEY *x)
|
|
{
|
|
/* internal function; x is never NULL */
|
|
|
|
evp_keymgmt_util_clear_operation_cache(x);
|
|
#ifndef FIPS_MODE
|
|
evp_pkey_free_legacy(x);
|
|
#endif
|
|
|
|
if (x->keymgmt != NULL) {
|
|
evp_keymgmt_freedata(x->keymgmt, x->keydata);
|
|
EVP_KEYMGMT_free(x->keymgmt);
|
|
x->keymgmt = NULL;
|
|
x->keydata = NULL;
|
|
}
|
|
}
|
|
|
|
void EVP_PKEY_free(EVP_PKEY *x)
|
|
{
|
|
int i;
|
|
|
|
if (x == NULL)
|
|
return;
|
|
|
|
CRYPTO_DOWN_REF(&x->references, &i, x->lock);
|
|
REF_PRINT_COUNT("EVP_PKEY", x);
|
|
if (i > 0)
|
|
return;
|
|
REF_ASSERT_ISNT(i < 0);
|
|
evp_pkey_free_it(x);
|
|
CRYPTO_THREAD_lock_free(x->lock);
|
|
#ifndef FIPS_MODE
|
|
sk_X509_ATTRIBUTE_pop_free(x->attributes, X509_ATTRIBUTE_free);
|
|
#endif
|
|
OPENSSL_free(x);
|
|
}
|
|
|
|
int EVP_PKEY_size(const EVP_PKEY *pkey)
|
|
{
|
|
int size = 0;
|
|
|
|
if (pkey != NULL) {
|
|
size = pkey->cache.size;
|
|
#ifndef FIPS_MODE
|
|
if (pkey->ameth != NULL && pkey->ameth->pkey_size != NULL)
|
|
size = pkey->ameth->pkey_size(pkey);
|
|
#endif
|
|
}
|
|
return size;
|
|
}
|
|
|
|
void *evp_pkey_export_to_provider(EVP_PKEY *pk, OPENSSL_CTX *libctx,
|
|
EVP_KEYMGMT **keymgmt,
|
|
const char *propquery)
|
|
{
|
|
EVP_KEYMGMT *allocated_keymgmt = NULL;
|
|
EVP_KEYMGMT *tmp_keymgmt = NULL;
|
|
void *keydata = NULL;
|
|
int check;
|
|
|
|
if (pk == NULL)
|
|
return NULL;
|
|
|
|
/* No key data => nothing to export */
|
|
check = 1;
|
|
#ifndef FIPS_MODE
|
|
check = check && pk->pkey.ptr == NULL;
|
|
#endif
|
|
check = check && pk->keydata == NULL;
|
|
if (check)
|
|
return NULL;
|
|
|
|
#ifndef FIPS_MODE
|
|
if (pk->pkey.ptr != NULL) {
|
|
/*
|
|
* If the legacy key doesn't have an dirty counter or export function,
|
|
* give up
|
|
*/
|
|
if (pk->ameth->dirty_cnt == NULL || pk->ameth->export_to == NULL)
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (keymgmt != NULL) {
|
|
tmp_keymgmt = *keymgmt;
|
|
*keymgmt = NULL;
|
|
}
|
|
|
|
/*
|
|
* If no keymgmt was given or found, get a default keymgmt. We do so by
|
|
* letting EVP_PKEY_CTX_new_from_pkey() do it for us, then we steal it.
|
|
*/
|
|
if (tmp_keymgmt == NULL) {
|
|
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_pkey(libctx, pk, propquery);
|
|
|
|
tmp_keymgmt = ctx->keymgmt;
|
|
ctx->keymgmt = NULL;
|
|
EVP_PKEY_CTX_free(ctx);
|
|
}
|
|
|
|
/* If there's still no keymgmt to be had, give up */
|
|
if (tmp_keymgmt == NULL)
|
|
goto end;
|
|
|
|
#ifndef FIPS_MODE
|
|
if (pk->pkey.ptr != NULL) {
|
|
size_t i = 0;
|
|
|
|
/*
|
|
* If the legacy "origin" hasn't changed since last time, we try
|
|
* to find our keymgmt in the operation cache. If it has changed,
|
|
* |i| remains zero, and we will clear the cache further down.
|
|
*/
|
|
if (pk->ameth->dirty_cnt(pk) == pk->dirty_cnt_copy) {
|
|
i = evp_keymgmt_util_find_operation_cache_index(pk, tmp_keymgmt);
|
|
|
|
/*
|
|
* If |tmp_keymgmt| is present in the operation cache, it means
|
|
* that export doesn't need to be redone. In that case, we take
|
|
* token copies of the cached pointers, to have token success
|
|
* values to return.
|
|
*/
|
|
if (i < OSSL_NELEM(pk->operation_cache)
|
|
&& pk->operation_cache[i].keymgmt != NULL) {
|
|
keydata = pk->operation_cache[i].keydata;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TODO(3.0) Right now, we assume we have ample space. We will have
|
|
* to think about a cache aging scheme, though, if |i| indexes outside
|
|
* the array.
|
|
*/
|
|
if (!ossl_assert(i < OSSL_NELEM(pk->operation_cache)))
|
|
goto end;
|
|
|
|
/* Make sure that the keymgmt key type matches the legacy NID */
|
|
if (!ossl_assert(EVP_KEYMGMT_is_a(tmp_keymgmt, OBJ_nid2sn(pk->type))))
|
|
goto end;
|
|
|
|
if ((keydata = evp_keymgmt_newdata(tmp_keymgmt)) == NULL)
|
|
goto end;
|
|
|
|
if (!pk->ameth->export_to(pk, keydata, tmp_keymgmt)) {
|
|
evp_keymgmt_freedata(tmp_keymgmt, keydata);
|
|
keydata = NULL;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* If the dirty counter changed since last time, then clear the
|
|
* operation cache. In that case, we know that |i| is zero. Just
|
|
* in case this is a re-export, we increment then decrement the
|
|
* keymgmt reference counter.
|
|
*/
|
|
if (!EVP_KEYMGMT_up_ref(tmp_keymgmt)) { /* refcnt++ */
|
|
evp_keymgmt_freedata(tmp_keymgmt, keydata);
|
|
keydata = NULL;
|
|
goto end;
|
|
}
|
|
if (pk->ameth->dirty_cnt(pk) != pk->dirty_cnt_copy)
|
|
evp_keymgmt_util_clear_operation_cache(pk);
|
|
EVP_KEYMGMT_free(tmp_keymgmt); /* refcnt-- */
|
|
|
|
/* Add the new export to the operation cache */
|
|
if (!evp_keymgmt_util_cache_keydata(pk, i, tmp_keymgmt, keydata)) {
|
|
evp_keymgmt_freedata(tmp_keymgmt, keydata);
|
|
keydata = NULL;
|
|
goto end;
|
|
}
|
|
|
|
/* Synchronize the dirty count */
|
|
pk->dirty_cnt_copy = pk->ameth->dirty_cnt(pk);
|
|
goto end;
|
|
}
|
|
#endif /* FIPS_MODE */
|
|
|
|
keydata = evp_keymgmt_util_export_to_provider(pk, tmp_keymgmt);
|
|
|
|
end:
|
|
/*
|
|
* If nothing was exported, |tmp_keymgmt| might point at a freed
|
|
* EVP_KEYMGMT, so we clear it to be safe. It shouldn't be useful for
|
|
* the caller either way in that case.
|
|
*/
|
|
if (keydata == NULL)
|
|
tmp_keymgmt = NULL;
|
|
|
|
if (keymgmt != NULL)
|
|
*keymgmt = tmp_keymgmt;
|
|
|
|
EVP_KEYMGMT_free(allocated_keymgmt);
|
|
return keydata;
|
|
}
|
|
|
|
#ifndef FIPS_MODE
|
|
/*
|
|
* This differs from exporting in that it releases the legacy key and assigns
|
|
* the export keymgmt and keydata to the "origin" provider side key instead
|
|
* of the operation cache.
|
|
*/
|
|
void *evp_pkey_upgrade_to_provider(EVP_PKEY *pk, OPENSSL_CTX *libctx,
|
|
EVP_KEYMGMT **keymgmt,
|
|
const char *propquery)
|
|
{
|
|
EVP_KEYMGMT *allocated_keymgmt = NULL;
|
|
EVP_KEYMGMT *tmp_keymgmt = NULL;
|
|
void *keydata = NULL;
|
|
|
|
if (pk == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* If this key is already "upgraded", this function shouldn't have been
|
|
* called.
|
|
*/
|
|
if (!ossl_assert(pk->keymgmt == NULL))
|
|
return NULL;
|
|
|
|
if (keymgmt != NULL) {
|
|
tmp_keymgmt = *keymgmt;
|
|
*keymgmt = NULL;
|
|
}
|
|
|
|
/* If the key isn't a legacy one, bail out, but with proper values */
|
|
if (pk->pkey.ptr == NULL) {
|
|
tmp_keymgmt = pk->keymgmt;
|
|
keydata = pk->keydata;
|
|
} else {
|
|
/* If the legacy key doesn't have an export function, give up */
|
|
if (pk->ameth->export_to == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* If no keymgmt was given or found, get a default keymgmt. We do
|
|
* so by letting EVP_PKEY_CTX_new_from_pkey() do it for us, then we
|
|
* steal it.
|
|
*/
|
|
if (tmp_keymgmt == NULL) {
|
|
EVP_PKEY_CTX *ctx =
|
|
EVP_PKEY_CTX_new_from_pkey(libctx, pk, propquery);
|
|
|
|
tmp_keymgmt = ctx->keymgmt;
|
|
ctx->keymgmt = NULL;
|
|
EVP_PKEY_CTX_free(ctx);
|
|
}
|
|
|
|
/* If we still don't have a keymgmt, give up */
|
|
if (tmp_keymgmt == NULL)
|
|
goto end;
|
|
|
|
/* Make sure that the keymgmt key type matches the legacy NID */
|
|
if (!ossl_assert(EVP_KEYMGMT_is_a(tmp_keymgmt, OBJ_nid2sn(pk->type))))
|
|
goto end;
|
|
|
|
if ((keydata = evp_keymgmt_newdata(tmp_keymgmt)) == NULL)
|
|
goto end;
|
|
|
|
if (!pk->ameth->export_to(pk, keydata, tmp_keymgmt)
|
|
|| !EVP_KEYMGMT_up_ref(tmp_keymgmt)) {
|
|
evp_keymgmt_freedata(tmp_keymgmt, keydata);
|
|
keydata = NULL;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Clear the operation cache, all the legacy data, as well as the
|
|
* dirty counters
|
|
*/
|
|
evp_pkey_free_legacy(pk);
|
|
pk->dirty_cnt_copy = 0;
|
|
|
|
evp_keymgmt_util_clear_operation_cache(pk);
|
|
pk->keymgmt = tmp_keymgmt;
|
|
pk->keydata = keydata;
|
|
evp_keymgmt_util_cache_keyinfo(pk);
|
|
}
|
|
|
|
end:
|
|
/*
|
|
* If nothing was upgraded, |tmp_keymgmt| might point at a freed
|
|
* EVP_KEYMGMT, so we clear it to be safe. It shouldn't be useful for
|
|
* the caller either way in that case.
|
|
*/
|
|
if (keydata == NULL)
|
|
tmp_keymgmt = NULL;
|
|
|
|
if (keymgmt != NULL)
|
|
*keymgmt = tmp_keymgmt;
|
|
|
|
EVP_KEYMGMT_free(allocated_keymgmt);
|
|
return keydata;
|
|
}
|
|
#endif /* FIPS_MODE */
|