mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
7ed6de997f
Reviewed-by: Neil Horman <nhorman@openssl.org> Release: yes
2943 lines
108 KiB
C
2943 lines
108 KiB
C
/*
|
|
* Copyright 2021-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* Some ctrls depend on deprecated functionality. We trust that this is
|
|
* functionality that remains internally even when 'no-deprecated' is
|
|
* configured. When we drop #legacy EVP_PKEYs, this source should be
|
|
* possible to drop as well.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <string.h>
|
|
|
|
/* The following includes get us all the EVP_PKEY_CTRL macros */
|
|
#include <openssl/dh.h>
|
|
#include <openssl/dsa.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/kdf.h>
|
|
|
|
/* This include gets us all the OSSL_PARAM key string macros */
|
|
#include <openssl/core_names.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/evperr.h>
|
|
#include <openssl/params.h>
|
|
#include "internal/nelem.h"
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/ffc.h"
|
|
#include "crypto/evp.h"
|
|
#include "crypto/dh.h"
|
|
#include "crypto/ec.h"
|
|
|
|
struct translation_ctx_st; /* Forwarding */
|
|
struct translation_st; /* Forwarding */
|
|
|
|
/*
|
|
* The fixup_args functions are called with the following parameters:
|
|
*
|
|
* |state| The state we're called in, explained further at the
|
|
* end of this comment.
|
|
* |translation| The translation item, to be pilfered for data as
|
|
* necessary.
|
|
* |ctx| The translation context, which contains copies of
|
|
* the following arguments, applicable according to
|
|
* the caller. All of the attributes in this context
|
|
* may be freely modified by the fixup_args function.
|
|
* For cleanup, call cleanup_translation_ctx().
|
|
*
|
|
* The |state| tells the fixup_args function something about the caller and
|
|
* what they may expect:
|
|
*
|
|
* PKEY The fixup_args function has been called
|
|
* from an EVP_PKEY payload getter / setter,
|
|
* and is fully responsible for getting or
|
|
* setting the requested data. With this
|
|
* state, the fixup_args function is expected
|
|
* to use or modify |*params|, depending on
|
|
* |action_type|.
|
|
*
|
|
* PRE_CTRL_TO_PARAMS The fixup_args function has been called
|
|
* POST_CTRL_TO_PARAMS from EVP_PKEY_CTX_ctrl(), to help with
|
|
* translating the ctrl data to an OSSL_PARAM
|
|
* element or back. The calling sequence is
|
|
* as follows:
|
|
*
|
|
* 1. fixup_args(PRE_CTRL_TO_PARAMS, ...)
|
|
* 2. EVP_PKEY_CTX_set_params() or
|
|
* EVP_PKEY_CTX_get_params()
|
|
* 3. fixup_args(POST_CTRL_TO_PARAMS, ...)
|
|
*
|
|
* With the PRE_CTRL_TO_PARAMS state, the
|
|
* fixup_args function is expected to modify
|
|
* the passed |*params| in whatever way
|
|
* necessary, when |action_type == SET|.
|
|
* With the POST_CTRL_TO_PARAMS state, the
|
|
* fixup_args function is expected to modify
|
|
* the passed |p2| in whatever way necessary,
|
|
* when |action_type == GET|.
|
|
*
|
|
* The return value from the fixup_args call
|
|
* with the POST_CTRL_TO_PARAMS state becomes
|
|
* the return value back to EVP_PKEY_CTX_ctrl().
|
|
*
|
|
* CLEANUP_CTRL_TO_PARAMS The cleanup_args functions has been called
|
|
* from EVP_PKEY_CTX_ctrl(), to clean up what
|
|
* the fixup_args function has done, if needed.
|
|
*
|
|
*
|
|
* PRE_CTRL_STR_TO_PARAMS The fixup_args function has been called
|
|
* POST_CTRL_STR_TO_PARAMS from EVP_PKEY_CTX_ctrl_str(), to help with
|
|
* translating the ctrl_str data to an
|
|
* OSSL_PARAM element or back. The calling
|
|
* sequence is as follows:
|
|
*
|
|
* 1. fixup_args(PRE_CTRL_STR_TO_PARAMS, ...)
|
|
* 2. EVP_PKEY_CTX_set_params() or
|
|
* EVP_PKEY_CTX_get_params()
|
|
* 3. fixup_args(POST_CTRL_STR_TO_PARAMS, ...)
|
|
*
|
|
* With the PRE_CTRL_STR_TO_PARAMS state,
|
|
* the fixup_args function is expected to
|
|
* modify the passed |*params| in whatever
|
|
* way necessary, when |action_type == SET|.
|
|
* With the POST_CTRL_STR_TO_PARAMS state,
|
|
* the fixup_args function is only expected
|
|
* to return a value.
|
|
*
|
|
* CLEANUP_CTRL_STR_TO_PARAMS The cleanup_args functions has been called
|
|
* from EVP_PKEY_CTX_ctrl_str(), to clean up
|
|
* what the fixup_args function has done, if
|
|
* needed.
|
|
*
|
|
* PRE_PARAMS_TO_CTRL The fixup_args function has been called
|
|
* POST_PARAMS_TO_CTRL from EVP_PKEY_CTX_get_params() or
|
|
* EVP_PKEY_CTX_set_params(), to help with
|
|
* translating the OSSL_PARAM data to the
|
|
* corresponding EVP_PKEY_CTX_ctrl() arguments
|
|
* or the other way around. The calling
|
|
* sequence is as follows:
|
|
*
|
|
* 1. fixup_args(PRE_PARAMS_TO_CTRL, ...)
|
|
* 2. EVP_PKEY_CTX_ctrl()
|
|
* 3. fixup_args(POST_PARAMS_TO_CTRL, ...)
|
|
*
|
|
* With the PRE_PARAMS_TO_CTRL state, the
|
|
* fixup_args function is expected to modify
|
|
* the passed |p1| and |p2| in whatever way
|
|
* necessary, when |action_type == SET|.
|
|
* With the POST_PARAMS_TO_CTRL state, the
|
|
* fixup_args function is expected to
|
|
* modify the passed |*params| in whatever
|
|
* way necessary, when |action_type == GET|.
|
|
*
|
|
* CLEANUP_PARAMS_TO_CTRL The cleanup_args functions has been called
|
|
* from EVP_PKEY_CTX_get_params() or
|
|
* EVP_PKEY_CTX_set_params(), to clean up what
|
|
* the fixup_args function has done, if needed.
|
|
*/
|
|
enum state {
|
|
PKEY,
|
|
PRE_CTRL_TO_PARAMS, POST_CTRL_TO_PARAMS, CLEANUP_CTRL_TO_PARAMS,
|
|
PRE_CTRL_STR_TO_PARAMS, POST_CTRL_STR_TO_PARAMS, CLEANUP_CTRL_STR_TO_PARAMS,
|
|
PRE_PARAMS_TO_CTRL, POST_PARAMS_TO_CTRL, CLEANUP_PARAMS_TO_CTRL
|
|
};
|
|
enum action {
|
|
NONE = 0, GET = 1, SET = 2
|
|
};
|
|
typedef int fixup_args_fn(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx);
|
|
typedef int cleanup_args_fn(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx);
|
|
|
|
struct translation_ctx_st {
|
|
/*
|
|
* The EVP_PKEY_CTX, for calls on that structure, to be pilfered for data
|
|
* as necessary.
|
|
*/
|
|
EVP_PKEY_CTX *pctx;
|
|
/*
|
|
* The action type (GET or SET). This may be 0 in some cases, and should
|
|
* be modified by the fixup_args function in the PRE states. It should
|
|
* otherwise remain untouched once set.
|
|
*/
|
|
enum action action_type;
|
|
/*
|
|
* For ctrl to params translation, the actual ctrl command number used.
|
|
* For params to ctrl translation, 0.
|
|
*/
|
|
int ctrl_cmd;
|
|
/*
|
|
* For ctrl_str to params translation, the actual ctrl command string
|
|
* used. In this case, the (string) value is always passed as |p2|.
|
|
* For params to ctrl translation, this is NULL. Along with it is also
|
|
* and indicator whether it matched |ctrl_str| or |ctrl_hexstr| in the
|
|
* translation item.
|
|
*/
|
|
const char *ctrl_str;
|
|
int ishex;
|
|
/* the ctrl-style int argument. */
|
|
int p1;
|
|
/* the ctrl-style void* argument. */
|
|
void *p2;
|
|
/* a size, for passing back the |p2| size where applicable */
|
|
size_t sz;
|
|
/* pointer to the OSSL_PARAM-style params array. */
|
|
OSSL_PARAM *params;
|
|
|
|
/*-
|
|
* The following are used entirely internally by the fixup_args functions
|
|
* and should not be touched by the callers, at all.
|
|
*/
|
|
|
|
/*
|
|
* Copy of the ctrl-style void* argument, if the fixup_args function
|
|
* needs to manipulate |p2| but wants to remember original.
|
|
*/
|
|
void *orig_p2;
|
|
/* Diverse types of storage for the needy. */
|
|
char name_buf[OSSL_MAX_NAME_SIZE];
|
|
void *allocated_buf;
|
|
void *bufp;
|
|
size_t buflen;
|
|
};
|
|
|
|
struct translation_st {
|
|
/*-
|
|
* What this table item does.
|
|
*
|
|
* If the item has this set to 0, it means that both GET and SET are
|
|
* supported, and |fixup_args| will determine which it is. This is to
|
|
* support translations of ctrls where the action type depends on the
|
|
* value of |p1| or |p2| (ctrls are really bi-directional, but are
|
|
* seldom used that way).
|
|
*
|
|
* This can be also used in the lookup template when it looks up by
|
|
* OSSL_PARAM key, to indicate if a setter or a getter called.
|
|
*/
|
|
enum action action_type;
|
|
|
|
/*-
|
|
* Conditions, for params->ctrl translations.
|
|
*
|
|
* In table item, |keytype1| and |keytype2| can be set to -1 to indicate
|
|
* that this item supports all key types (or rather, that |fixup_args|
|
|
* will check and return an error if it's not supported).
|
|
* Any of these may be set to 0 to indicate that they are unset.
|
|
*/
|
|
int keytype1; /* The EVP_PKEY_XXX type, i.e. NIDs. #legacy */
|
|
int keytype2; /* Another EVP_PKEY_XXX type, used for aliases */
|
|
int optype; /* The operation type */
|
|
|
|
/*
|
|
* Lookup and translation attributes
|
|
*
|
|
* |ctrl_num|, |ctrl_str|, |ctrl_hexstr| and |param_key| are lookup
|
|
* attributes.
|
|
*
|
|
* |ctrl_num| may be 0 or that |param_key| may be NULL in the table item,
|
|
* but not at the same time. If they are, they are simply not used for
|
|
* lookup.
|
|
* When |ctrl_num| == 0, no ctrl will be called. Likewise, when
|
|
* |param_key| == NULL, no OSSL_PARAM setter/getter will be called.
|
|
* In that case the treatment of the translation item relies entirely on
|
|
* |fixup_args|, which is then assumed to have side effects.
|
|
*
|
|
* As a special case, it's possible to set |ctrl_hexstr| and assign NULL
|
|
* to |ctrl_str|. That will signal to default_fixup_args() that the
|
|
* value must always be interpreted as hex.
|
|
*/
|
|
int ctrl_num; /* EVP_PKEY_CTRL_xxx */
|
|
const char *ctrl_str; /* The corresponding ctrl string */
|
|
const char *ctrl_hexstr; /* The alternative "hex{str}" ctrl string */
|
|
const char *param_key; /* The corresponding OSSL_PARAM key */
|
|
/*
|
|
* The appropriate OSSL_PARAM data type. This may be 0 to indicate that
|
|
* this OSSL_PARAM may have more than one data type, depending on input
|
|
* material. In this case, |fixup_args| is expected to check and handle
|
|
* it.
|
|
*/
|
|
unsigned int param_data_type;
|
|
|
|
/*
|
|
* Fixer functions
|
|
*
|
|
* |fixup_args| is always called before (for SET) or after (for GET)
|
|
* the actual ctrl / OSSL_PARAM function.
|
|
*/
|
|
fixup_args_fn *fixup_args;
|
|
};
|
|
|
|
/*-
|
|
* Fixer function implementations
|
|
* ==============================
|
|
*/
|
|
|
|
/*
|
|
* default_check isn't a fixer per se, but rather a helper function to
|
|
* perform certain standard checks.
|
|
*/
|
|
static int default_check(enum state state,
|
|
const struct translation_st *translation,
|
|
const struct translation_ctx_st *ctx)
|
|
{
|
|
switch (state) {
|
|
default:
|
|
break;
|
|
case PRE_CTRL_TO_PARAMS:
|
|
if (!ossl_assert(translation != NULL)) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return -2;
|
|
}
|
|
if (!ossl_assert(translation->param_key != 0)
|
|
|| !ossl_assert(translation->param_data_type != 0)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
break;
|
|
case PRE_CTRL_STR_TO_PARAMS:
|
|
/*
|
|
* For ctrl_str to params translation, we allow direct use of
|
|
* OSSL_PARAM keys as ctrl_str keys. Therefore, it's possible that
|
|
* we end up with |translation == NULL|, which is fine. The fixup
|
|
* function will have to deal with it carefully.
|
|
*/
|
|
if (translation != NULL) {
|
|
if (!ossl_assert(translation->action_type != GET)) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return -2;
|
|
}
|
|
if (!ossl_assert(translation->param_key != NULL)
|
|
|| !ossl_assert(translation->param_data_type != 0)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
break;
|
|
case PRE_PARAMS_TO_CTRL:
|
|
case POST_PARAMS_TO_CTRL:
|
|
if (!ossl_assert(translation != NULL)) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return -2;
|
|
}
|
|
if (!ossl_assert(translation->ctrl_num != 0)
|
|
|| !ossl_assert(translation->param_data_type != 0)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Nothing else to check */
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* default_fixup_args fixes up all sorts of arguments, governed by the
|
|
* diverse attributes in the translation item. It covers all "standard"
|
|
* base ctrl functionality, meaning it can handle basic conversion of
|
|
* data between p1+p2 (SET) or return value+p2 (GET) as long as the values
|
|
* don't have extra semantics (such as NIDs, OIDs, that sort of stuff).
|
|
* Extra semantics must be handled via specific fixup_args functions.
|
|
*
|
|
* The following states and action type combinations have standard handling
|
|
* done in this function:
|
|
*
|
|
* PRE_CTRL_TO_PARAMS, 0 - ERROR. action type must be
|
|
* determined by a fixup function.
|
|
* PRE_CTRL_TO_PARAMS, SET | GET - |p1| and |p2| are converted to an
|
|
* OSSL_PARAM according to the data
|
|
* type given in |translattion|.
|
|
* For OSSL_PARAM_UNSIGNED_INTEGER,
|
|
* a BIGNUM passed as |p2| is accepted.
|
|
* POST_CTRL_TO_PARAMS, GET - If the OSSL_PARAM data type is a
|
|
* STRING or PTR type, |p1| is set
|
|
* to the OSSL_PARAM return size, and
|
|
* |p2| is set to the string.
|
|
* PRE_CTRL_STR_TO_PARAMS, !SET - ERROR. That combination is not
|
|
* supported.
|
|
* PRE_CTRL_STR_TO_PARAMS, SET - |p2| is taken as a string, and is
|
|
* converted to an OSSL_PARAM in a
|
|
* standard manner, guided by the
|
|
* param key and data type from
|
|
* |translation|.
|
|
* PRE_PARAMS_TO_CTRL, SET - the OSSL_PARAM is converted to
|
|
* |p1| and |p2| according to the
|
|
* data type given in |translation|
|
|
* For OSSL_PARAM_UNSIGNED_INTEGER,
|
|
* if |p2| is non-NULL, then |*p2|
|
|
* is assigned a BIGNUM, otherwise
|
|
* |p1| is assigned an unsigned int.
|
|
* POST_PARAMS_TO_CTRL, GET - |p1| and |p2| are converted to
|
|
* an OSSL_PARAM, in the same manner
|
|
* as for the combination of
|
|
* PRE_CTRL_TO_PARAMS, SET.
|
|
*/
|
|
static int default_fixup_args(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
switch (state) {
|
|
default:
|
|
/* For states this function should never have been called with */
|
|
ERR_raise_data(ERR_LIB_EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED,
|
|
"[action:%d, state:%d]", ctx->action_type, state);
|
|
return 0;
|
|
|
|
/*
|
|
* PRE_CTRL_TO_PARAMS and POST_CTRL_TO_PARAMS handle ctrl to params
|
|
* translations. PRE_CTRL_TO_PARAMS is responsible for preparing
|
|
* |*params|, and POST_CTRL_TO_PARAMS is responsible for bringing the
|
|
* result back to |*p2| and the return value.
|
|
*/
|
|
case PRE_CTRL_TO_PARAMS:
|
|
/* This is ctrl to params translation, so we need an OSSL_PARAM key */
|
|
if (ctx->action_type == NONE) {
|
|
/*
|
|
* No action type is an error here. That's a case for a
|
|
* special fixup function.
|
|
*/
|
|
ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED,
|
|
"[action:%d, state:%d]", ctx->action_type, state);
|
|
return 0;
|
|
}
|
|
|
|
if (translation->optype != 0) {
|
|
if ((EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx->pctx)
|
|
&& ctx->pctx->op.sig.algctx == NULL)
|
|
|| (EVP_PKEY_CTX_IS_DERIVE_OP(ctx->pctx)
|
|
&& ctx->pctx->op.kex.algctx == NULL)
|
|
|| (EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx->pctx)
|
|
&& ctx->pctx->op.ciph.algctx == NULL)
|
|
|| (EVP_PKEY_CTX_IS_KEM_OP(ctx->pctx)
|
|
&& ctx->pctx->op.encap.algctx == NULL)
|
|
/*
|
|
* The following may be unnecessary, but we have them
|
|
* for good measure...
|
|
*/
|
|
|| (EVP_PKEY_CTX_IS_GEN_OP(ctx->pctx)
|
|
&& ctx->pctx->op.keymgmt.genctx == NULL)
|
|
|| (EVP_PKEY_CTX_IS_FROMDATA_OP(ctx->pctx)
|
|
&& ctx->pctx->op.keymgmt.genctx == NULL)) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
/* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* OSSL_PARAM_construct_TYPE() works equally well for both SET and GET.
|
|
*/
|
|
switch (translation->param_data_type) {
|
|
case OSSL_PARAM_INTEGER:
|
|
*ctx->params = OSSL_PARAM_construct_int(translation->param_key,
|
|
&ctx->p1);
|
|
break;
|
|
case OSSL_PARAM_UNSIGNED_INTEGER:
|
|
/*
|
|
* BIGNUMs are passed via |p2|. For all ctrl's that just want
|
|
* to pass a simple integer via |p1|, |p2| is expected to be
|
|
* NULL.
|
|
*
|
|
* Note that this allocates a buffer, which the cleanup function
|
|
* must deallocate.
|
|
*/
|
|
if (ctx->p2 != NULL) {
|
|
if (ctx->action_type == SET) {
|
|
ctx->buflen = BN_num_bytes(ctx->p2);
|
|
if ((ctx->allocated_buf
|
|
= OPENSSL_malloc(ctx->buflen)) == NULL)
|
|
return 0;
|
|
if (BN_bn2nativepad(ctx->p2,
|
|
ctx->allocated_buf, ctx->buflen) < 0) {
|
|
OPENSSL_free(ctx->allocated_buf);
|
|
ctx->allocated_buf = NULL;
|
|
return 0;
|
|
}
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_BN(translation->param_key,
|
|
ctx->allocated_buf,
|
|
ctx->buflen);
|
|
} else {
|
|
/*
|
|
* No support for getting a BIGNUM by ctrl, this needs
|
|
* fixup_args function support.
|
|
*/
|
|
ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED,
|
|
"[action:%d, state:%d] trying to get a "
|
|
"BIGNUM via ctrl call",
|
|
ctx->action_type, state);
|
|
return 0;
|
|
}
|
|
} else {
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_uint(translation->param_key,
|
|
(unsigned int *)&ctx->p1);
|
|
}
|
|
break;
|
|
case OSSL_PARAM_UTF8_STRING:
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_utf8_string(translation->param_key,
|
|
ctx->p2, (size_t)ctx->p1);
|
|
break;
|
|
case OSSL_PARAM_UTF8_PTR:
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_utf8_ptr(translation->param_key,
|
|
ctx->p2, (size_t)ctx->p1);
|
|
break;
|
|
case OSSL_PARAM_OCTET_STRING:
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_octet_string(translation->param_key,
|
|
ctx->p2, (size_t)ctx->p1);
|
|
break;
|
|
case OSSL_PARAM_OCTET_PTR:
|
|
*ctx->params =
|
|
OSSL_PARAM_construct_octet_ptr(translation->param_key,
|
|
ctx->p2, (size_t)ctx->p1);
|
|
break;
|
|
}
|
|
break;
|
|
case POST_CTRL_TO_PARAMS:
|
|
/*
|
|
* Because EVP_PKEY_CTX_ctrl() returns the length of certain objects
|
|
* as its return value, we need to ensure that we do it here as well,
|
|
* for the OSSL_PARAM data types where this makes sense.
|
|
*/
|
|
if (ctx->action_type == GET) {
|
|
switch (translation->param_data_type) {
|
|
case OSSL_PARAM_UTF8_STRING:
|
|
case OSSL_PARAM_UTF8_PTR:
|
|
case OSSL_PARAM_OCTET_STRING:
|
|
case OSSL_PARAM_OCTET_PTR:
|
|
ctx->p1 = (int)ctx->params[0].return_size;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* PRE_CTRL_STR_TO_PARAMS and POST_CTRL_STR_TO_PARAMS handle ctrl_str to
|
|
* params translations. PRE_CTRL_TO_PARAMS is responsible for preparing
|
|
* |*params|, and POST_CTRL_TO_PARAMS currently has nothing to do, since
|
|
* there's no support for getting data via ctrl_str calls.
|
|
*/
|
|
case PRE_CTRL_STR_TO_PARAMS:
|
|
{
|
|
/* This is ctrl_str to params translation */
|
|
const char *tmp_ctrl_str = ctx->ctrl_str;
|
|
const char *orig_ctrl_str = ctx->ctrl_str;
|
|
const char *orig_value = ctx->p2;
|
|
const OSSL_PARAM *settable = NULL;
|
|
int exists = 0;
|
|
|
|
/* Only setting is supported here */
|
|
if (ctx->action_type != SET) {
|
|
ERR_raise_data(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED,
|
|
"[action:%d, state:%d] only setting allowed",
|
|
ctx->action_type, state);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If no translation exists, we simply pass the control string
|
|
* unmodified.
|
|
*/
|
|
if (translation != NULL) {
|
|
tmp_ctrl_str = ctx->ctrl_str = translation->param_key;
|
|
|
|
if (ctx->ishex) {
|
|
strcpy(ctx->name_buf, "hex");
|
|
if (OPENSSL_strlcat(ctx->name_buf, tmp_ctrl_str,
|
|
sizeof(ctx->name_buf)) <= 3) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
tmp_ctrl_str = ctx->name_buf;
|
|
}
|
|
}
|
|
|
|
settable = EVP_PKEY_CTX_settable_params(ctx->pctx);
|
|
if (!OSSL_PARAM_allocate_from_text(ctx->params, settable,
|
|
tmp_ctrl_str,
|
|
ctx->p2, strlen(ctx->p2),
|
|
&exists)) {
|
|
if (!exists) {
|
|
ERR_raise_data(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED,
|
|
"[action:%d, state:%d] name=%s, value=%s",
|
|
ctx->action_type, state,
|
|
orig_ctrl_str, orig_value);
|
|
return -2;
|
|
}
|
|
return 0;
|
|
}
|
|
ctx->allocated_buf = ctx->params->data;
|
|
ctx->buflen = ctx->params->data_size;
|
|
}
|
|
break;
|
|
case POST_CTRL_STR_TO_PARAMS:
|
|
/* Nothing to be done */
|
|
break;
|
|
|
|
/*
|
|
* PRE_PARAMS_TO_CTRL and POST_PARAMS_TO_CTRL handle params to ctrl
|
|
* translations. PRE_PARAMS_TO_CTRL is responsible for preparing
|
|
* |p1| and |p2|, and POST_PARAMS_TO_CTRL is responsible for bringing
|
|
* the EVP_PKEY_CTX_ctrl() return value (passed as |p1|) and |p2| back
|
|
* to |*params|.
|
|
*
|
|
* PKEY is treated just like POST_PARAMS_TO_CTRL, making it easy
|
|
* for the related fixup_args functions to just set |p1| and |p2|
|
|
* appropriately and leave it to this section of code to fix up
|
|
* |ctx->params| accordingly.
|
|
*/
|
|
case PKEY:
|
|
case POST_PARAMS_TO_CTRL:
|
|
ret = ctx->p1;
|
|
/* FALLTHRU */
|
|
case PRE_PARAMS_TO_CTRL:
|
|
{
|
|
/* This is params to ctrl translation */
|
|
if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET) {
|
|
/* For the PRE state, only setting needs some work to be done */
|
|
|
|
/* When setting, we populate |p1| and |p2| from |*params| */
|
|
switch (translation->param_data_type) {
|
|
case OSSL_PARAM_INTEGER:
|
|
return OSSL_PARAM_get_int(ctx->params, &ctx->p1);
|
|
case OSSL_PARAM_UNSIGNED_INTEGER:
|
|
if (ctx->p2 != NULL) {
|
|
/* BIGNUM passed down with p2 */
|
|
if (!OSSL_PARAM_get_BN(ctx->params, ctx->p2))
|
|
return 0;
|
|
} else {
|
|
/* Normal C unsigned int passed down */
|
|
if (!OSSL_PARAM_get_uint(ctx->params,
|
|
(unsigned int *)&ctx->p1))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
case OSSL_PARAM_UTF8_STRING:
|
|
return OSSL_PARAM_get_utf8_string(ctx->params,
|
|
ctx->p2, ctx->sz);
|
|
case OSSL_PARAM_OCTET_STRING:
|
|
return OSSL_PARAM_get_octet_string(ctx->params,
|
|
&ctx->p2, ctx->sz,
|
|
(size_t *)&ctx->p1);
|
|
case OSSL_PARAM_OCTET_PTR:
|
|
return OSSL_PARAM_get_octet_ptr(ctx->params,
|
|
ctx->p2, &ctx->sz);
|
|
default:
|
|
ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED,
|
|
"[action:%d, state:%d] "
|
|
"unknown OSSL_PARAM data type %d",
|
|
ctx->action_type, state,
|
|
translation->param_data_type);
|
|
return 0;
|
|
}
|
|
} else if ((state == POST_PARAMS_TO_CTRL || state == PKEY)
|
|
&& ctx->action_type == GET) {
|
|
/* For the POST state, only getting needs some work to be done */
|
|
unsigned int param_data_type = translation->param_data_type;
|
|
size_t size = (size_t)ctx->p1;
|
|
|
|
if (state == PKEY)
|
|
size = ctx->sz;
|
|
if (param_data_type == 0) {
|
|
/* we must have a fixup_args function to work */
|
|
if (!ossl_assert(translation->fixup_args != NULL)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
param_data_type = ctx->params->data_type;
|
|
}
|
|
/* When getting, we populate |*params| from |p1| and |p2| */
|
|
switch (param_data_type) {
|
|
case OSSL_PARAM_INTEGER:
|
|
return OSSL_PARAM_set_int(ctx->params, ctx->p1);
|
|
case OSSL_PARAM_UNSIGNED_INTEGER:
|
|
if (ctx->p2 != NULL) {
|
|
/* BIGNUM passed back */
|
|
return OSSL_PARAM_set_BN(ctx->params, ctx->p2);
|
|
} else {
|
|
/* Normal C unsigned int passed back */
|
|
return OSSL_PARAM_set_uint(ctx->params,
|
|
(unsigned int)ctx->p1);
|
|
}
|
|
return 0;
|
|
case OSSL_PARAM_UTF8_STRING:
|
|
return OSSL_PARAM_set_utf8_string(ctx->params, ctx->p2);
|
|
case OSSL_PARAM_OCTET_STRING:
|
|
return OSSL_PARAM_set_octet_string(ctx->params, ctx->p2,
|
|
size);
|
|
case OSSL_PARAM_OCTET_PTR:
|
|
return OSSL_PARAM_set_octet_ptr(ctx->params, *(void **)ctx->p2,
|
|
size);
|
|
default:
|
|
ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED,
|
|
"[action:%d, state:%d] "
|
|
"unsupported OSSL_PARAM data type %d",
|
|
ctx->action_type, state,
|
|
translation->param_data_type);
|
|
return 0;
|
|
}
|
|
} else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) {
|
|
if (translation->param_data_type == OSSL_PARAM_OCTET_PTR)
|
|
ctx->p2 = &ctx->bufp;
|
|
}
|
|
}
|
|
/* Any other combination is simply pass-through */
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
cleanup_translation_ctx(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
if (ctx->allocated_buf != NULL)
|
|
OPENSSL_free(ctx->allocated_buf);
|
|
ctx->allocated_buf = NULL;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fix_cipher_md fixes up an EVP_CIPHER / EVP_MD to its name on SET,
|
|
* and cipher / md name to EVP_MD on GET.
|
|
*/
|
|
static const char *get_cipher_name(void *cipher)
|
|
{
|
|
return EVP_CIPHER_get0_name(cipher);
|
|
}
|
|
|
|
static const char *get_md_name(void *md)
|
|
{
|
|
return EVP_MD_get0_name(md);
|
|
}
|
|
|
|
static const void *get_cipher_by_name(OSSL_LIB_CTX *libctx, const char *name)
|
|
{
|
|
return evp_get_cipherbyname_ex(libctx, name);
|
|
}
|
|
|
|
static const void *get_md_by_name(OSSL_LIB_CTX *libctx, const char *name)
|
|
{
|
|
return evp_get_digestbyname_ex(libctx, name);
|
|
}
|
|
|
|
static int fix_cipher_md(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
const char *(*get_name)(void *algo),
|
|
const void *(*get_algo_by_name)(OSSL_LIB_CTX *libctx,
|
|
const char *name))
|
|
{
|
|
int ret = 1;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) {
|
|
/*
|
|
* |ctx->p2| contains the address to an EVP_CIPHER or EVP_MD pointer
|
|
* to be filled in. We need to remember it, then make |ctx->p2|
|
|
* point at a buffer to be filled in with the name, and |ctx->p1|
|
|
* with its size. default_fixup_args() will take care of the rest
|
|
* for us.
|
|
*/
|
|
ctx->orig_p2 = ctx->p2;
|
|
ctx->p2 = ctx->name_buf;
|
|
ctx->p1 = sizeof(ctx->name_buf);
|
|
} else if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) {
|
|
/*
|
|
* In different parts of OpenSSL, this ctrl command is used
|
|
* differently. Some calls pass a NID as p1, others pass an
|
|
* EVP_CIPHER pointer as p2...
|
|
*/
|
|
ctx->p2 = (char *)(ctx->p2 == NULL
|
|
? OBJ_nid2sn(ctx->p1)
|
|
: get_name(ctx->p2));
|
|
ctx->p1 = strlen(ctx->p2);
|
|
} else if (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET) {
|
|
ctx->p2 = (ctx->p2 == NULL ? "" : (char *)get_name(ctx->p2));
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET) {
|
|
/*
|
|
* Here's how we reuse |ctx->orig_p2| that was set in the
|
|
* PRE_CTRL_TO_PARAMS state above.
|
|
*/
|
|
*(void **)ctx->orig_p2 =
|
|
(void *)get_algo_by_name(ctx->pctx->libctx, ctx->p2);
|
|
ctx->p1 = 1;
|
|
} else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET) {
|
|
ctx->p2 = (void *)get_algo_by_name(ctx->pctx->libctx, ctx->p2);
|
|
ctx->p1 = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fix_cipher(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
return fix_cipher_md(state, translation, ctx,
|
|
get_cipher_name, get_cipher_by_name);
|
|
}
|
|
|
|
static int fix_md(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
return fix_cipher_md(state, translation, ctx,
|
|
get_md_name, get_md_by_name);
|
|
}
|
|
|
|
static int fix_distid_len(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret = default_fixup_args(state, translation, ctx);
|
|
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
if ((state == POST_CTRL_TO_PARAMS
|
|
|| state == POST_CTRL_STR_TO_PARAMS) && ctx->action_type == GET) {
|
|
*(size_t *)ctx->p2 = ctx->sz;
|
|
ret = 1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
struct kdf_type_map_st {
|
|
int kdf_type_num;
|
|
const char *kdf_type_str;
|
|
};
|
|
|
|
static int fix_kdf_type(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
const struct kdf_type_map_st *kdf_type_map)
|
|
{
|
|
/*
|
|
* The EVP_PKEY_CTRL_DH_KDF_TYPE ctrl command is a bit special, in
|
|
* that it's used both for setting a value, and for getting it, all
|
|
* depending on the value if |p1|; if |p1| is -2, the backend is
|
|
* supposed to place the current kdf type in |p2|, and if not, |p1|
|
|
* is interpreted as the new kdf type.
|
|
*/
|
|
int ret = 0;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS) {
|
|
/*
|
|
* In |translations|, the initial value for |ctx->action_type| must
|
|
* be NONE.
|
|
*/
|
|
if (!ossl_assert(ctx->action_type == NONE))
|
|
return 0;
|
|
|
|
/* The action type depends on the value of *p1 */
|
|
if (ctx->p1 == -2) {
|
|
/*
|
|
* The OSSL_PARAMS getter needs space to store a copy of the kdf
|
|
* type string. We use |ctx->name_buf|, which has enough space
|
|
* allocated.
|
|
*
|
|
* (this wouldn't be needed if the OSSL_xxx_PARAM_KDF_TYPE
|
|
* had the data type OSSL_PARAM_UTF8_PTR)
|
|
*/
|
|
ctx->p2 = ctx->name_buf;
|
|
ctx->p1 = sizeof(ctx->name_buf);
|
|
ctx->action_type = GET;
|
|
} else {
|
|
ctx->action_type = SET;
|
|
}
|
|
}
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET)
|
|
|| (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET)) {
|
|
ret = -2;
|
|
/* Convert KDF type numbers to strings */
|
|
for (; kdf_type_map->kdf_type_str != NULL; kdf_type_map++)
|
|
if (ctx->p1 == kdf_type_map->kdf_type_num) {
|
|
ctx->p2 = (char *)kdf_type_map->kdf_type_str;
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (ret <= 0)
|
|
goto end;
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((state == POST_CTRL_TO_PARAMS && ctx->action_type == GET)
|
|
|| (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET)) {
|
|
ctx->p1 = ret = -1;
|
|
|
|
/* Convert KDF type strings to numbers */
|
|
for (; kdf_type_map->kdf_type_str != NULL; kdf_type_map++)
|
|
if (OPENSSL_strcasecmp(ctx->p2, kdf_type_map->kdf_type_str) == 0) {
|
|
ctx->p1 = kdf_type_map->kdf_type_num;
|
|
ret = 1;
|
|
break;
|
|
}
|
|
ctx->p2 = NULL;
|
|
} else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) {
|
|
ctx->p1 = -2;
|
|
}
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_DH_KDF_TYPE */
|
|
static int fix_dh_kdf_type(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
static const struct kdf_type_map_st kdf_type_map[] = {
|
|
{ EVP_PKEY_DH_KDF_NONE, "" },
|
|
{ EVP_PKEY_DH_KDF_X9_42, OSSL_KDF_NAME_X942KDF_ASN1 },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
return fix_kdf_type(state, translation, ctx, kdf_type_map);
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_EC_KDF_TYPE */
|
|
static int fix_ec_kdf_type(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
static const struct kdf_type_map_st kdf_type_map[] = {
|
|
{ EVP_PKEY_ECDH_KDF_NONE, "" },
|
|
{ EVP_PKEY_ECDH_KDF_X9_63, OSSL_KDF_NAME_X963KDF },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
return fix_kdf_type(state, translation, ctx, kdf_type_map);
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_DH_KDF_OID, EVP_PKEY_CTRL_GET_DH_KDF_OID, ...??? */
|
|
static int fix_oid(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET)
|
|
|| (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET)) {
|
|
/*
|
|
* We're translating from ctrl to params and setting the OID, or
|
|
* we're translating from params to ctrl and getting the OID.
|
|
* Either way, |ctx->p2| points at an ASN1_OBJECT, and needs to have
|
|
* that replaced with the corresponding name.
|
|
* default_fixup_args() will then be able to convert that to the
|
|
* corresponding OSSL_PARAM.
|
|
*/
|
|
OBJ_obj2txt(ctx->name_buf, sizeof(ctx->name_buf), ctx->p2, 0);
|
|
ctx->p2 = (char *)ctx->name_buf;
|
|
ctx->p1 = 0; /* let default_fixup_args() figure out the length */
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET)
|
|
|| (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET)) {
|
|
/*
|
|
* We're translating from ctrl to params and setting the OID name,
|
|
* or we're translating from params to ctrl and getting the OID
|
|
* name. Either way, default_fixup_args() has placed the OID name
|
|
* in |ctx->p2|, all we need to do now is to replace that with the
|
|
* corresponding ASN1_OBJECT.
|
|
*/
|
|
ctx->p2 = (ASN1_OBJECT *)OBJ_txt2obj(ctx->p2, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_DH_NID */
|
|
static int fix_dh_nid(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
/* This is only settable */
|
|
if (ctx->action_type != SET)
|
|
return 0;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS) {
|
|
if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name
|
|
(ossl_ffc_uid_to_dh_named_group(ctx->p1))) == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE);
|
|
return 0;
|
|
}
|
|
ctx->p1 = 0;
|
|
}
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_DH_RFC5114 */
|
|
static int fix_dh_nid5114(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
/* This is only settable */
|
|
if (ctx->action_type != SET)
|
|
return 0;
|
|
|
|
switch (state) {
|
|
case PRE_CTRL_TO_PARAMS:
|
|
if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name
|
|
(ossl_ffc_uid_to_dh_named_group(ctx->p1))) == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE);
|
|
return 0;
|
|
}
|
|
|
|
ctx->p1 = 0;
|
|
break;
|
|
|
|
case PRE_CTRL_STR_TO_PARAMS:
|
|
if (ctx->p2 == NULL)
|
|
return 0;
|
|
if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name
|
|
(ossl_ffc_uid_to_dh_named_group(atoi(ctx->p2)))) == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE);
|
|
return 0;
|
|
}
|
|
|
|
ctx->p1 = 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_DH_PARAMGEN_TYPE */
|
|
static int fix_dh_paramgen_type(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
/* This is only settable */
|
|
if (ctx->action_type != SET)
|
|
return 0;
|
|
|
|
if (state == PRE_CTRL_STR_TO_PARAMS) {
|
|
if ((ctx->p2 = (char *)ossl_dh_gen_type_id2name(atoi(ctx->p2)))
|
|
== NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE);
|
|
return 0;
|
|
}
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_EC_PARAM_ENC */
|
|
static int fix_ec_param_enc(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
/* This is currently only settable */
|
|
if (ctx->action_type != SET)
|
|
return 0;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS) {
|
|
switch (ctx->p1) {
|
|
case OPENSSL_EC_EXPLICIT_CURVE:
|
|
ctx->p2 = OSSL_PKEY_EC_ENCODING_EXPLICIT;
|
|
break;
|
|
case OPENSSL_EC_NAMED_CURVE:
|
|
ctx->p2 = OSSL_PKEY_EC_ENCODING_GROUP;
|
|
break;
|
|
default:
|
|
ret = -2;
|
|
goto end;
|
|
}
|
|
ctx->p1 = 0;
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_PARAMS_TO_CTRL) {
|
|
if (strcmp(ctx->p2, OSSL_PKEY_EC_ENCODING_EXPLICIT) == 0)
|
|
ctx->p1 = OPENSSL_EC_EXPLICIT_CURVE;
|
|
else if (strcmp(ctx->p2, OSSL_PKEY_EC_ENCODING_GROUP) == 0)
|
|
ctx->p1 = OPENSSL_EC_NAMED_CURVE;
|
|
else
|
|
ctx->p1 = ret = -2;
|
|
ctx->p2 = NULL;
|
|
}
|
|
|
|
end:
|
|
if (ret == -2)
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID */
|
|
static int fix_ec_paramgen_curve_nid(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
char *p2 = NULL;
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
/* This is currently only settable */
|
|
if (ctx->action_type != SET)
|
|
return 0;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS) {
|
|
ctx->p2 = (char *)OBJ_nid2sn(ctx->p1);
|
|
ctx->p1 = 0;
|
|
} else if (state == PRE_PARAMS_TO_CTRL) {
|
|
/*
|
|
* We're translating from params to ctrl and setting the curve name.
|
|
* The ctrl function needs it to be a NID, but meanwhile, we need
|
|
* space to get the curve name from the param. |ctx->name_buf| is
|
|
* sufficient for that.
|
|
* The double indirection is necessary for default_fixup_args()'s
|
|
* call of OSSL_PARAM_get_utf8_string() to be done correctly.
|
|
*/
|
|
p2 = ctx->name_buf;
|
|
ctx->p2 = &p2;
|
|
ctx->sz = sizeof(ctx->name_buf);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_PARAMS_TO_CTRL) {
|
|
ctx->p1 = OBJ_sn2nid(p2);
|
|
ctx->p2 = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_EC_ECDH_COFACTOR */
|
|
static int fix_ecdh_cofactor(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
/*
|
|
* The EVP_PKEY_CTRL_EC_ECDH_COFACTOR ctrl command is a bit special, in
|
|
* that it's used both for setting a value, and for getting it, all
|
|
* depending on the value if |ctx->p1|; if |ctx->p1| is -2, the backend is
|
|
* supposed to place the current cofactor mode in |ctx->p2|, and if not,
|
|
* |ctx->p1| is interpreted as the new cofactor mode.
|
|
*/
|
|
int ret = 0;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS) {
|
|
/*
|
|
* The initial value for |ctx->action_type| must be zero.
|
|
* evp_pkey_ctrl_to_params() takes it from the translation item.
|
|
*/
|
|
if (!ossl_assert(ctx->action_type == NONE))
|
|
return 0;
|
|
|
|
/* The action type depends on the value of ctx->p1 */
|
|
if (ctx->p1 == -2)
|
|
ctx->action_type = GET;
|
|
else
|
|
ctx->action_type = SET;
|
|
} else if (state == PRE_CTRL_STR_TO_PARAMS) {
|
|
ctx->action_type = SET;
|
|
} else if (state == PRE_PARAMS_TO_CTRL) {
|
|
/* The initial value for |ctx->action_type| must not be zero. */
|
|
if (!ossl_assert(ctx->action_type != NONE))
|
|
return 0;
|
|
}
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) {
|
|
if (ctx->p1 < -1 || ctx->p1 > 1) {
|
|
/* Uses the same return value of pkey_ec_ctrl() */
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET) {
|
|
if (ctx->p1 < 0 || ctx->p1 > 1) {
|
|
/*
|
|
* The provider should return either 0 or 1, any other value is a
|
|
* provider error.
|
|
*/
|
|
ctx->p1 = ret = -1;
|
|
}
|
|
} else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) {
|
|
ctx->p1 = -2;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_RSA_PADDING, EVP_PKEY_CTRL_GET_RSA_PADDING */
|
|
static int fix_rsa_padding_mode(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
static const OSSL_ITEM str_value_map[] = {
|
|
{ RSA_PKCS1_PADDING, "pkcs1" },
|
|
{ RSA_NO_PADDING, "none" },
|
|
{ RSA_PKCS1_OAEP_PADDING, "oaep" },
|
|
{ RSA_PKCS1_OAEP_PADDING, "oeap" },
|
|
{ RSA_X931_PADDING, "x931" },
|
|
{ RSA_PKCS1_PSS_PADDING, "pss" },
|
|
/* Special case, will pass directly as an integer */
|
|
{ RSA_PKCS1_WITH_TLS_PADDING, NULL }
|
|
};
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) {
|
|
/*
|
|
* EVP_PKEY_CTRL_GET_RSA_PADDING returns the padding mode in the
|
|
* weirdest way for a ctrl. Instead of doing like all other ctrls
|
|
* that return a simple, i.e. just have that as a return value,
|
|
* this particular ctrl treats p2 as the address for the int to be
|
|
* returned. We must therefore remember |ctx->p2|, then make
|
|
* |ctx->p2| point at a buffer to be filled in with the name, and
|
|
* |ctx->p1| with its size. default_fixup_args() will take care
|
|
* of the rest for us, along with the POST_CTRL_TO_PARAMS && GET
|
|
* code section further down.
|
|
*/
|
|
ctx->orig_p2 = ctx->p2;
|
|
ctx->p2 = ctx->name_buf;
|
|
ctx->p1 = sizeof(ctx->name_buf);
|
|
} else if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) {
|
|
/*
|
|
* Ideally, we should use utf8 strings for the diverse padding modes.
|
|
* We only came here because someone called EVP_PKEY_CTX_ctrl(),
|
|
* though, and since that can reasonably be seen as legacy code
|
|
* that uses the diverse RSA macros for the padding mode, and we
|
|
* know that at least our providers can handle the numeric modes,
|
|
* we take the cheap route for now.
|
|
*
|
|
* The other solution would be to match |ctx->p1| against entries
|
|
* in str_value_map and pass the corresponding string. However,
|
|
* since we don't have a string for RSA_PKCS1_WITH_TLS_PADDING,
|
|
* we have to do this same hack at least for that one.
|
|
*
|
|
* Since the "official" data type for the RSA padding mode is utf8
|
|
* string, we cannot count on default_fixup_args(). Instead, we
|
|
* build the OSSL_PARAM item ourselves and return immediately.
|
|
*/
|
|
ctx->params[0] = OSSL_PARAM_construct_int(translation->param_key,
|
|
&ctx->p1);
|
|
return 1;
|
|
} else if (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET) {
|
|
size_t i;
|
|
|
|
/*
|
|
* The EVP_PKEY_CTX_get_params() caller may have asked for a utf8
|
|
* string, or may have asked for an integer of some sort. If they
|
|
* ask for an integer, we respond directly. If not, we translate
|
|
* the response from the ctrl function into a string.
|
|
*/
|
|
switch (ctx->params->data_type) {
|
|
case OSSL_PARAM_INTEGER:
|
|
return OSSL_PARAM_get_int(ctx->params, &ctx->p1);
|
|
case OSSL_PARAM_UNSIGNED_INTEGER:
|
|
return OSSL_PARAM_get_uint(ctx->params, (unsigned int *)&ctx->p1);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (ctx->p1 == (int)str_value_map[i].id)
|
|
break;
|
|
}
|
|
if (i == OSSL_NELEM(str_value_map)) {
|
|
ERR_raise_data(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE,
|
|
"[action:%d, state:%d] padding number %d",
|
|
ctx->action_type, state, ctx->p1);
|
|
return -2;
|
|
}
|
|
/*
|
|
* If we don't have a string, we can't do anything. The caller
|
|
* should have asked for a number...
|
|
*/
|
|
if (str_value_map[i].ptr == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return -2;
|
|
}
|
|
ctx->p2 = str_value_map[i].ptr;
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL)
|
|
|| (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (strcmp(ctx->p2, str_value_map[i].ptr) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == OSSL_NELEM(str_value_map)) {
|
|
ERR_raise_data(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE,
|
|
"[action:%d, state:%d] padding name %s",
|
|
ctx->action_type, state, ctx->p1);
|
|
ctx->p1 = ret = -2;
|
|
} else if (state == POST_CTRL_TO_PARAMS) {
|
|
/* EVP_PKEY_CTRL_GET_RSA_PADDING weirdness explained further up */
|
|
*(int *)ctx->orig_p2 = str_value_map[i].id;
|
|
} else {
|
|
ctx->p1 = str_value_map[i].id;
|
|
}
|
|
ctx->p2 = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_RSA_PSS_SALTLEN, EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN */
|
|
static int fix_rsa_pss_saltlen(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
static const OSSL_ITEM str_value_map[] = {
|
|
{ (unsigned int)RSA_PSS_SALTLEN_DIGEST, "digest" },
|
|
{ (unsigned int)RSA_PSS_SALTLEN_MAX, "max" },
|
|
{ (unsigned int)RSA_PSS_SALTLEN_AUTO, "auto" }
|
|
};
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) {
|
|
/*
|
|
* EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN returns the saltlen by filling
|
|
* in the int pointed at by p2. This is potentially as weird as
|
|
* the way EVP_PKEY_CTRL_GET_RSA_PADDING works, except that saltlen
|
|
* might be a negative value, so it wouldn't work as a legitimate
|
|
* return value.
|
|
* In any case, we must therefore remember |ctx->p2|, then make
|
|
* |ctx->p2| point at a buffer to be filled in with the name, and
|
|
* |ctx->p1| with its size. default_fixup_args() will take care
|
|
* of the rest for us, along with the POST_CTRL_TO_PARAMS && GET
|
|
* code section further down.
|
|
*/
|
|
ctx->orig_p2 = ctx->p2;
|
|
ctx->p2 = ctx->name_buf;
|
|
ctx->p1 = sizeof(ctx->name_buf);
|
|
} else if ((ctx->action_type == SET && state == PRE_CTRL_TO_PARAMS)
|
|
|| (ctx->action_type == GET && state == POST_PARAMS_TO_CTRL)) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (ctx->p1 == (int)str_value_map[i].id)
|
|
break;
|
|
}
|
|
if (i == OSSL_NELEM(str_value_map)) {
|
|
BIO_snprintf(ctx->name_buf, sizeof(ctx->name_buf), "%d", ctx->p1);
|
|
} else {
|
|
/* This won't truncate but it will quiet static analysers */
|
|
strncpy(ctx->name_buf, str_value_map[i].ptr, sizeof(ctx->name_buf) - 1);
|
|
ctx->name_buf[sizeof(ctx->name_buf) - 1] = '\0';
|
|
}
|
|
ctx->p2 = ctx->name_buf;
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL)
|
|
|| (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) {
|
|
size_t i;
|
|
int val;
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (strcmp(ctx->p2, str_value_map[i].ptr) == 0)
|
|
break;
|
|
}
|
|
|
|
val = i == OSSL_NELEM(str_value_map) ? atoi(ctx->p2)
|
|
: (int)str_value_map[i].id;
|
|
if (state == POST_CTRL_TO_PARAMS) {
|
|
/*
|
|
* EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN weirdness explained further
|
|
* up
|
|
*/
|
|
*(int *)ctx->orig_p2 = val;
|
|
} else {
|
|
ctx->p1 = val;
|
|
}
|
|
ctx->p2 = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* EVP_PKEY_CTRL_HKDF_MODE */
|
|
static int fix_hkdf_mode(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
static const OSSL_ITEM str_value_map[] = {
|
|
{ EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND, "EXTRACT_AND_EXPAND" },
|
|
{ EVP_KDF_HKDF_MODE_EXTRACT_ONLY, "EXTRACT_ONLY" },
|
|
{ EVP_KDF_HKDF_MODE_EXPAND_ONLY, "EXPAND_ONLY" }
|
|
};
|
|
int ret;
|
|
|
|
if ((ret = default_check(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((ctx->action_type == SET && state == PRE_CTRL_TO_PARAMS)
|
|
|| (ctx->action_type == GET && state == POST_PARAMS_TO_CTRL)) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (ctx->p1 == (int)str_value_map[i].id)
|
|
break;
|
|
}
|
|
if (i == OSSL_NELEM(str_value_map))
|
|
return 0;
|
|
ctx->p2 = str_value_map[i].ptr;
|
|
ctx->p1 = strlen(ctx->p2);
|
|
}
|
|
|
|
if ((ret = default_fixup_args(state, translation, ctx)) <= 0)
|
|
return ret;
|
|
|
|
if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL)
|
|
|| (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(str_value_map); i++) {
|
|
if (strcmp(ctx->p2, str_value_map[i].ptr) == 0)
|
|
break;
|
|
}
|
|
if (i == OSSL_NELEM(str_value_map))
|
|
return 0;
|
|
if (state == POST_CTRL_TO_PARAMS)
|
|
ret = str_value_map[i].id;
|
|
else
|
|
ctx->p1 = str_value_map[i].id;
|
|
ctx->p2 = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* Payload getters
|
|
* ===============
|
|
*
|
|
* These all get the data they want, then call default_fixup_args() as
|
|
* a post-ctrl GET fixup. They all get NULL ctx, ctrl_cmd, ctrl_str,
|
|
* p1, sz
|
|
*/
|
|
|
|
/* Pilfering DH, DSA and EC_KEY */
|
|
static int get_payload_group_name(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
|
|
ctx->p2 = NULL;
|
|
switch (EVP_PKEY_get_base_id(pkey)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DH:
|
|
{
|
|
const DH *dh = EVP_PKEY_get0_DH(pkey);
|
|
int uid = DH_get_nid(dh);
|
|
|
|
if (uid != NID_undef) {
|
|
const DH_NAMED_GROUP *dh_group =
|
|
ossl_ffc_uid_to_dh_named_group(uid);
|
|
|
|
ctx->p2 = (char *)ossl_ffc_named_group_get_name(dh_group);
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
case EVP_PKEY_EC:
|
|
{
|
|
const EC_GROUP *grp =
|
|
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey));
|
|
int nid = NID_undef;
|
|
|
|
if (grp != NULL)
|
|
nid = EC_GROUP_get_curve_name(grp);
|
|
if (nid != NID_undef)
|
|
ctx->p2 = (char *)OSSL_EC_curve_nid2name(nid);
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Quietly ignoring unknown groups matches the behaviour on the provider
|
|
* side.
|
|
*/
|
|
if (ctx->p2 == NULL)
|
|
return 1;
|
|
|
|
ctx->p1 = strlen(ctx->p2);
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
static int get_payload_private_key(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
|
|
ctx->p2 = NULL;
|
|
if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER)
|
|
return 0;
|
|
|
|
switch (EVP_PKEY_get_base_id(pkey)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DH:
|
|
{
|
|
const DH *dh = EVP_PKEY_get0_DH(pkey);
|
|
|
|
ctx->p2 = (BIGNUM *)DH_get0_priv_key(dh);
|
|
}
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
case EVP_PKEY_EC:
|
|
{
|
|
const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
|
|
|
|
ctx->p2 = (BIGNUM *)EC_KEY_get0_private_key(ec);
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
static int get_payload_public_key(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
unsigned char *buf = NULL;
|
|
int ret;
|
|
|
|
ctx->p2 = NULL;
|
|
switch (EVP_PKEY_get_base_id(pkey)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DHX:
|
|
case EVP_PKEY_DH:
|
|
switch (ctx->params->data_type) {
|
|
case OSSL_PARAM_OCTET_STRING:
|
|
ctx->sz = ossl_dh_key2buf(EVP_PKEY_get0_DH(pkey), &buf, 0, 1);
|
|
ctx->p2 = buf;
|
|
break;
|
|
case OSSL_PARAM_UNSIGNED_INTEGER:
|
|
ctx->p2 = (void *)DH_get0_pub_key(EVP_PKEY_get0_DH(pkey));
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
case EVP_PKEY_DSA:
|
|
if (ctx->params->data_type == OSSL_PARAM_UNSIGNED_INTEGER) {
|
|
ctx->p2 = (void *)DSA_get0_pub_key(EVP_PKEY_get0_DSA(pkey));
|
|
break;
|
|
}
|
|
return 0;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
case EVP_PKEY_EC:
|
|
if (ctx->params->data_type == OSSL_PARAM_OCTET_STRING) {
|
|
const EC_KEY *eckey = EVP_PKEY_get0_EC_KEY(pkey);
|
|
BN_CTX *bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(eckey));
|
|
const EC_GROUP *ecg = EC_KEY_get0_group(eckey);
|
|
const EC_POINT *point = EC_KEY_get0_public_key(eckey);
|
|
|
|
if (bnctx == NULL)
|
|
return 0;
|
|
ctx->sz = EC_POINT_point2buf(ecg, point,
|
|
POINT_CONVERSION_COMPRESSED,
|
|
&buf, bnctx);
|
|
ctx->p2 = buf;
|
|
BN_CTX_free(bnctx);
|
|
break;
|
|
}
|
|
return 0;
|
|
#endif
|
|
default:
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
ret = default_fixup_args(state, translation, ctx);
|
|
OPENSSL_free(buf);
|
|
return ret;
|
|
}
|
|
|
|
static int get_payload_public_key_ec(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
#ifndef OPENSSL_NO_EC
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
const EC_KEY *eckey = EVP_PKEY_get0_EC_KEY(pkey);
|
|
BN_CTX *bnctx;
|
|
const EC_POINT *point;
|
|
const EC_GROUP *ecg;
|
|
BIGNUM *x = NULL;
|
|
BIGNUM *y = NULL;
|
|
int ret = 0;
|
|
|
|
ctx->p2 = NULL;
|
|
|
|
if (eckey == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(eckey));
|
|
if (bnctx == NULL)
|
|
return 0;
|
|
|
|
point = EC_KEY_get0_public_key(eckey);
|
|
ecg = EC_KEY_get0_group(eckey);
|
|
|
|
/* Caller should have requested a BN, fail if not */
|
|
if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER)
|
|
goto out;
|
|
|
|
x = BN_CTX_get(bnctx);
|
|
y = BN_CTX_get(bnctx);
|
|
if (y == NULL)
|
|
goto out;
|
|
|
|
if (!EC_POINT_get_affine_coordinates(ecg, point, x, y, bnctx))
|
|
goto out;
|
|
|
|
if (strncmp(ctx->params->key, OSSL_PKEY_PARAM_EC_PUB_X, 2) == 0)
|
|
ctx->p2 = x;
|
|
else if (strncmp(ctx->params->key, OSSL_PKEY_PARAM_EC_PUB_Y, 2) == 0)
|
|
ctx->p2 = y;
|
|
else
|
|
goto out;
|
|
|
|
/* Return the payload */
|
|
ret = default_fixup_args(state, translation, ctx);
|
|
out:
|
|
BN_CTX_free(bnctx);
|
|
return ret;
|
|
#else
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static int get_payload_bn(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx, const BIGNUM *bn)
|
|
{
|
|
if (bn == NULL)
|
|
return 0;
|
|
if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER)
|
|
return 0;
|
|
ctx->p2 = (BIGNUM *)bn;
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
static int get_dh_dsa_payload_p(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
|
|
switch (EVP_PKEY_get_base_id(pkey)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DH:
|
|
bn = DH_get0_p(EVP_PKEY_get0_DH(pkey));
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
case EVP_PKEY_DSA:
|
|
bn = DSA_get0_p(EVP_PKEY_get0_DSA(pkey));
|
|
break;
|
|
#endif
|
|
default:
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_dh_dsa_payload_q(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
|
|
switch (EVP_PKEY_get_base_id(ctx->p2)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DH:
|
|
bn = DH_get0_q(EVP_PKEY_get0_DH(ctx->p2));
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
case EVP_PKEY_DSA:
|
|
bn = DSA_get0_q(EVP_PKEY_get0_DSA(ctx->p2));
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_dh_dsa_payload_g(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
|
|
switch (EVP_PKEY_get_base_id(ctx->p2)) {
|
|
#ifndef OPENSSL_NO_DH
|
|
case EVP_PKEY_DH:
|
|
bn = DH_get0_g(EVP_PKEY_get0_DH(ctx->p2));
|
|
break;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
case EVP_PKEY_DSA:
|
|
bn = DSA_get0_g(EVP_PKEY_get0_DSA(ctx->p2));
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_payload_int(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
const int val)
|
|
{
|
|
if (ctx->params->data_type != OSSL_PARAM_INTEGER)
|
|
return 0;
|
|
ctx->p1 = val;
|
|
ctx->p2 = NULL;
|
|
|
|
return default_fixup_args(state, translation, ctx);
|
|
}
|
|
|
|
static int get_ec_decoded_from_explicit_params(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
int val = 0;
|
|
EVP_PKEY *pkey = ctx->p2;
|
|
|
|
switch (EVP_PKEY_base_id(pkey)) {
|
|
#ifndef OPENSSL_NO_EC
|
|
case EVP_PKEY_EC:
|
|
val = EC_KEY_decoded_from_explicit_params(EVP_PKEY_get0_EC_KEY(pkey));
|
|
if (val < 0) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY);
|
|
return 0;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
return get_payload_int(state, translation, ctx, val);
|
|
}
|
|
|
|
static int get_rsa_payload_n(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS)
|
|
return 0;
|
|
bn = RSA_get0_n(EVP_PKEY_get0_RSA(ctx->p2));
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_rsa_payload_e(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS)
|
|
return 0;
|
|
bn = RSA_get0_e(EVP_PKEY_get0_RSA(ctx->p2));
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_rsa_payload_d(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const BIGNUM *bn = NULL;
|
|
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS)
|
|
return 0;
|
|
bn = RSA_get0_d(EVP_PKEY_get0_RSA(ctx->p2));
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_rsa_payload_factor(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
size_t factornum)
|
|
{
|
|
const RSA *r = EVP_PKEY_get0_RSA(ctx->p2);
|
|
const BIGNUM *bn = NULL;
|
|
|
|
switch (factornum) {
|
|
case 0:
|
|
bn = RSA_get0_p(r);
|
|
break;
|
|
case 1:
|
|
bn = RSA_get0_q(r);
|
|
break;
|
|
default:
|
|
{
|
|
size_t pnum = RSA_get_multi_prime_extra_count(r);
|
|
const BIGNUM *factors[10];
|
|
|
|
if (factornum - 2 < pnum
|
|
&& RSA_get0_multi_prime_factors(r, factors))
|
|
bn = factors[factornum - 2];
|
|
}
|
|
break;
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_rsa_payload_exponent(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
size_t exponentnum)
|
|
{
|
|
const RSA *r = EVP_PKEY_get0_RSA(ctx->p2);
|
|
const BIGNUM *bn = NULL;
|
|
|
|
switch (exponentnum) {
|
|
case 0:
|
|
bn = RSA_get0_dmp1(r);
|
|
break;
|
|
case 1:
|
|
bn = RSA_get0_dmq1(r);
|
|
break;
|
|
default:
|
|
{
|
|
size_t pnum = RSA_get_multi_prime_extra_count(r);
|
|
const BIGNUM *exps[10], *coeffs[10];
|
|
|
|
if (exponentnum - 2 < pnum
|
|
&& RSA_get0_multi_prime_crt_params(r, exps, coeffs))
|
|
bn = exps[exponentnum - 2];
|
|
}
|
|
break;
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
static int get_rsa_payload_coefficient(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx,
|
|
size_t coefficientnum)
|
|
{
|
|
const RSA *r = EVP_PKEY_get0_RSA(ctx->p2);
|
|
const BIGNUM *bn = NULL;
|
|
|
|
switch (coefficientnum) {
|
|
case 0:
|
|
bn = RSA_get0_iqmp(r);
|
|
break;
|
|
default:
|
|
{
|
|
size_t pnum = RSA_get_multi_prime_extra_count(r);
|
|
const BIGNUM *exps[10], *coeffs[10];
|
|
|
|
if (coefficientnum - 1 < pnum
|
|
&& RSA_get0_multi_prime_crt_params(r, exps, coeffs))
|
|
bn = coeffs[coefficientnum - 1];
|
|
}
|
|
break;
|
|
}
|
|
|
|
return get_payload_bn(state, translation, ctx, bn);
|
|
}
|
|
|
|
#define IMPL_GET_RSA_PAYLOAD_FACTOR(n) \
|
|
static int \
|
|
get_rsa_payload_f##n(enum state state, \
|
|
const struct translation_st *translation, \
|
|
struct translation_ctx_st *ctx) \
|
|
{ \
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA \
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS) \
|
|
return 0; \
|
|
return get_rsa_payload_factor(state, translation, ctx, n - 1); \
|
|
}
|
|
|
|
#define IMPL_GET_RSA_PAYLOAD_EXPONENT(n) \
|
|
static int \
|
|
get_rsa_payload_e##n(enum state state, \
|
|
const struct translation_st *translation, \
|
|
struct translation_ctx_st *ctx) \
|
|
{ \
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA \
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS) \
|
|
return 0; \
|
|
return get_rsa_payload_exponent(state, translation, ctx, \
|
|
n - 1); \
|
|
}
|
|
|
|
#define IMPL_GET_RSA_PAYLOAD_COEFFICIENT(n) \
|
|
static int \
|
|
get_rsa_payload_c##n(enum state state, \
|
|
const struct translation_st *translation, \
|
|
struct translation_ctx_st *ctx) \
|
|
{ \
|
|
if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA \
|
|
&& EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA_PSS) \
|
|
return 0; \
|
|
return get_rsa_payload_coefficient(state, translation, ctx, \
|
|
n - 1); \
|
|
}
|
|
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(1)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(2)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(3)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(4)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(5)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(6)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(7)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(8)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(9)
|
|
IMPL_GET_RSA_PAYLOAD_FACTOR(10)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(1)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(2)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(3)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(4)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(5)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(6)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(7)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(8)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(9)
|
|
IMPL_GET_RSA_PAYLOAD_EXPONENT(10)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(1)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(2)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(3)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(4)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(5)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(6)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(7)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(8)
|
|
IMPL_GET_RSA_PAYLOAD_COEFFICIENT(9)
|
|
|
|
static int fix_group_ecx(enum state state,
|
|
const struct translation_st *translation,
|
|
struct translation_ctx_st *ctx)
|
|
{
|
|
const char *value = NULL;
|
|
|
|
switch (state) {
|
|
case PRE_PARAMS_TO_CTRL:
|
|
if (!EVP_PKEY_CTX_IS_GEN_OP(ctx->pctx))
|
|
return 0;
|
|
ctx->action_type = NONE;
|
|
return 1;
|
|
case POST_PARAMS_TO_CTRL:
|
|
if (OSSL_PARAM_get_utf8_string_ptr(ctx->params, &value) == 0 ||
|
|
OPENSSL_strcasecmp(ctx->pctx->keytype, value) != 0) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
ctx->p1 = 0;
|
|
return 0;
|
|
}
|
|
ctx->p1 = 1;
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* The translation table itself
|
|
* ============================
|
|
*/
|
|
|
|
static const struct translation_st evp_pkey_ctx_translations[] = {
|
|
/*
|
|
* DistID: we pass it to the backend as an octet string,
|
|
* but get it back as a pointer to an octet string.
|
|
*
|
|
* Note that the EVP_PKEY_CTRL_GET1_ID_LEN is purely for legacy purposes
|
|
* that has no separate counterpart in OSSL_PARAM terms, since we get
|
|
* the length of the DistID automatically when getting the DistID itself.
|
|
*/
|
|
{ SET, -1, -1, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_SET1_ID, "distid", "hexdistid",
|
|
OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ GET, -1, -1, -1,
|
|
EVP_PKEY_CTRL_GET1_ID, "distid", "hexdistid",
|
|
OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_PTR, NULL },
|
|
{ GET, -1, -1, -1,
|
|
EVP_PKEY_CTRL_GET1_ID_LEN, NULL, NULL,
|
|
OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_PTR, fix_distid_len },
|
|
|
|
/*-
|
|
* DH & DHX
|
|
* ========
|
|
*/
|
|
|
|
/*
|
|
* EVP_PKEY_CTRL_DH_KDF_TYPE is used both for setting and getting. The
|
|
* fixup function has to handle this...
|
|
*/
|
|
{ NONE, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_KDF_TYPE, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING,
|
|
fix_dh_kdf_type },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_KDF_MD, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_DH_KDF_MD, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_DH_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_DH_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_KDF_OID, NULL, NULL,
|
|
OSSL_KDF_PARAM_CEK_ALG, OSSL_PARAM_UTF8_STRING, fix_oid },
|
|
{ GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_DH_KDF_OID, NULL, NULL,
|
|
OSSL_KDF_PARAM_CEK_ALG, OSSL_PARAM_UTF8_STRING, fix_oid },
|
|
|
|
/* DHX Keygen Parameters that are shared with DH */
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_TYPE, "dh_paramgen_type", NULL,
|
|
OSSL_PKEY_PARAM_FFC_TYPE, OSSL_PARAM_UTF8_STRING, fix_dh_paramgen_type },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN, "dh_paramgen_prime_len", NULL,
|
|
OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_DH_NID, "dh_param", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, NULL },
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_DH_RFC5114, "dh_rfc5114", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid5114 },
|
|
|
|
/* DH Keygen Parameters that are shared with DHX */
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_TYPE, "dh_paramgen_type", NULL,
|
|
OSSL_PKEY_PARAM_FFC_TYPE, OSSL_PARAM_UTF8_STRING, fix_dh_paramgen_type },
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN, "dh_paramgen_prime_len", NULL,
|
|
OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_DH_NID, "dh_param", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid },
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_DH_RFC5114, "dh_rfc5114", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid5114 },
|
|
|
|
/* DH specific Keygen Parameters */
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR, "dh_paramgen_generator", NULL,
|
|
OSSL_PKEY_PARAM_DH_GENERATOR, OSSL_PARAM_INTEGER, NULL },
|
|
|
|
/* DHX specific Keygen Parameters */
|
|
{ SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DH_PARAMGEN_SUBPRIME_LEN, "dh_paramgen_subprime_len", NULL,
|
|
OSSL_PKEY_PARAM_FFC_QBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
|
|
{ SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_DH_PAD, "dh_pad", NULL,
|
|
OSSL_EXCHANGE_PARAM_PAD, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
|
|
/*-
|
|
* DSA
|
|
* ===
|
|
*/
|
|
{ SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DSA_PARAMGEN_BITS, "dsa_paramgen_bits", NULL,
|
|
OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, "dsa_paramgen_q_bits", NULL,
|
|
OSSL_PKEY_PARAM_FFC_QBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN,
|
|
EVP_PKEY_CTRL_DSA_PARAMGEN_MD, "dsa_paramgen_md", NULL,
|
|
OSSL_PKEY_PARAM_FFC_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
|
|
/*-
|
|
* EC
|
|
* ==
|
|
*/
|
|
{ SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_EC_PARAM_ENC, "ec_param_enc", NULL,
|
|
OSSL_PKEY_PARAM_EC_ENCODING, OSSL_PARAM_UTF8_STRING, fix_ec_param_enc },
|
|
{ SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID, "ec_paramgen_curve", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING,
|
|
fix_ec_paramgen_curve_nid },
|
|
/*
|
|
* EVP_PKEY_CTRL_EC_ECDH_COFACTOR and EVP_PKEY_CTRL_EC_KDF_TYPE are used
|
|
* both for setting and getting. The fixup function has to handle this...
|
|
*/
|
|
{ NONE, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_ECDH_COFACTOR, "ecdh_cofactor_mode", NULL,
|
|
OSSL_EXCHANGE_PARAM_EC_ECDH_COFACTOR_MODE, OSSL_PARAM_INTEGER,
|
|
fix_ecdh_cofactor },
|
|
{ NONE, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_TYPE, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING, fix_ec_kdf_type },
|
|
{ SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_MD, "ecdh_kdf_md", NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_MD, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL },
|
|
|
|
/*-
|
|
* SM2
|
|
* ==
|
|
*/
|
|
{ SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_EC_PARAM_ENC, "ec_param_enc", NULL,
|
|
OSSL_PKEY_PARAM_EC_ENCODING, OSSL_PARAM_UTF8_STRING, fix_ec_param_enc },
|
|
{ SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID, "ec_paramgen_curve", NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING,
|
|
fix_ec_paramgen_curve_nid },
|
|
/*
|
|
* EVP_PKEY_CTRL_EC_ECDH_COFACTOR and EVP_PKEY_CTRL_EC_KDF_TYPE are used
|
|
* both for setting and getting. The fixup function has to handle this...
|
|
*/
|
|
{ NONE, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_ECDH_COFACTOR, "ecdh_cofactor_mode", NULL,
|
|
OSSL_EXCHANGE_PARAM_EC_ECDH_COFACTOR_MODE, OSSL_PARAM_INTEGER,
|
|
fix_ecdh_cofactor },
|
|
{ NONE, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_TYPE, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING, fix_ec_kdf_type },
|
|
{ SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_MD, "ecdh_kdf_md", NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_MD, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_EC_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_GET_EC_KDF_UKM, NULL, NULL,
|
|
OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL },
|
|
/*-
|
|
* RSA
|
|
* ===
|
|
*/
|
|
|
|
/*
|
|
* RSA padding modes are numeric with ctrls, strings with ctrl_strs,
|
|
* and can be both with OSSL_PARAM. We standardise on strings here,
|
|
* fix_rsa_padding_mode() does the work when the caller has a different
|
|
* idea.
|
|
*/
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS,
|
|
EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_RSA_PADDING, "rsa_padding_mode", NULL,
|
|
OSSL_PKEY_PARAM_PAD_MODE, OSSL_PARAM_UTF8_STRING, fix_rsa_padding_mode },
|
|
{ GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS,
|
|
EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_GET_RSA_PADDING, NULL, NULL,
|
|
OSSL_PKEY_PARAM_PAD_MODE, OSSL_PARAM_UTF8_STRING, fix_rsa_padding_mode },
|
|
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS,
|
|
EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_RSA_MGF1_MD, "rsa_mgf1_md", NULL,
|
|
OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS,
|
|
EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_GET_RSA_MGF1_MD, NULL, NULL,
|
|
OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
|
|
/*
|
|
* RSA-PSS saltlen is essentially numeric, but certain values can be
|
|
* expressed as keywords (strings) with ctrl_str. The corresponding
|
|
* OSSL_PARAM allows both forms.
|
|
* fix_rsa_pss_saltlen() takes care of the distinction.
|
|
*/
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, "rsa_pss_saltlen", NULL,
|
|
OSSL_PKEY_PARAM_RSA_PSS_SALTLEN, OSSL_PARAM_UTF8_STRING,
|
|
fix_rsa_pss_saltlen },
|
|
{ GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_PSS_SALTLEN, OSSL_PARAM_UTF8_STRING,
|
|
fix_rsa_pss_saltlen },
|
|
|
|
{ SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_OAEP_MD, "rsa_oaep_md", NULL,
|
|
OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_GET_RSA_OAEP_MD, NULL, NULL,
|
|
OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
/*
|
|
* The "rsa_oaep_label" ctrl_str expects the value to always be hex.
|
|
* This is accommodated by default_fixup_args() above, which mimics that
|
|
* expectation for any translation item where |ctrl_str| is NULL and
|
|
* |ctrl_hexstr| is non-NULL.
|
|
*/
|
|
{ SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_OAEP_LABEL, NULL, "rsa_oaep_label",
|
|
OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ GET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, NULL, NULL,
|
|
OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, OSSL_PARAM_OCTET_PTR, NULL },
|
|
|
|
{ SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_IMPLICIT_REJECTION, NULL,
|
|
"rsa_pkcs1_implicit_rejection",
|
|
OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
NULL },
|
|
|
|
{ SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN,
|
|
EVP_PKEY_CTRL_MD, "rsa_pss_keygen_md", NULL,
|
|
OSSL_ALG_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN,
|
|
EVP_PKEY_CTRL_RSA_MGF1_MD, "rsa_pss_keygen_mgf1_md", NULL,
|
|
OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN,
|
|
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, "rsa_pss_keygen_saltlen", NULL,
|
|
OSSL_SIGNATURE_PARAM_PSS_SALTLEN, OSSL_PARAM_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_RSA_KEYGEN_BITS, "rsa_keygen_bits", NULL,
|
|
OSSL_PKEY_PARAM_RSA_BITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, "rsa_keygen_pubexp", NULL,
|
|
OSSL_PKEY_PARAM_RSA_E, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_RSA_KEYGEN_PRIMES, "rsa_keygen_primes", NULL,
|
|
OSSL_PKEY_PARAM_RSA_PRIMES, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
|
|
/*-
|
|
* SipHash
|
|
* ======
|
|
*/
|
|
{ SET, -1, -1, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_SET_DIGEST_SIZE, "digestsize", NULL,
|
|
OSSL_MAC_PARAM_SIZE, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
|
|
/*-
|
|
* TLS1-PRF
|
|
* ========
|
|
*/
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_TLS_MD, "md", NULL,
|
|
OSSL_KDF_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_TLS_SECRET, "secret", "hexsecret",
|
|
OSSL_KDF_PARAM_SECRET, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_TLS_SEED, "seed", "hexseed",
|
|
OSSL_KDF_PARAM_SEED, OSSL_PARAM_OCTET_STRING, NULL },
|
|
|
|
/*-
|
|
* HKDF
|
|
* ====
|
|
*/
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_HKDF_MD, "md", NULL,
|
|
OSSL_KDF_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_HKDF_SALT, "salt", "hexsalt",
|
|
OSSL_KDF_PARAM_SALT, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_HKDF_KEY, "key", "hexkey",
|
|
OSSL_KDF_PARAM_KEY, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_HKDF_INFO, "info", "hexinfo",
|
|
OSSL_KDF_PARAM_INFO, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_HKDF_MODE, "mode", NULL,
|
|
OSSL_KDF_PARAM_MODE, OSSL_PARAM_INTEGER, fix_hkdf_mode },
|
|
|
|
/*-
|
|
* Scrypt
|
|
* ======
|
|
*/
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_PASS, "pass", "hexpass",
|
|
OSSL_KDF_PARAM_PASSWORD, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_SCRYPT_SALT, "salt", "hexsalt",
|
|
OSSL_KDF_PARAM_SALT, OSSL_PARAM_OCTET_STRING, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_SCRYPT_N, "N", NULL,
|
|
OSSL_KDF_PARAM_SCRYPT_N, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_SCRYPT_R, "r", NULL,
|
|
OSSL_KDF_PARAM_SCRYPT_R, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_SCRYPT_P, "p", NULL,
|
|
OSSL_KDF_PARAM_SCRYPT_P, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
{ SET, -1, -1, EVP_PKEY_OP_DERIVE,
|
|
EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, "maxmem_bytes", NULL,
|
|
OSSL_KDF_PARAM_SCRYPT_MAXMEM, OSSL_PARAM_UNSIGNED_INTEGER, NULL },
|
|
|
|
{ SET, -1, -1, EVP_PKEY_OP_KEYGEN | EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_CIPHER, NULL, NULL,
|
|
OSSL_PKEY_PARAM_CIPHER, OSSL_PARAM_UTF8_STRING, fix_cipher },
|
|
{ SET, -1, -1, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_SET_MAC_KEY, "key", "hexkey",
|
|
OSSL_PKEY_PARAM_PRIV_KEY, OSSL_PARAM_OCTET_STRING, NULL },
|
|
|
|
{ SET, -1, -1, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_MD, NULL, NULL,
|
|
OSSL_SIGNATURE_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
{ GET, -1, -1, EVP_PKEY_OP_TYPE_SIG,
|
|
EVP_PKEY_CTRL_GET_MD, NULL, NULL,
|
|
OSSL_SIGNATURE_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md },
|
|
|
|
/*-
|
|
* ECX
|
|
* ===
|
|
*/
|
|
{ SET, EVP_PKEY_X25519, EVP_PKEY_X25519, EVP_PKEY_OP_KEYGEN, -1, NULL, NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx },
|
|
{ SET, EVP_PKEY_X25519, EVP_PKEY_X25519, EVP_PKEY_OP_PARAMGEN, -1, NULL, NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx },
|
|
{ SET, EVP_PKEY_X448, EVP_PKEY_X448, EVP_PKEY_OP_KEYGEN, -1, NULL, NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx },
|
|
{ SET, EVP_PKEY_X448, EVP_PKEY_X448, EVP_PKEY_OP_PARAMGEN, -1, NULL, NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx },
|
|
};
|
|
|
|
static const struct translation_st evp_pkey_translations[] = {
|
|
/*
|
|
* The following contain no ctrls, they are exclusively here to extract
|
|
* key payloads from legacy keys, using OSSL_PARAMs, and rely entirely
|
|
* on |fixup_args| to pass the actual data. The |fixup_args| should
|
|
* expect to get the EVP_PKEY pointer through |ctx->p2|.
|
|
*/
|
|
|
|
/* DH, DSA & EC */
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING,
|
|
get_payload_group_name },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_PRIV_KEY, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_payload_private_key },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_PUB_KEY,
|
|
0 /* no data type, let get_payload_public_key() handle that */,
|
|
get_payload_public_key },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_EC_PUB_X, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_payload_public_key_ec },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_EC_PUB_Y, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_payload_public_key_ec },
|
|
|
|
/* DH and DSA */
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_FFC_P, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_dh_dsa_payload_p },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_FFC_G, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_dh_dsa_payload_g },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_FFC_Q, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_dh_dsa_payload_q },
|
|
|
|
/* RSA */
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_N, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_n },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_E, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_D, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_d },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR1, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f1 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR2, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f2 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR3, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f3 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR4, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f4 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR5, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f5 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR6, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f6 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR7, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f7 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR8, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f8 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR9, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f9 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_FACTOR10, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_f10 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT1, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e1 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT2, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e2 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT3, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e3 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT4, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e4 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT5, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e5 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT6, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e6 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT7, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e7 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT8, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e8 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT9, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e9 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_EXPONENT10, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_e10 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT1, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c1 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT2, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c2 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT3, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c3 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT4, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c4 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT5, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c5 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT6, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c6 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT7, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c7 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT8, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c8 },
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_RSA_COEFFICIENT9, OSSL_PARAM_UNSIGNED_INTEGER,
|
|
get_rsa_payload_c9 },
|
|
|
|
/* EC */
|
|
{ GET, -1, -1, -1, 0, NULL, NULL,
|
|
OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS, OSSL_PARAM_INTEGER,
|
|
get_ec_decoded_from_explicit_params },
|
|
};
|
|
|
|
static const struct translation_st *
|
|
lookup_translation(struct translation_st *tmpl,
|
|
const struct translation_st *translations,
|
|
size_t translations_num)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < translations_num; i++) {
|
|
const struct translation_st *item = &translations[i];
|
|
|
|
/*
|
|
* Sanity check the translation table item.
|
|
*
|
|
* 1. Either both keytypes are -1, or neither of them are.
|
|
* 2. TBA...
|
|
*/
|
|
if (!ossl_assert((item->keytype1 == -1) == (item->keytype2 == -1)))
|
|
continue;
|
|
|
|
|
|
/*
|
|
* Base search criteria: check that the optype and keytypes match,
|
|
* if relevant. All callers must synthesise these bits somehow.
|
|
*/
|
|
if (item->optype != -1 && (tmpl->optype & item->optype) == 0)
|
|
continue;
|
|
/*
|
|
* This expression is stunningly simple thanks to the sanity check
|
|
* above.
|
|
*/
|
|
if (item->keytype1 != -1
|
|
&& tmpl->keytype1 != item->keytype1
|
|
&& tmpl->keytype2 != item->keytype2)
|
|
continue;
|
|
|
|
/*
|
|
* Done with the base search criteria, now we check the criteria for
|
|
* the individual types of translations:
|
|
* ctrl->params, ctrl_str->params, and params->ctrl
|
|
*/
|
|
if (tmpl->ctrl_num != 0) {
|
|
if (tmpl->ctrl_num != item->ctrl_num)
|
|
continue;
|
|
} else if (tmpl->ctrl_str != NULL) {
|
|
const char *ctrl_str = NULL;
|
|
const char *ctrl_hexstr = NULL;
|
|
|
|
/*
|
|
* Search criteria that originates from a ctrl_str is only used
|
|
* for setting, never for getting. Therefore, we only look at
|
|
* the setter items.
|
|
*/
|
|
if (item->action_type != NONE
|
|
&& item->action_type != SET)
|
|
continue;
|
|
/*
|
|
* At least one of the ctrl cmd names must be match the ctrl
|
|
* cmd name in the template.
|
|
*/
|
|
if (item->ctrl_str != NULL
|
|
&& OPENSSL_strcasecmp(tmpl->ctrl_str, item->ctrl_str) == 0)
|
|
ctrl_str = tmpl->ctrl_str;
|
|
else if (item->ctrl_hexstr != NULL
|
|
&& OPENSSL_strcasecmp(tmpl->ctrl_hexstr,
|
|
item->ctrl_hexstr) == 0)
|
|
ctrl_hexstr = tmpl->ctrl_hexstr;
|
|
else
|
|
continue;
|
|
|
|
/* Modify the template to signal which string matched */
|
|
tmpl->ctrl_str = ctrl_str;
|
|
tmpl->ctrl_hexstr = ctrl_hexstr;
|
|
} else if (tmpl->param_key != NULL) {
|
|
/*
|
|
* Search criteria that originates from an OSSL_PARAM setter or
|
|
* getter.
|
|
*
|
|
* Ctrls were fundamentally bidirectional, with only the ctrl
|
|
* command macro name implying direction (if you're lucky).
|
|
* A few ctrl commands were even taking advantage of the
|
|
* bidirectional nature, making the direction depend in the
|
|
* value of the numeric argument.
|
|
*
|
|
* OSSL_PARAM functions are fundamentally different, in that
|
|
* setters and getters are separated, so the data direction is
|
|
* implied by the function that's used. The same OSSL_PARAM
|
|
* key name can therefore be used in both directions. We must
|
|
* therefore take the action type into account in this case.
|
|
*/
|
|
if ((item->action_type != NONE
|
|
&& tmpl->action_type != item->action_type)
|
|
|| (item->param_key != NULL
|
|
&& OPENSSL_strcasecmp(tmpl->param_key,
|
|
item->param_key) != 0))
|
|
continue;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
return item;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct translation_st *
|
|
lookup_evp_pkey_ctx_translation(struct translation_st *tmpl)
|
|
{
|
|
return lookup_translation(tmpl, evp_pkey_ctx_translations,
|
|
OSSL_NELEM(evp_pkey_ctx_translations));
|
|
}
|
|
|
|
static const struct translation_st *
|
|
lookup_evp_pkey_translation(struct translation_st *tmpl)
|
|
{
|
|
return lookup_translation(tmpl, evp_pkey_translations,
|
|
OSSL_NELEM(evp_pkey_translations));
|
|
}
|
|
|
|
/* This must ONLY be called for provider side operations */
|
|
int evp_pkey_ctx_ctrl_to_param(EVP_PKEY_CTX *pctx,
|
|
int keytype, int optype,
|
|
int cmd, int p1, void *p2)
|
|
{
|
|
struct translation_ctx_st ctx = { 0, };
|
|
struct translation_st tmpl = { 0, };
|
|
const struct translation_st *translation = NULL;
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
int ret;
|
|
fixup_args_fn *fixup = default_fixup_args;
|
|
|
|
if (keytype == -1)
|
|
keytype = pctx->legacy_keytype;
|
|
tmpl.ctrl_num = cmd;
|
|
tmpl.keytype1 = tmpl.keytype2 = keytype;
|
|
tmpl.optype = optype;
|
|
translation = lookup_evp_pkey_ctx_translation(&tmpl);
|
|
|
|
if (translation == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return -2;
|
|
}
|
|
|
|
if (pctx->pmeth != NULL
|
|
&& pctx->pmeth->pkey_id != translation->keytype1
|
|
&& pctx->pmeth->pkey_id != translation->keytype2)
|
|
return -1;
|
|
|
|
if (translation->fixup_args != NULL)
|
|
fixup = translation->fixup_args;
|
|
ctx.action_type = translation->action_type;
|
|
ctx.ctrl_cmd = cmd;
|
|
ctx.p1 = p1;
|
|
ctx.p2 = p2;
|
|
ctx.pctx = pctx;
|
|
ctx.params = params;
|
|
|
|
ret = fixup(PRE_CTRL_TO_PARAMS, translation, &ctx);
|
|
|
|
if (ret > 0) {
|
|
switch (ctx.action_type) {
|
|
default:
|
|
/* fixup_args is expected to make sure this is dead code */
|
|
break;
|
|
case GET:
|
|
ret = evp_pkey_ctx_get_params_strict(pctx, ctx.params);
|
|
break;
|
|
case SET:
|
|
ret = evp_pkey_ctx_set_params_strict(pctx, ctx.params);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In POST, we pass the return value as p1, allowing the fixup_args
|
|
* function to affect it by changing its value.
|
|
*/
|
|
if (ret > 0) {
|
|
ctx.p1 = ret;
|
|
fixup(POST_CTRL_TO_PARAMS, translation, &ctx);
|
|
ret = ctx.p1;
|
|
}
|
|
|
|
cleanup_translation_ctx(POST_CTRL_TO_PARAMS, translation, &ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This must ONLY be called for provider side operations */
|
|
int evp_pkey_ctx_ctrl_str_to_param(EVP_PKEY_CTX *pctx,
|
|
const char *name, const char *value)
|
|
{
|
|
struct translation_ctx_st ctx = { 0, };
|
|
struct translation_st tmpl = { 0, };
|
|
const struct translation_st *translation = NULL;
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
int keytype = pctx->legacy_keytype;
|
|
int optype = pctx->operation == 0 ? -1 : pctx->operation;
|
|
int ret;
|
|
fixup_args_fn *fixup = default_fixup_args;
|
|
|
|
tmpl.action_type = SET;
|
|
tmpl.keytype1 = tmpl.keytype2 = keytype;
|
|
tmpl.optype = optype;
|
|
tmpl.ctrl_str = name;
|
|
tmpl.ctrl_hexstr = name;
|
|
translation = lookup_evp_pkey_ctx_translation(&tmpl);
|
|
|
|
if (translation != NULL) {
|
|
if (translation->fixup_args != NULL)
|
|
fixup = translation->fixup_args;
|
|
ctx.action_type = translation->action_type;
|
|
ctx.ishex = (tmpl.ctrl_hexstr != NULL);
|
|
} else {
|
|
/* String controls really only support setting */
|
|
ctx.action_type = SET;
|
|
}
|
|
ctx.ctrl_str = name;
|
|
ctx.p1 = (int)strlen(value);
|
|
ctx.p2 = (char *)value;
|
|
ctx.pctx = pctx;
|
|
ctx.params = params;
|
|
|
|
ret = fixup(PRE_CTRL_STR_TO_PARAMS, translation, &ctx);
|
|
|
|
if (ret > 0) {
|
|
switch (ctx.action_type) {
|
|
default:
|
|
/* fixup_args is expected to make sure this is dead code */
|
|
break;
|
|
case GET:
|
|
/*
|
|
* this is dead code, but must be present, or some compilers
|
|
* will complain
|
|
*/
|
|
break;
|
|
case SET:
|
|
ret = evp_pkey_ctx_set_params_strict(pctx, ctx.params);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = fixup(POST_CTRL_STR_TO_PARAMS, translation, &ctx);
|
|
|
|
cleanup_translation_ctx(CLEANUP_CTRL_STR_TO_PARAMS, translation, &ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This must ONLY be called for legacy operations */
|
|
static int evp_pkey_ctx_setget_params_to_ctrl(EVP_PKEY_CTX *pctx,
|
|
enum action action_type,
|
|
OSSL_PARAM *params)
|
|
{
|
|
int keytype = pctx->legacy_keytype;
|
|
int optype = pctx->operation == 0 ? -1 : pctx->operation;
|
|
|
|
for (; params != NULL && params->key != NULL; params++) {
|
|
struct translation_ctx_st ctx = { 0, };
|
|
struct translation_st tmpl = { 0, };
|
|
const struct translation_st *translation = NULL;
|
|
fixup_args_fn *fixup = default_fixup_args;
|
|
int ret;
|
|
|
|
ctx.action_type = tmpl.action_type = action_type;
|
|
tmpl.keytype1 = tmpl.keytype2 = keytype;
|
|
tmpl.optype = optype;
|
|
tmpl.param_key = params->key;
|
|
translation = lookup_evp_pkey_ctx_translation(&tmpl);
|
|
|
|
if (translation != NULL) {
|
|
if (translation->fixup_args != NULL)
|
|
fixup = translation->fixup_args;
|
|
ctx.ctrl_cmd = translation->ctrl_num;
|
|
}
|
|
ctx.pctx = pctx;
|
|
ctx.params = params;
|
|
|
|
ret = fixup(PRE_PARAMS_TO_CTRL, translation, &ctx);
|
|
|
|
if (ret > 0 && ctx.action_type != NONE)
|
|
ret = EVP_PKEY_CTX_ctrl(pctx, keytype, optype,
|
|
ctx.ctrl_cmd, ctx.p1, ctx.p2);
|
|
|
|
/*
|
|
* In POST, we pass the return value as p1, allowing the fixup_args
|
|
* function to put it to good use, or maybe affect it.
|
|
*/
|
|
if (ret > 0) {
|
|
ctx.p1 = ret;
|
|
fixup(POST_PARAMS_TO_CTRL, translation, &ctx);
|
|
ret = ctx.p1;
|
|
}
|
|
|
|
cleanup_translation_ctx(CLEANUP_PARAMS_TO_CTRL, translation, &ctx);
|
|
|
|
if (ret <= 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int evp_pkey_ctx_set_params_to_ctrl(EVP_PKEY_CTX *ctx, const OSSL_PARAM *params)
|
|
{
|
|
return evp_pkey_ctx_setget_params_to_ctrl(ctx, SET, (OSSL_PARAM *)params);
|
|
}
|
|
|
|
int evp_pkey_ctx_get_params_to_ctrl(EVP_PKEY_CTX *ctx, OSSL_PARAM *params)
|
|
{
|
|
return evp_pkey_ctx_setget_params_to_ctrl(ctx, GET, params);
|
|
}
|
|
|
|
/* This must ONLY be called for legacy EVP_PKEYs */
|
|
static int evp_pkey_setget_params_to_ctrl(const EVP_PKEY *pkey,
|
|
enum action action_type,
|
|
OSSL_PARAM *params)
|
|
{
|
|
int ret = 1;
|
|
|
|
for (; params != NULL && params->key != NULL; params++) {
|
|
struct translation_ctx_st ctx = { 0, };
|
|
struct translation_st tmpl = { 0, };
|
|
const struct translation_st *translation = NULL;
|
|
fixup_args_fn *fixup = default_fixup_args;
|
|
|
|
tmpl.action_type = action_type;
|
|
tmpl.param_key = params->key;
|
|
translation = lookup_evp_pkey_translation(&tmpl);
|
|
|
|
if (translation != NULL) {
|
|
if (translation->fixup_args != NULL)
|
|
fixup = translation->fixup_args;
|
|
ctx.action_type = translation->action_type;
|
|
}
|
|
ctx.p2 = (void *)pkey;
|
|
ctx.params = params;
|
|
|
|
/*
|
|
* EVP_PKEY doesn't have any ctrl function, so we rely completely
|
|
* on fixup_args to do the whole work. Also, we currently only
|
|
* support getting.
|
|
*/
|
|
if (!ossl_assert(translation != NULL)
|
|
|| !ossl_assert(translation->action_type == GET)
|
|
|| !ossl_assert(translation->fixup_args != NULL)) {
|
|
return -2;
|
|
}
|
|
|
|
ret = fixup(PKEY, translation, &ctx);
|
|
|
|
cleanup_translation_ctx(PKEY, translation, &ctx);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int evp_pkey_get_params_to_ctrl(const EVP_PKEY *pkey, OSSL_PARAM *params)
|
|
{
|
|
return evp_pkey_setget_params_to_ctrl(pkey, GET, params);
|
|
}
|