openssl/apps/lib/s_cb.c
Nikolay Morozov 7a41760667 GOST2012 TLS ClientCertificateType Identifiers support
For GOST2012-GOST8912-GOST8912 IANA introduce ClientCertificateType Identifiers
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-2

Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/11558)
2020-04-18 13:32:49 +03:00

1581 lines
49 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* callback functions used by s_client, s_server, and s_time */
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memcpy() and strcmp() */
#include "apps.h"
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/ssl.h>
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include "s_apps.h"
#define COOKIE_SECRET_LENGTH 16
VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
#ifndef OPENSSL_NO_SOCK
static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
static int cookie_initialized = 0;
#endif
static BIO *bio_keylog = NULL;
static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
{
for ( ; list->name; ++list)
if (list->retval == val)
return list->name;
return def;
}
int verify_callback(int ok, X509_STORE_CTX *ctx)
{
X509 *err_cert;
int err, depth;
err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);
if (!verify_args.quiet || !ok) {
BIO_printf(bio_err, "depth=%d ", depth);
if (err_cert != NULL) {
X509_NAME_print_ex(bio_err,
X509_get_subject_name(err_cert),
0, get_nameopt());
BIO_puts(bio_err, "\n");
} else {
BIO_puts(bio_err, "<no cert>\n");
}
}
if (!ok) {
BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
X509_verify_cert_error_string(err));
if (verify_args.depth < 0 || verify_args.depth >= depth) {
if (!verify_args.return_error)
ok = 1;
verify_args.error = err;
} else {
ok = 0;
verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
}
}
switch (err) {
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
BIO_puts(bio_err, "issuer= ");
X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
0, get_nameopt());
BIO_puts(bio_err, "\n");
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
BIO_printf(bio_err, "notBefore=");
ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
BIO_printf(bio_err, "notAfter=");
ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_NO_EXPLICIT_POLICY:
if (!verify_args.quiet)
policies_print(ctx);
break;
}
if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
policies_print(ctx);
if (ok && !verify_args.quiet)
BIO_printf(bio_err, "verify return:%d\n", ok);
return ok;
}
int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
{
if (cert_file != NULL) {
if (SSL_CTX_use_certificate_file(ctx, cert_file,
SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get certificate from '%s'\n",
cert_file);
ERR_print_errors(bio_err);
return 0;
}
if (key_file == NULL)
key_file = cert_file;
if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get private key from '%s'\n",
key_file);
ERR_print_errors(bio_err);
return 0;
}
/*
* If we are using DSA, we can copy the parameters from the private
* key
*/
/*
* Now we know that a key and cert have been set against the SSL
* context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
}
return 1;
}
int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
STACK_OF(X509) *chain, int build_chain)
{
int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
if (cert == NULL)
return 1;
if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
BIO_printf(bio_err, "error setting certificate\n");
ERR_print_errors(bio_err);
return 0;
}
if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
BIO_printf(bio_err, "error setting private key\n");
ERR_print_errors(bio_err);
return 0;
}
/*
* Now we know that a key and cert have been set against the SSL context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
BIO_printf(bio_err, "error setting certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
BIO_printf(bio_err, "error building certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static STRINT_PAIR cert_type_list[] = {
{"RSA sign", TLS_CT_RSA_SIGN},
{"DSA sign", TLS_CT_DSS_SIGN},
{"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
{"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
{"ECDSA sign", TLS_CT_ECDSA_SIGN},
{"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
{"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
{"GOST01 Sign", TLS_CT_GOST01_SIGN},
{"GOST12 Sign", TLS_CT_GOST12_IANA_SIGN},
{NULL}
};
static void ssl_print_client_cert_types(BIO *bio, SSL *s)
{
const unsigned char *p;
int i;
int cert_type_num = SSL_get0_certificate_types(s, &p);
if (!cert_type_num)
return;
BIO_puts(bio, "Client Certificate Types: ");
for (i = 0; i < cert_type_num; i++) {
unsigned char cert_type = p[i];
const char *cname = lookup((int)cert_type, cert_type_list, NULL);
if (i)
BIO_puts(bio, ", ");
if (cname != NULL)
BIO_puts(bio, cname);
else
BIO_printf(bio, "UNKNOWN (%d),", cert_type);
}
BIO_puts(bio, "\n");
}
static const char *get_sigtype(int nid)
{
switch (nid) {
case EVP_PKEY_RSA:
return "RSA";
case EVP_PKEY_RSA_PSS:
return "RSA-PSS";
case EVP_PKEY_DSA:
return "DSA";
case EVP_PKEY_EC:
return "ECDSA";
case NID_ED25519:
return "Ed25519";
case NID_ED448:
return "Ed448";
case NID_id_GostR3410_2001:
return "gost2001";
case NID_id_GostR3410_2012_256:
return "gost2012_256";
case NID_id_GostR3410_2012_512:
return "gost2012_512";
default:
return NULL;
}
}
static int do_print_sigalgs(BIO *out, SSL *s, int shared)
{
int i, nsig, client;
client = SSL_is_server(s) ? 0 : 1;
if (shared)
nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
else
nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
if (nsig == 0)
return 1;
if (shared)
BIO_puts(out, "Shared ");
if (client)
BIO_puts(out, "Requested ");
BIO_puts(out, "Signature Algorithms: ");
for (i = 0; i < nsig; i++) {
int hash_nid, sign_nid;
unsigned char rhash, rsign;
const char *sstr = NULL;
if (shared)
SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
&rsign, &rhash);
else
SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
if (i)
BIO_puts(out, ":");
sstr = get_sigtype(sign_nid);
if (sstr)
BIO_printf(out, "%s", sstr);
else
BIO_printf(out, "0x%02X", (int)rsign);
if (hash_nid != NID_undef)
BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
else if (sstr == NULL)
BIO_printf(out, "+0x%02X", (int)rhash);
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_sigalgs(BIO *out, SSL *s)
{
int nid;
if (!SSL_is_server(s))
ssl_print_client_cert_types(out, s);
do_print_sigalgs(out, s, 0);
do_print_sigalgs(out, s, 1);
if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
if (SSL_get_peer_signature_type_nid(s, &nid))
BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
return 1;
}
#ifndef OPENSSL_NO_EC
int ssl_print_point_formats(BIO *out, SSL *s)
{
int i, nformats;
const char *pformats;
nformats = SSL_get0_ec_point_formats(s, &pformats);
if (nformats <= 0)
return 1;
BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
for (i = 0; i < nformats; i++, pformats++) {
if (i)
BIO_puts(out, ":");
switch (*pformats) {
case TLSEXT_ECPOINTFORMAT_uncompressed:
BIO_puts(out, "uncompressed");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
BIO_puts(out, "ansiX962_compressed_prime");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
BIO_puts(out, "ansiX962_compressed_char2");
break;
default:
BIO_printf(out, "unknown(%d)", (int)*pformats);
break;
}
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_groups(BIO *out, SSL *s, int noshared)
{
int i, ngroups, *groups, nid;
const char *gname;
ngroups = SSL_get1_groups(s, NULL);
if (ngroups <= 0)
return 1;
groups = app_malloc(ngroups * sizeof(int), "groups to print");
SSL_get1_groups(s, groups);
BIO_puts(out, "Supported Elliptic Groups: ");
for (i = 0; i < ngroups; i++) {
if (i)
BIO_puts(out, ":");
nid = groups[i];
/* If unrecognised print out hex version */
if (nid & TLSEXT_nid_unknown) {
BIO_printf(out, "0x%04X", nid & 0xFFFF);
} else {
/* TODO(TLS1.3): Get group name here */
/* Use NIST name for curve if it exists */
gname = EC_curve_nid2nist(nid);
if (gname == NULL)
gname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", gname);
}
}
OPENSSL_free(groups);
if (noshared) {
BIO_puts(out, "\n");
return 1;
}
BIO_puts(out, "\nShared Elliptic groups: ");
ngroups = SSL_get_shared_group(s, -1);
for (i = 0; i < ngroups; i++) {
if (i)
BIO_puts(out, ":");
nid = SSL_get_shared_group(s, i);
/* TODO(TLS1.3): Convert for DH groups */
gname = EC_curve_nid2nist(nid);
if (gname == NULL)
gname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", gname);
}
if (ngroups == 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
#endif
int ssl_print_tmp_key(BIO *out, SSL *s)
{
EVP_PKEY *key;
if (!SSL_get_peer_tmp_key(s, &key))
return 1;
BIO_puts(out, "Server Temp Key: ");
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
break;
case EVP_PKEY_DH:
BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
break;
#ifndef OPENSSL_NO_EC
case EVP_PKEY_EC:
{
EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
int nid;
const char *cname;
nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
EC_KEY_free(ec);
cname = EC_curve_nid2nist(nid);
if (cname == NULL)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
}
break;
#endif
default:
BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)),
EVP_PKEY_bits(key));
}
EVP_PKEY_free(key);
return 1;
}
long bio_dump_callback(BIO *bio, int cmd, const char *argp,
int argi, long argl, long ret)
{
BIO *out;
out = (BIO *)BIO_get_callback_arg(bio);
if (out == NULL)
return ret;
if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
return ret;
} else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
}
return ret;
}
void apps_ssl_info_callback(const SSL *s, int where, int ret)
{
const char *str;
int w;
w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT)
str = "SSL_connect";
else if (w & SSL_ST_ACCEPT)
str = "SSL_accept";
else
str = "undefined";
if (where & SSL_CB_LOOP) {
BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
} else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));
} else if (where & SSL_CB_EXIT) {
if (ret == 0)
BIO_printf(bio_err, "%s:failed in %s\n",
str, SSL_state_string_long(s));
else if (ret < 0)
BIO_printf(bio_err, "%s:error in %s\n",
str, SSL_state_string_long(s));
}
}
static STRINT_PAIR ssl_versions[] = {
{"SSL 3.0", SSL3_VERSION},
{"TLS 1.0", TLS1_VERSION},
{"TLS 1.1", TLS1_1_VERSION},
{"TLS 1.2", TLS1_2_VERSION},
{"TLS 1.3", TLS1_3_VERSION},
{"DTLS 1.0", DTLS1_VERSION},
{"DTLS 1.0 (bad)", DTLS1_BAD_VER},
{NULL}
};
static STRINT_PAIR alert_types[] = {
{" close_notify", 0},
{" end_of_early_data", 1},
{" unexpected_message", 10},
{" bad_record_mac", 20},
{" decryption_failed", 21},
{" record_overflow", 22},
{" decompression_failure", 30},
{" handshake_failure", 40},
{" bad_certificate", 42},
{" unsupported_certificate", 43},
{" certificate_revoked", 44},
{" certificate_expired", 45},
{" certificate_unknown", 46},
{" illegal_parameter", 47},
{" unknown_ca", 48},
{" access_denied", 49},
{" decode_error", 50},
{" decrypt_error", 51},
{" export_restriction", 60},
{" protocol_version", 70},
{" insufficient_security", 71},
{" internal_error", 80},
{" inappropriate_fallback", 86},
{" user_canceled", 90},
{" no_renegotiation", 100},
{" missing_extension", 109},
{" unsupported_extension", 110},
{" certificate_unobtainable", 111},
{" unrecognized_name", 112},
{" bad_certificate_status_response", 113},
{" bad_certificate_hash_value", 114},
{" unknown_psk_identity", 115},
{" certificate_required", 116},
{NULL}
};
static STRINT_PAIR handshakes[] = {
{", HelloRequest", SSL3_MT_HELLO_REQUEST},
{", ClientHello", SSL3_MT_CLIENT_HELLO},
{", ServerHello", SSL3_MT_SERVER_HELLO},
{", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
{", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
{", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
{", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
{", Certificate", SSL3_MT_CERTIFICATE},
{", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
{", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
{", ServerHelloDone", SSL3_MT_SERVER_DONE},
{", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
{", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
{", Finished", SSL3_MT_FINISHED},
{", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
{", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
{", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
{", KeyUpdate", SSL3_MT_KEY_UPDATE},
#ifndef OPENSSL_NO_NEXTPROTONEG
{", NextProto", SSL3_MT_NEXT_PROTO},
#endif
{", MessageHash", SSL3_MT_MESSAGE_HASH},
{NULL}
};
void msg_cb(int write_p, int version, int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)
{
BIO *bio = arg;
const char *str_write_p = write_p ? ">>>" : "<<<";
const char *str_version = lookup(version, ssl_versions, "???");
const char *str_content_type = "", *str_details1 = "", *str_details2 = "";
const unsigned char* bp = buf;
if (version == SSL3_VERSION ||
version == TLS1_VERSION ||
version == TLS1_1_VERSION ||
version == TLS1_2_VERSION ||
version == TLS1_3_VERSION ||
version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
switch (content_type) {
case 20:
str_content_type = ", ChangeCipherSpec";
break;
case 21:
str_content_type = ", Alert";
str_details1 = ", ???";
if (len == 2) {
switch (bp[0]) {
case 1:
str_details1 = ", warning";
break;
case 2:
str_details1 = ", fatal";
break;
}
str_details2 = lookup((int)bp[1], alert_types, " ???");
}
break;
case 22:
str_content_type = ", Handshake";
str_details1 = "???";
if (len > 0)
str_details1 = lookup((int)bp[0], handshakes, "???");
break;
case 23:
str_content_type = ", ApplicationData";
break;
}
}
BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
str_content_type, (unsigned long)len, str_details1,
str_details2);
if (len > 0) {
size_t num, i;
BIO_printf(bio, " ");
num = len;
for (i = 0; i < num; i++) {
if (i % 16 == 0 && i > 0)
BIO_printf(bio, "\n ");
BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
}
if (i < len)
BIO_printf(bio, " ...");
BIO_printf(bio, "\n");
}
(void)BIO_flush(bio);
}
static STRINT_PAIR tlsext_types[] = {
{"server name", TLSEXT_TYPE_server_name},
{"max fragment length", TLSEXT_TYPE_max_fragment_length},
{"client certificate URL", TLSEXT_TYPE_client_certificate_url},
{"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
{"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
{"status request", TLSEXT_TYPE_status_request},
{"user mapping", TLSEXT_TYPE_user_mapping},
{"client authz", TLSEXT_TYPE_client_authz},
{"server authz", TLSEXT_TYPE_server_authz},
{"cert type", TLSEXT_TYPE_cert_type},
{"supported_groups", TLSEXT_TYPE_supported_groups},
{"EC point formats", TLSEXT_TYPE_ec_point_formats},
{"SRP", TLSEXT_TYPE_srp},
{"signature algorithms", TLSEXT_TYPE_signature_algorithms},
{"use SRTP", TLSEXT_TYPE_use_srtp},
{"session ticket", TLSEXT_TYPE_session_ticket},
{"renegotiation info", TLSEXT_TYPE_renegotiate},
{"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
{"TLS padding", TLSEXT_TYPE_padding},
#ifdef TLSEXT_TYPE_next_proto_neg
{"next protocol", TLSEXT_TYPE_next_proto_neg},
#endif
#ifdef TLSEXT_TYPE_encrypt_then_mac
{"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{"application layer protocol negotiation",
TLSEXT_TYPE_application_layer_protocol_negotiation},
#endif
#ifdef TLSEXT_TYPE_extended_master_secret
{"extended master secret", TLSEXT_TYPE_extended_master_secret},
#endif
{"key share", TLSEXT_TYPE_key_share},
{"supported versions", TLSEXT_TYPE_supported_versions},
{"psk", TLSEXT_TYPE_psk},
{"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
{"certificate authorities", TLSEXT_TYPE_certificate_authorities},
{"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
{NULL}
};
/* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */
static STRINT_PAIR signature_tls13_scheme_list[] = {
{"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */},
{"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */},
/* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */
/* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */
{"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */},
{"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */},
{"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */},
{"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */},
{"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */},
{"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */},
{"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */},
{"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */},
{"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */},
{"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */},
{"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */},
{"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */},
{"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */},
{"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */},
{"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */},
{"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */},
{"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */},
{NULL}
};
/* from rfc5246 7.4.1.4.1. */
static STRINT_PAIR signature_tls12_alg_list[] = {
{"anonymous", TLSEXT_signature_anonymous /* 0 */},
{"RSA", TLSEXT_signature_rsa /* 1 */},
{"DSA", TLSEXT_signature_dsa /* 2 */},
{"ECDSA", TLSEXT_signature_ecdsa /* 3 */},
{NULL}
};
/* from rfc5246 7.4.1.4.1. */
static STRINT_PAIR signature_tls12_hash_list[] = {
{"none", TLSEXT_hash_none /* 0 */},
{"MD5", TLSEXT_hash_md5 /* 1 */},
{"SHA1", TLSEXT_hash_sha1 /* 2 */},
{"SHA224", TLSEXT_hash_sha224 /* 3 */},
{"SHA256", TLSEXT_hash_sha256 /* 4 */},
{"SHA384", TLSEXT_hash_sha384 /* 5 */},
{"SHA512", TLSEXT_hash_sha512 /* 6 */},
{NULL}
};
void tlsext_cb(SSL *s, int client_server, int type,
const unsigned char *data, int len, void *arg)
{
BIO *bio = arg;
const char *extname = lookup(type, tlsext_types, "unknown");
BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
client_server ? "server" : "client", extname, type, len);
BIO_dump(bio, (const char *)data, len);
(void)BIO_flush(bio);
}
#ifndef OPENSSL_NO_SOCK
int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int *cookie_len)
{
unsigned char *buffer = NULL;
size_t length = 0;
unsigned short port;
BIO_ADDR *lpeer = NULL, *peer = NULL;
int res = 0;
EVP_MAC *hmac = NULL;
EVP_MAC_CTX *ctx = NULL;
OSSL_PARAM params[3], *p = params;
/* Initialize a random secret */
if (!cookie_initialized) {
if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
BIO_printf(bio_err, "error setting random cookie secret\n");
return 0;
}
cookie_initialized = 1;
}
if (SSL_is_dtls(ssl)) {
lpeer = peer = BIO_ADDR_new();
if (peer == NULL) {
BIO_printf(bio_err, "memory full\n");
return 0;
}
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
} else {
peer = ourpeer;
}
/* Create buffer with peer's address and port */
if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
BIO_printf(bio_err, "Failed getting peer address\n");
return 0;
}
OPENSSL_assert(length != 0);
port = BIO_ADDR_rawport(peer);
length += sizeof(port);
buffer = app_malloc(length, "cookie generate buffer");
memcpy(buffer, &port, sizeof(port));
BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
/* Calculate HMAC of buffer using the secret */
hmac = EVP_MAC_fetch(NULL, "HMAC", NULL);
if (hmac == NULL) {
BIO_printf(bio_err, "HMAC not found\n");
goto end;
}
ctx = EVP_MAC_CTX_new(hmac);
if (ctx == NULL) {
BIO_printf(bio_err, "HMAC context allocation failed\n");
goto end;
}
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, "SHA1", 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, cookie_secret,
COOKIE_SECRET_LENGTH);
*p = OSSL_PARAM_construct_end();
if (!EVP_MAC_CTX_set_params(ctx, params)) {
BIO_printf(bio_err, "HMAC context parameter setting failed\n");
goto end;
}
if (!EVP_MAC_init(ctx)) {
BIO_printf(bio_err, "HMAC context initialisation failed\n");
goto end;
}
if (!EVP_MAC_update(ctx, buffer, length)) {
BIO_printf(bio_err, "HMAC context update failed\n");
goto end;
}
if (!EVP_MAC_final(ctx, cookie, NULL, (size_t)cookie_len)) {
BIO_printf(bio_err, "HMAC context final failed\n");
goto end;
}
res = 1;
end:
OPENSSL_free(buffer);
BIO_ADDR_free(lpeer);
return res;
}
int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
unsigned int cookie_len)
{
unsigned char result[EVP_MAX_MD_SIZE];
unsigned int resultlength;
/* Note: we check cookie_initialized because if it's not,
* it cannot be valid */
if (cookie_initialized
&& generate_cookie_callback(ssl, result, &resultlength)
&& cookie_len == resultlength
&& memcmp(result, cookie, resultlength) == 0)
return 1;
return 0;
}
int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
size_t *cookie_len)
{
unsigned int temp;
int res = generate_cookie_callback(ssl, cookie, &temp);
*cookie_len = temp;
return res;
}
int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
size_t cookie_len)
{
return verify_cookie_callback(ssl, cookie, cookie_len);
}
#endif
/*
* Example of extended certificate handling. Where the standard support of
* one certificate per algorithm is not sufficient an application can decide
* which certificate(s) to use at runtime based on whatever criteria it deems
* appropriate.
*/
/* Linked list of certificates, keys and chains */
struct ssl_excert_st {
int certform;
const char *certfile;
int keyform;
const char *keyfile;
const char *chainfile;
X509 *cert;
EVP_PKEY *key;
STACK_OF(X509) *chain;
int build_chain;
struct ssl_excert_st *next, *prev;
};
static STRINT_PAIR chain_flags[] = {
{"Overall Validity", CERT_PKEY_VALID},
{"Sign with EE key", CERT_PKEY_SIGN},
{"EE signature", CERT_PKEY_EE_SIGNATURE},
{"CA signature", CERT_PKEY_CA_SIGNATURE},
{"EE key parameters", CERT_PKEY_EE_PARAM},
{"CA key parameters", CERT_PKEY_CA_PARAM},
{"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
{"Issuer Name", CERT_PKEY_ISSUER_NAME},
{"Certificate Type", CERT_PKEY_CERT_TYPE},
{NULL}
};
static void print_chain_flags(SSL *s, int flags)
{
STRINT_PAIR *pp;
for (pp = chain_flags; pp->name; ++pp)
BIO_printf(bio_err, "\t%s: %s\n",
pp->name,
(flags & pp->retval) ? "OK" : "NOT OK");
BIO_printf(bio_err, "\tSuite B: ");
if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
else
BIO_printf(bio_err, "not tested\n");
}
/*
* Very basic selection callback: just use any certificate chain reported as
* valid. More sophisticated could prioritise according to local policy.
*/
static int set_cert_cb(SSL *ssl, void *arg)
{
int i, rv;
SSL_EXCERT *exc = arg;
#ifdef CERT_CB_TEST_RETRY
static int retry_cnt;
if (retry_cnt < 5) {
retry_cnt++;
BIO_printf(bio_err,
"Certificate callback retry test: count %d\n",
retry_cnt);
return -1;
}
#endif
SSL_certs_clear(ssl);
if (exc == NULL)
return 1;
/*
* Go to end of list and traverse backwards since we prepend newer
* entries this retains the original order.
*/
while (exc->next != NULL)
exc = exc->next;
i = 0;
while (exc != NULL) {
i++;
rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
get_nameopt());
BIO_puts(bio_err, "\n");
print_chain_flags(ssl, rv);
if (rv & CERT_PKEY_VALID) {
if (!SSL_use_certificate(ssl, exc->cert)
|| !SSL_use_PrivateKey(ssl, exc->key)) {
return 0;
}
/*
* NB: we wouldn't normally do this as it is not efficient
* building chains on each connection better to cache the chain
* in advance.
*/
if (exc->build_chain) {
if (!SSL_build_cert_chain(ssl, 0))
return 0;
} else if (exc->chain != NULL) {
SSL_set1_chain(ssl, exc->chain);
}
}
exc = exc->prev;
}
return 1;
}
void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
{
SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
}
static int ssl_excert_prepend(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
memset(exc, 0, sizeof(*exc));
exc->next = *pexc;
*pexc = exc;
if (exc->next) {
exc->certform = exc->next->certform;
exc->keyform = exc->next->keyform;
exc->next->prev = exc;
} else {
exc->certform = FORMAT_PEM;
exc->keyform = FORMAT_PEM;
}
return 1;
}
void ssl_excert_free(SSL_EXCERT *exc)
{
SSL_EXCERT *curr;
if (exc == NULL)
return;
while (exc) {
X509_free(exc->cert);
EVP_PKEY_free(exc->key);
sk_X509_pop_free(exc->chain, X509_free);
curr = exc;
exc = exc->next;
OPENSSL_free(curr);
}
}
int load_excert(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
if (exc == NULL)
return 1;
/* If nothing in list, free and set to NULL */
if (exc->certfile == NULL && exc->next == NULL) {
ssl_excert_free(exc);
*pexc = NULL;
return 1;
}
for (; exc; exc = exc->next) {
if (exc->certfile == NULL) {
BIO_printf(bio_err, "Missing filename\n");
return 0;
}
exc->cert = load_cert(exc->certfile, exc->certform,
"Server Certificate");
if (exc->cert == NULL)
return 0;
if (exc->keyfile != NULL) {
exc->key = load_key(exc->keyfile, exc->keyform,
0, NULL, NULL, "Server Key");
} else {
exc->key = load_key(exc->certfile, exc->certform,
0, NULL, NULL, "Server Key");
}
if (exc->key == NULL)
return 0;
if (exc->chainfile != NULL) {
if (!load_certs(exc->chainfile, &exc->chain, FORMAT_PEM, NULL,
"Server Chain"))
return 0;
}
}
return 1;
}
enum range { OPT_X_ENUM };
int args_excert(int opt, SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
assert(opt > OPT_X__FIRST);
assert(opt < OPT_X__LAST);
if (exc == NULL) {
if (!ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, " %s: Error initialising xcert\n",
opt_getprog());
goto err;
}
*pexc = exc;
}
switch ((enum range)opt) {
case OPT_X__FIRST:
case OPT_X__LAST:
return 0;
case OPT_X_CERT:
if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
goto err;
}
*pexc = exc;
exc->certfile = opt_arg();
break;
case OPT_X_KEY:
if (exc->keyfile != NULL) {
BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
goto err;
}
exc->keyfile = opt_arg();
break;
case OPT_X_CHAIN:
if (exc->chainfile != NULL) {
BIO_printf(bio_err, "%s: Chain already specified\n",
opt_getprog());
goto err;
}
exc->chainfile = opt_arg();
break;
case OPT_X_CHAIN_BUILD:
exc->build_chain = 1;
break;
case OPT_X_CERTFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->certform))
return 0;
break;
case OPT_X_KEYFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->keyform))
return 0;
break;
}
return 1;
err:
ERR_print_errors(bio_err);
ssl_excert_free(exc);
*pexc = NULL;
return 0;
}
static void print_raw_cipherlist(SSL *s)
{
const unsigned char *rlist;
static const unsigned char scsv_id[] = { 0, 0xFF };
size_t i, rlistlen, num;
if (!SSL_is_server(s))
return;
num = SSL_get0_raw_cipherlist(s, NULL);
OPENSSL_assert(num == 2);
rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
BIO_puts(bio_err, "Client cipher list: ");
for (i = 0; i < rlistlen; i += num, rlist += num) {
const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
if (i)
BIO_puts(bio_err, ":");
if (c != NULL) {
BIO_puts(bio_err, SSL_CIPHER_get_name(c));
} else if (memcmp(rlist, scsv_id, num) == 0) {
BIO_puts(bio_err, "SCSV");
} else {
size_t j;
BIO_puts(bio_err, "0x");
for (j = 0; j < num; j++)
BIO_printf(bio_err, "%02X", rlist[j]);
}
}
BIO_puts(bio_err, "\n");
}
/*
* Hex encoder for TLSA RRdata, not ':' delimited.
*/
static char *hexencode(const unsigned char *data, size_t len)
{
static const char *hex = "0123456789abcdef";
char *out;
char *cp;
size_t outlen = 2 * len + 1;
int ilen = (int) outlen;
if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
opt_getprog(), len);
exit(1);
}
cp = out = app_malloc(ilen, "TLSA hex data buffer");
while (len-- > 0) {
*cp++ = hex[(*data >> 4) & 0x0f];
*cp++ = hex[*data++ & 0x0f];
}
*cp = '\0';
return out;
}
void print_verify_detail(SSL *s, BIO *bio)
{
int mdpth;
EVP_PKEY *mspki;
long verify_err = SSL_get_verify_result(s);
if (verify_err == X509_V_OK) {
const char *peername = SSL_get0_peername(s);
BIO_printf(bio, "Verification: OK\n");
if (peername != NULL)
BIO_printf(bio, "Verified peername: %s\n", peername);
} else {
const char *reason = X509_verify_cert_error_string(verify_err);
BIO_printf(bio, "Verification error: %s\n", reason);
}
if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
uint8_t usage, selector, mtype;
const unsigned char *data = NULL;
size_t dlen = 0;
char *hexdata;
mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
/*
* The TLSA data field can be quite long when it is a certificate,
* public key or even a SHA2-512 digest. Because the initial octets of
* ASN.1 certificates and public keys contain mostly boilerplate OIDs
* and lengths, we show the last 12 bytes of the data instead, as these
* are more likely to distinguish distinct TLSA records.
*/
#define TLSA_TAIL_SIZE 12
if (dlen > TLSA_TAIL_SIZE)
hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
else
hexdata = hexencode(data, dlen);
BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n",
usage, selector, mtype,
(dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata,
(mspki != NULL) ? "signed the certificate" :
mdpth ? "matched TA certificate" : "matched EE certificate",
mdpth);
OPENSSL_free(hexdata);
}
}
void print_ssl_summary(SSL *s)
{
const SSL_CIPHER *c;
X509 *peer;
BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
print_raw_cipherlist(s);
c = SSL_get_current_cipher(s);
BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
do_print_sigalgs(bio_err, s, 0);
peer = SSL_get_peer_certificate(s);
if (peer != NULL) {
int nid;
BIO_puts(bio_err, "Peer certificate: ");
X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
0, get_nameopt());
BIO_puts(bio_err, "\n");
if (SSL_get_peer_signature_nid(s, &nid))
BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
if (SSL_get_peer_signature_type_nid(s, &nid))
BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
print_verify_detail(s, bio_err);
} else {
BIO_puts(bio_err, "No peer certificate\n");
}
X509_free(peer);
#ifndef OPENSSL_NO_EC
ssl_print_point_formats(bio_err, s);
if (SSL_is_server(s))
ssl_print_groups(bio_err, s, 1);
else
ssl_print_tmp_key(bio_err, s);
#else
if (!SSL_is_server(s))
ssl_print_tmp_key(bio_err, s);
#endif
}
int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
SSL_CTX *ctx)
{
int i;
SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
const char *flag = sk_OPENSSL_STRING_value(str, i);
const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
if (arg != NULL)
BIO_printf(bio_err, "Error with command: \"%s %s\"\n",
flag, arg);
else
BIO_printf(bio_err, "Error with command: \"%s\"\n", flag);
ERR_print_errors(bio_err);
return 0;
}
}
if (!SSL_CONF_CTX_finish(cctx)) {
BIO_puts(bio_err, "Error finishing context\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
{
X509_CRL *crl;
int i;
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
crl = sk_X509_CRL_value(crls, i);
X509_STORE_add_crl(st, crl);
}
return 1;
}
int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *st;
st = SSL_CTX_get_cert_store(ctx);
add_crls_store(st, crls);
if (crl_download)
store_setup_crl_download(st);
return 1;
}
int ssl_load_stores(SSL_CTX *ctx,
const char *vfyCApath, const char *vfyCAfile,
const char *vfyCAstore,
const char *chCApath, const char *chCAfile,
const char *chCAstore,
STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *vfy = NULL, *ch = NULL;
int rv = 0;
if (vfyCApath != NULL || vfyCAfile != NULL || vfyCAstore != NULL) {
vfy = X509_STORE_new();
if (vfy == NULL)
goto err;
if (vfyCAfile != NULL && !X509_STORE_load_file(vfy, vfyCAfile))
goto err;
if (vfyCApath != NULL && !X509_STORE_load_path(vfy, vfyCApath))
goto err;
if (vfyCAstore != NULL && !X509_STORE_load_store(vfy, vfyCAstore))
goto err;
add_crls_store(vfy, crls);
SSL_CTX_set1_verify_cert_store(ctx, vfy);
if (crl_download)
store_setup_crl_download(vfy);
}
if (chCApath != NULL || chCAfile != NULL || chCAstore != NULL) {
ch = X509_STORE_new();
if (ch == NULL)
goto err;
if (chCAfile != NULL && !X509_STORE_load_file(ch, chCAfile))
goto err;
if (chCApath != NULL && !X509_STORE_load_path(ch, chCApath))
goto err;
if (chCAstore != NULL && !X509_STORE_load_store(ch, chCAstore))
goto err;
SSL_CTX_set1_chain_cert_store(ctx, ch);
}
rv = 1;
err:
X509_STORE_free(vfy);
X509_STORE_free(ch);
return rv;
}
/* Verbose print out of security callback */
typedef struct {
BIO *out;
int verbose;
int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
void *other, void *ex);
} security_debug_ex;
static STRINT_PAIR callback_types[] = {
{"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
{"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
{"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
#ifndef OPENSSL_NO_DH
{"Temp DH key bits", SSL_SECOP_TMP_DH},
#endif
{"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
{"Shared Curve", SSL_SECOP_CURVE_SHARED},
{"Check Curve", SSL_SECOP_CURVE_CHECK},
{"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED},
{"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED},
{"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK},
{"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
{"Certificate chain EE key", SSL_SECOP_EE_KEY},
{"Certificate chain CA key", SSL_SECOP_CA_KEY},
{"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
{"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
{"Certificate chain CA digest", SSL_SECOP_CA_MD},
{"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
{"SSL compression", SSL_SECOP_COMPRESSION},
{"Session ticket", SSL_SECOP_TICKET},
{NULL}
};
static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
int op, int bits, int nid,
void *other, void *ex)
{
security_debug_ex *sdb = ex;
int rv, show_bits = 1, cert_md = 0;
const char *nm;
int show_nm;
rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
if (rv == 1 && sdb->verbose < 2)
return 1;
BIO_puts(sdb->out, "Security callback: ");
nm = lookup(op, callback_types, NULL);
show_nm = nm != NULL;
switch (op) {
case SSL_SECOP_TICKET:
case SSL_SECOP_COMPRESSION:
show_bits = 0;
show_nm = 0;
break;
case SSL_SECOP_VERSION:
BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
show_bits = 0;
show_nm = 0;
break;
case SSL_SECOP_CA_MD:
case SSL_SECOP_PEER_CA_MD:
cert_md = 1;
break;
case SSL_SECOP_SIGALG_SUPPORTED:
case SSL_SECOP_SIGALG_SHARED:
case SSL_SECOP_SIGALG_CHECK:
case SSL_SECOP_SIGALG_MASK:
show_nm = 0;
break;
}
if (show_nm)
BIO_printf(sdb->out, "%s=", nm);
switch (op & SSL_SECOP_OTHER_TYPE) {
case SSL_SECOP_OTHER_CIPHER:
BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
break;
#ifndef OPENSSL_NO_EC
case SSL_SECOP_OTHER_CURVE:
{
const char *cname;
cname = EC_curve_nid2nist(nid);
if (cname == NULL)
cname = OBJ_nid2sn(nid);
BIO_puts(sdb->out, cname);
}
break;
#endif
#ifndef OPENSSL_NO_DH
case SSL_SECOP_OTHER_DH:
{
DH *dh = other;
EVP_PKEY *pkey = EVP_PKEY_new();
int fail = 1;
if (pkey != NULL) {
if (EVP_PKEY_set1_DH(pkey, dh)) {
BIO_printf(sdb->out, "%d", EVP_PKEY_bits(pkey));
fail = 0;
}
EVP_PKEY_free(pkey);
}
if (fail)
BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x",
op);
break;
}
#endif
case SSL_SECOP_OTHER_CERT:
{
if (cert_md) {
int sig_nid = X509_get_signature_nid(other);
BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
} else {
EVP_PKEY *pkey = X509_get0_pubkey(other);
const char *algname = "";
EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
&algname, EVP_PKEY_get0_asn1(pkey));
BIO_printf(sdb->out, "%s, bits=%d",
algname, EVP_PKEY_bits(pkey));
}
break;
}
case SSL_SECOP_OTHER_SIGALG:
{
const unsigned char *salg = other;
const char *sname = NULL;
int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */
/* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */
if (nm != NULL)
BIO_printf(sdb->out, "%s", nm);
else
BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op);
sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL);
if (sname != NULL) {
BIO_printf(sdb->out, " scheme=%s", sname);
} else {
int alg_code = salg[1];
int hash_code = salg[0];
const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL);
const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL);
if (alg_str != NULL && hash_str != NULL)
BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str);
else
BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code);
}
}
}
if (show_bits)
BIO_printf(sdb->out, ", security bits=%d", bits);
BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
return rv;
}
void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
{
static security_debug_ex sdb;
sdb.out = bio_err;
sdb.verbose = verbose;
sdb.old_cb = SSL_CTX_get_security_callback(ctx);
SSL_CTX_set_security_callback(ctx, security_callback_debug);
SSL_CTX_set0_security_ex_data(ctx, &sdb);
}
static void keylog_callback(const SSL *ssl, const char *line)
{
if (bio_keylog == NULL) {
BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
return;
}
/*
* There might be concurrent writers to the keylog file, so we must ensure
* that the given line is written at once.
*/
BIO_printf(bio_keylog, "%s\n", line);
(void)BIO_flush(bio_keylog);
}
int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
{
/* Close any open files */
BIO_free_all(bio_keylog);
bio_keylog = NULL;
if (ctx == NULL || keylog_file == NULL) {
/* Keylogging is disabled, OK. */
return 0;
}
/*
* Append rather than write in order to allow concurrent modification.
* Furthermore, this preserves existing keylog files which is useful when
* the tool is run multiple times.
*/
bio_keylog = BIO_new_file(keylog_file, "a");
if (bio_keylog == NULL) {
BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
return 1;
}
/* Write a header for seekable, empty files (this excludes pipes). */
if (BIO_tell(bio_keylog) == 0) {
BIO_puts(bio_keylog,
"# SSL/TLS secrets log file, generated by OpenSSL\n");
(void)BIO_flush(bio_keylog);
}
SSL_CTX_set_keylog_callback(ctx, keylog_callback);
return 0;
}
void print_ca_names(BIO *bio, SSL *s)
{
const char *cs = SSL_is_server(s) ? "server" : "client";
const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
int i;
if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
if (!SSL_is_server(s))
BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
return;
}
BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs);
for (i = 0; i < sk_X509_NAME_num(sk); i++) {
X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
BIO_write(bio, "\n", 1);
}
}