openssl/crypto/aes/aes_ige.c
Matt Caswell c72fa2554f Deprecate the low level AES functions
Use of the low level AES functions has been informally discouraged for a
long time. We now formally deprecate them.

Applications should instead use the EVP APIs, e.g. EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, and the equivalently named decrypt
functions.

Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10580)
2020-01-06 15:09:57 +00:00

305 lines
10 KiB
C

/*
* Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* AES_encrypt/AES_decrypt are deprecated - but we need to use them to implement
* these functions
*/
#include "internal/deprecated.h"
#include "internal/cryptlib.h"
#ifdef OPENSSL_NO_DEPRECATED_3_0
NON_EMPTY_TRANSLATION_UNIT
#else
#include <openssl/aes.h>
#include "aes_local.h"
#define N_WORDS (AES_BLOCK_SIZE / sizeof(unsigned long))
typedef struct {
unsigned long data[N_WORDS];
} aes_block_t;
/* XXX: probably some better way to do this */
#if defined(__i386__) || defined(__x86_64__)
# define UNALIGNED_MEMOPS_ARE_FAST 1
#else
# define UNALIGNED_MEMOPS_ARE_FAST 0
#endif
#if UNALIGNED_MEMOPS_ARE_FAST
# define load_block(d, s) (d) = *(const aes_block_t *)(s)
# define store_block(d, s) *(aes_block_t *)(d) = (s)
#else
# define load_block(d, s) memcpy((d).data, (s), AES_BLOCK_SIZE)
# define store_block(d, s) memcpy((d), (s).data, AES_BLOCK_SIZE)
#endif
/* N.B. The IV for this mode is _twice_ the block size */
/* Use of this function is deprecated. */
void AES_ige_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key,
unsigned char *ivec, const int enc)
{
size_t n;
size_t len = length;
if (length == 0)
return;
OPENSSL_assert(in && out && key && ivec);
OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc));
OPENSSL_assert((length % AES_BLOCK_SIZE) == 0);
len = length / AES_BLOCK_SIZE;
if (AES_ENCRYPT == enc) {
if (in != out &&
(UNALIGNED_MEMOPS_ARE_FAST
|| ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) ==
0)) {
aes_block_t *ivp = (aes_block_t *) ivec;
aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE);
while (len) {
aes_block_t *inp = (aes_block_t *) in;
aes_block_t *outp = (aes_block_t *) out;
for (n = 0; n < N_WORDS; ++n)
outp->data[n] = inp->data[n] ^ ivp->data[n];
AES_encrypt((unsigned char *)outp->data,
(unsigned char *)outp->data, key);
for (n = 0; n < N_WORDS; ++n)
outp->data[n] ^= iv2p->data[n];
ivp = outp;
iv2p = inp;
--len;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE);
} else {
aes_block_t tmp, tmp2;
aes_block_t iv;
aes_block_t iv2;
load_block(iv, ivec);
load_block(iv2, ivec + AES_BLOCK_SIZE);
while (len) {
load_block(tmp, in);
for (n = 0; n < N_WORDS; ++n)
tmp2.data[n] = tmp.data[n] ^ iv.data[n];
AES_encrypt((unsigned char *)tmp2.data,
(unsigned char *)tmp2.data, key);
for (n = 0; n < N_WORDS; ++n)
tmp2.data[n] ^= iv2.data[n];
store_block(out, tmp2);
iv = tmp2;
iv2 = tmp;
--len;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
memcpy(ivec, iv.data, AES_BLOCK_SIZE);
memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
}
} else {
if (in != out &&
(UNALIGNED_MEMOPS_ARE_FAST
|| ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) ==
0)) {
aes_block_t *ivp = (aes_block_t *) ivec;
aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE);
while (len) {
aes_block_t tmp;
aes_block_t *inp = (aes_block_t *) in;
aes_block_t *outp = (aes_block_t *) out;
for (n = 0; n < N_WORDS; ++n)
tmp.data[n] = inp->data[n] ^ iv2p->data[n];
AES_decrypt((unsigned char *)tmp.data,
(unsigned char *)outp->data, key);
for (n = 0; n < N_WORDS; ++n)
outp->data[n] ^= ivp->data[n];
ivp = inp;
iv2p = outp;
--len;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE);
} else {
aes_block_t tmp, tmp2;
aes_block_t iv;
aes_block_t iv2;
load_block(iv, ivec);
load_block(iv2, ivec + AES_BLOCK_SIZE);
while (len) {
load_block(tmp, in);
tmp2 = tmp;
for (n = 0; n < N_WORDS; ++n)
tmp.data[n] ^= iv2.data[n];
AES_decrypt((unsigned char *)tmp.data,
(unsigned char *)tmp.data, key);
for (n = 0; n < N_WORDS; ++n)
tmp.data[n] ^= iv.data[n];
store_block(out, tmp);
iv = tmp2;
iv2 = tmp;
--len;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
memcpy(ivec, iv.data, AES_BLOCK_SIZE);
memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
}
}
}
/*
* Note that its effectively impossible to do biIGE in anything other
* than a single pass, so no provision is made for chaining.
*
* NB: The implementation of AES_bi_ige_encrypt has a bug. It is supposed to use
* 2 AES keys, but in fact only one is ever used. This bug has been present
* since this code was first implemented. It is believed to have minimal
* security impact in practice and has therefore not been fixed for backwards
* compatibility reasons.
*
* Use of this function is deprecated.
*/
/* N.B. The IV for this mode is _four times_ the block size */
void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key,
const AES_KEY *key2, const unsigned char *ivec,
const int enc)
{
size_t n;
size_t len = length;
unsigned char tmp[AES_BLOCK_SIZE];
unsigned char tmp2[AES_BLOCK_SIZE];
unsigned char tmp3[AES_BLOCK_SIZE];
unsigned char prev[AES_BLOCK_SIZE];
const unsigned char *iv;
const unsigned char *iv2;
OPENSSL_assert(in && out && key && ivec);
OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc));
OPENSSL_assert((length % AES_BLOCK_SIZE) == 0);
if (AES_ENCRYPT == enc) {
/*
* XXX: Do a separate case for when in != out (strictly should check
* for overlap, too)
*/
/* First the forward pass */
iv = ivec;
iv2 = ivec + AES_BLOCK_SIZE;
while (len >= AES_BLOCK_SIZE) {
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] = in[n] ^ iv[n];
AES_encrypt(out, out, key);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] ^= iv2[n];
iv = out;
memcpy(prev, in, AES_BLOCK_SIZE);
iv2 = prev;
len -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
/* And now backwards */
iv = ivec + AES_BLOCK_SIZE * 2;
iv2 = ivec + AES_BLOCK_SIZE * 3;
len = length;
while (len >= AES_BLOCK_SIZE) {
out -= AES_BLOCK_SIZE;
/*
* XXX: reduce copies by alternating between buffers
*/
memcpy(tmp, out, AES_BLOCK_SIZE);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] ^= iv[n];
/*
* hexdump(stdout, "out ^ iv", out, AES_BLOCK_SIZE);
*/
AES_encrypt(out, out, key);
/*
* hexdump(stdout,"enc", out, AES_BLOCK_SIZE);
*/
/*
* hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE);
*/
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] ^= iv2[n];
/*
* hexdump(stdout,"out", out, AES_BLOCK_SIZE);
*/
iv = out;
memcpy(prev, tmp, AES_BLOCK_SIZE);
iv2 = prev;
len -= AES_BLOCK_SIZE;
}
} else {
/* First backwards */
iv = ivec + AES_BLOCK_SIZE * 2;
iv2 = ivec + AES_BLOCK_SIZE * 3;
in += length;
out += length;
while (len >= AES_BLOCK_SIZE) {
in -= AES_BLOCK_SIZE;
out -= AES_BLOCK_SIZE;
memcpy(tmp, in, AES_BLOCK_SIZE);
memcpy(tmp2, in, AES_BLOCK_SIZE);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
tmp[n] ^= iv2[n];
AES_decrypt(tmp, out, key);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] ^= iv[n];
memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
iv = tmp3;
iv2 = out;
len -= AES_BLOCK_SIZE;
}
/* And now forwards */
iv = ivec;
iv2 = ivec + AES_BLOCK_SIZE;
len = length;
while (len >= AES_BLOCK_SIZE) {
memcpy(tmp, out, AES_BLOCK_SIZE);
memcpy(tmp2, out, AES_BLOCK_SIZE);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
tmp[n] ^= iv2[n];
AES_decrypt(tmp, out, key);
for (n = 0; n < AES_BLOCK_SIZE; ++n)
out[n] ^= iv[n];
memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
iv = tmp3;
iv2 = out;
len -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
}
}
#endif