mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
b646179229
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
(cherry picked from commit 0ce7d1f355
)
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24034)
710 lines
22 KiB
C
710 lines
22 KiB
C
/*
|
|
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* NB: these functions have been "upgraded", the deprecated versions (which
|
|
* are compatibility wrappers using these functions) are in rsa_depr.c. -
|
|
* Geoff
|
|
*/
|
|
|
|
/*
|
|
* RSA low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/bn.h>
|
|
#include <openssl/self_test.h>
|
|
#include "prov/providercommon.h"
|
|
#include "rsa_local.h"
|
|
|
|
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
|
|
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
|
|
|
|
/*
|
|
* NB: this wrapper would normally be placed in rsa_lib.c and the static
|
|
* implementation would probably be in rsa_eay.c. Nonetheless, is kept here
|
|
* so that we don't introduce a new linker dependency. Eg. any application
|
|
* that wasn't previously linking object code related to key-generation won't
|
|
* have to now just because key-generation is part of RSA_METHOD.
|
|
*/
|
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
|
|
{
|
|
if (rsa->meth->rsa_keygen != NULL)
|
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
|
|
|
return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
|
|
e_value, cb);
|
|
}
|
|
|
|
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value, BN_GENCB *cb)
|
|
{
|
|
#ifndef FIPS_MODULE
|
|
/* multi-prime is only supported with the builtin key generation */
|
|
if (rsa->meth->rsa_multi_prime_keygen != NULL) {
|
|
return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
|
|
e_value, cb);
|
|
} else if (rsa->meth->rsa_keygen != NULL) {
|
|
/*
|
|
* However, if rsa->meth implements only rsa_keygen, then we
|
|
* have to honour it in 2-prime case and assume that it wouldn't
|
|
* know what to do with multi-prime key generated by builtin
|
|
* subroutine...
|
|
*/
|
|
if (primes == 2)
|
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
|
else
|
|
return 0;
|
|
}
|
|
#endif /* FIPS_MODULE */
|
|
return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);
|
|
}
|
|
|
|
DEFINE_STACK_OF(BIGNUM)
|
|
|
|
/*
|
|
* Given input values, q, p, n, d and e, derive the exponents
|
|
* and coefficients for each prime in this key, placing the result
|
|
* on their respective exps and coeffs stacks
|
|
*/
|
|
#ifndef FIPS_MODULE
|
|
int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value,
|
|
STACK_OF(BIGNUM) *factors,
|
|
STACK_OF(BIGNUM) *exps,
|
|
STACK_OF(BIGNUM) *coeffs)
|
|
{
|
|
STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;
|
|
BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;
|
|
BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;
|
|
BIGNUM *p = NULL, *q = NULL;
|
|
BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
|
|
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *tmp = NULL;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
ctx = BN_CTX_new_ex(rsa->libctx);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
pplist = sk_BIGNUM_new_null();
|
|
if (pplist == NULL)
|
|
goto err;
|
|
|
|
pdlist = sk_BIGNUM_new_null();
|
|
if (pdlist == NULL)
|
|
goto err;
|
|
|
|
r0 = BN_CTX_get(ctx);
|
|
r1 = BN_CTX_get(ctx);
|
|
r2 = BN_CTX_get(ctx);
|
|
|
|
if (r2 == NULL)
|
|
goto err;
|
|
|
|
BN_set_flags(r0, BN_FLG_CONSTTIME);
|
|
BN_set_flags(r1, BN_FLG_CONSTTIME);
|
|
BN_set_flags(r2, BN_FLG_CONSTTIME);
|
|
|
|
if (BN_copy(r1, rsa->n) == NULL)
|
|
goto err;
|
|
|
|
p = sk_BIGNUM_value(factors, 0);
|
|
q = sk_BIGNUM_value(factors, 1);
|
|
|
|
/* Build list of partial products of primes */
|
|
for (i = 0; i < sk_BIGNUM_num(factors); i++) {
|
|
switch (i) {
|
|
case 0:
|
|
/* our first prime, p */
|
|
if (!BN_sub(r2, p, BN_value_one()))
|
|
goto err;
|
|
BN_set_flags(r2, BN_FLG_CONSTTIME);
|
|
if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)
|
|
goto err;
|
|
break;
|
|
case 1:
|
|
/* second prime q */
|
|
if (!BN_mul(r1, p, q, ctx))
|
|
goto err;
|
|
tmp = BN_dup(r1);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
|
|
goto err;
|
|
break;
|
|
default:
|
|
factor = sk_BIGNUM_value(factors, i);
|
|
/* all other primes */
|
|
if (!BN_mul(r1, r1, factor, ctx))
|
|
goto err;
|
|
tmp = BN_dup(r1);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
|
|
goto err;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* build list of relative d values */
|
|
/* p -1 */
|
|
if (!BN_sub(r1, p, BN_value_one()))
|
|
goto err;
|
|
if (!BN_sub(r2, q, BN_value_one()))
|
|
goto err;
|
|
if (!BN_mul(r0, r1, r2, ctx))
|
|
goto err;
|
|
for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
|
factor = sk_BIGNUM_value(factors, i);
|
|
dval = BN_new();
|
|
if (dval == NULL)
|
|
goto err;
|
|
BN_set_flags(dval, BN_FLG_CONSTTIME);
|
|
if (!BN_sub(dval, factor, BN_value_one()))
|
|
goto err;
|
|
if (!BN_mul(r0, r0, dval, ctx))
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))
|
|
goto err;
|
|
}
|
|
|
|
/* Calculate dmp1, dmq1 and additional exponents */
|
|
dmp1 = BN_secure_new();
|
|
if (dmp1 == NULL)
|
|
goto err;
|
|
dmq1 = BN_secure_new();
|
|
if (dmq1 == NULL)
|
|
goto err;
|
|
|
|
if (!BN_mod(dmp1, rsa->d, r1, ctx))
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))
|
|
goto err;
|
|
dmp1 = NULL;
|
|
|
|
if (!BN_mod(dmq1, rsa->d, r2, ctx))
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))
|
|
goto err;
|
|
dmq1 = NULL;
|
|
|
|
for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
|
newpd = sk_BIGNUM_value(pdlist, i - 2);
|
|
newexp = BN_new();
|
|
if (newexp == NULL)
|
|
goto err;
|
|
if (!BN_mod(newexp, rsa->d, newpd, ctx)) {
|
|
BN_free(newexp);
|
|
goto err;
|
|
}
|
|
if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))
|
|
goto err;
|
|
}
|
|
|
|
/* Calculate iqmp and additional coefficients */
|
|
iqmp = BN_new();
|
|
if (iqmp == NULL)
|
|
goto err;
|
|
|
|
if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),
|
|
sk_BIGNUM_value(factors, 0), ctx) == NULL)
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))
|
|
goto err;
|
|
iqmp = NULL;
|
|
|
|
for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
|
newpp = sk_BIGNUM_value(pplist, i - 2);
|
|
newcoeff = BN_new();
|
|
if (newcoeff == NULL)
|
|
goto err;
|
|
if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),
|
|
ctx) == NULL) {
|
|
BN_free(newcoeff);
|
|
goto err;
|
|
}
|
|
if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
err:
|
|
sk_BIGNUM_pop_free(pplist, BN_free);
|
|
sk_BIGNUM_pop_free(pdlist, BN_free);
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
BN_clear_free(dmp1);
|
|
BN_clear_free(dmq1);
|
|
BN_clear_free(iqmp);
|
|
return ret;
|
|
}
|
|
|
|
static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value, BN_GENCB *cb)
|
|
{
|
|
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;
|
|
int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
|
|
int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
|
|
RSA_PRIME_INFO *pinfo = NULL;
|
|
STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
|
|
STACK_OF(BIGNUM) *factors = NULL;
|
|
STACK_OF(BIGNUM) *exps = NULL;
|
|
STACK_OF(BIGNUM) *coeffs = NULL;
|
|
BN_CTX *ctx = NULL;
|
|
BN_ULONG bitst = 0;
|
|
unsigned long error = 0;
|
|
int ok = -1;
|
|
|
|
if (bits < RSA_MIN_MODULUS_BITS) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
if (e_value == NULL) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
|
return 0;
|
|
}
|
|
/* A bad value for e can cause infinite loops */
|
|
if (!ossl_rsa_check_public_exponent(e_value)) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
|
|
return 0;
|
|
}
|
|
|
|
if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
|
|
return 0;
|
|
}
|
|
|
|
factors = sk_BIGNUM_new_null();
|
|
if (factors == NULL)
|
|
return 0;
|
|
|
|
exps = sk_BIGNUM_new_null();
|
|
if (exps == NULL)
|
|
goto err;
|
|
|
|
coeffs = sk_BIGNUM_new_null();
|
|
if (coeffs == NULL)
|
|
goto err;
|
|
|
|
ctx = BN_CTX_new_ex(rsa->libctx);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
BN_CTX_start(ctx);
|
|
r0 = BN_CTX_get(ctx);
|
|
r1 = BN_CTX_get(ctx);
|
|
r2 = BN_CTX_get(ctx);
|
|
if (r2 == NULL)
|
|
goto err;
|
|
|
|
/* divide bits into 'primes' pieces evenly */
|
|
quo = bits / primes;
|
|
rmd = bits % primes;
|
|
|
|
for (i = 0; i < primes; i++)
|
|
bitsr[i] = (i < rmd) ? quo + 1 : quo;
|
|
|
|
rsa->dirty_cnt++;
|
|
|
|
/* We need the RSA components non-NULL */
|
|
if (!rsa->n && ((rsa->n = BN_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
|
|
goto err;
|
|
BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
|
|
if (!rsa->e && ((rsa->e = BN_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
|
|
goto err;
|
|
BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
|
|
if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
|
|
goto err;
|
|
BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
|
|
|
|
/* initialize multi-prime components */
|
|
if (primes > RSA_DEFAULT_PRIME_NUM) {
|
|
rsa->version = RSA_ASN1_VERSION_MULTI;
|
|
prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
|
|
if (prime_infos == NULL)
|
|
goto err;
|
|
if (rsa->prime_infos != NULL) {
|
|
/* could this happen? */
|
|
sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
|
|
ossl_rsa_multip_info_free);
|
|
}
|
|
rsa->prime_infos = prime_infos;
|
|
|
|
/* prime_info from 2 to |primes| -1 */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = ossl_rsa_multip_info_new();
|
|
if (pinfo == NULL)
|
|
goto err;
|
|
(void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
|
}
|
|
}
|
|
|
|
if (BN_copy(rsa->e, e_value) == NULL)
|
|
goto err;
|
|
|
|
/* generate p, q and other primes (if any) */
|
|
for (i = 0; i < primes; i++) {
|
|
adj = 0;
|
|
retries = 0;
|
|
|
|
if (i == 0) {
|
|
prime = rsa->p;
|
|
} else if (i == 1) {
|
|
prime = rsa->q;
|
|
} else {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
prime = pinfo->r;
|
|
}
|
|
BN_set_flags(prime, BN_FLG_CONSTTIME);
|
|
|
|
for (;;) {
|
|
redo:
|
|
if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
|
|
cb, ctx))
|
|
goto err;
|
|
/*
|
|
* prime should not be equal to p, q, r_3...
|
|
* (those primes prior to this one)
|
|
*/
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++) {
|
|
BIGNUM *prev_prime;
|
|
|
|
if (j == 0)
|
|
prev_prime = rsa->p;
|
|
else if (j == 1)
|
|
prev_prime = rsa->q;
|
|
else
|
|
prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
|
|
j - 2)->r;
|
|
|
|
if (!BN_cmp(prime, prev_prime)) {
|
|
goto redo;
|
|
}
|
|
}
|
|
}
|
|
if (!BN_sub(r2, prime, BN_value_one()))
|
|
goto err;
|
|
ERR_set_mark();
|
|
BN_set_flags(r2, BN_FLG_CONSTTIME);
|
|
if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
|
|
/* GCD == 1 since inverse exists */
|
|
break;
|
|
}
|
|
error = ERR_peek_last_error();
|
|
if (ERR_GET_LIB(error) == ERR_LIB_BN
|
|
&& ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
|
|
/* GCD != 1 */
|
|
ERR_pop_to_mark();
|
|
} else {
|
|
goto err;
|
|
}
|
|
if (!BN_GENCB_call(cb, 2, n++))
|
|
goto err;
|
|
}
|
|
|
|
bitse += bitsr[i];
|
|
|
|
/* calculate n immediately to see if it's sufficient */
|
|
if (i == 1) {
|
|
/* we get at least 2 primes */
|
|
if (!BN_mul(r1, rsa->p, rsa->q, ctx))
|
|
goto err;
|
|
} else if (i != 0) {
|
|
/* modulus n = p * q * r_3 * r_4 ... */
|
|
if (!BN_mul(r1, rsa->n, prime, ctx))
|
|
goto err;
|
|
} else {
|
|
/* i == 0, do nothing */
|
|
if (!BN_GENCB_call(cb, 3, i))
|
|
goto err;
|
|
tmp = BN_dup(prime);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
|
|
goto err;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* if |r1|, product of factors so far, is not as long as expected
|
|
* (by checking the first 4 bits are less than 0x9 or greater than
|
|
* 0xF). If so, re-generate the last prime.
|
|
*
|
|
* NOTE: This actually can't happen in two-prime case, because of
|
|
* the way factors are generated.
|
|
*
|
|
* Besides, another consideration is, for multi-prime case, even the
|
|
* length modulus is as long as expected, the modulus could start at
|
|
* 0x8, which could be utilized to distinguish a multi-prime private
|
|
* key by using the modulus in a certificate. This is also covered
|
|
* by checking the length should not be less than 0x9.
|
|
*/
|
|
if (!BN_rshift(r2, r1, bitse - 4))
|
|
goto err;
|
|
bitst = BN_get_word(r2);
|
|
|
|
if (bitst < 0x9 || bitst > 0xF) {
|
|
/*
|
|
* For keys with more than 4 primes, we attempt longer factor to
|
|
* meet length requirement.
|
|
*
|
|
* Otherwise, we just re-generate the prime with the same length.
|
|
*
|
|
* This strategy has the following goals:
|
|
*
|
|
* 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
|
|
* 2. stay the same logic with normal 2-prime key
|
|
*/
|
|
bitse -= bitsr[i];
|
|
if (!BN_GENCB_call(cb, 2, n++))
|
|
goto err;
|
|
if (primes > 4) {
|
|
if (bitst < 0x9)
|
|
adj++;
|
|
else
|
|
adj--;
|
|
} else if (retries == 4) {
|
|
/*
|
|
* re-generate all primes from scratch, mainly used
|
|
* in 4 prime case to avoid long loop. Max retry times
|
|
* is set to 4.
|
|
*/
|
|
i = -1;
|
|
bitse = 0;
|
|
sk_BIGNUM_pop_free(factors, BN_clear_free);
|
|
factors = sk_BIGNUM_new_null();
|
|
if (factors == NULL)
|
|
goto err;
|
|
continue;
|
|
}
|
|
retries++;
|
|
goto redo;
|
|
}
|
|
/* save product of primes for further use, for multi-prime only */
|
|
if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
|
|
goto err;
|
|
if (BN_copy(rsa->n, r1) == NULL)
|
|
goto err;
|
|
if (!BN_GENCB_call(cb, 3, i))
|
|
goto err;
|
|
tmp = BN_dup(prime);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
|
|
goto err;
|
|
}
|
|
|
|
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
|
tmp = rsa->p;
|
|
rsa->p = rsa->q;
|
|
rsa->q = tmp;
|
|
/* mirror this in our factor stack */
|
|
if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))
|
|
goto err;
|
|
}
|
|
|
|
/* calculate d */
|
|
|
|
/* p - 1 */
|
|
if (!BN_sub(r1, rsa->p, BN_value_one()))
|
|
goto err;
|
|
/* q - 1 */
|
|
if (!BN_sub(r2, rsa->q, BN_value_one()))
|
|
goto err;
|
|
/* (p - 1)(q - 1) */
|
|
if (!BN_mul(r0, r1, r2, ctx))
|
|
goto err;
|
|
/* multi-prime */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
/* save r_i - 1 to pinfo->d temporarily */
|
|
if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
|
|
goto err;
|
|
if (!BN_mul(r0, r0, pinfo->d, ctx))
|
|
goto err;
|
|
}
|
|
|
|
|
|
BN_set_flags(r0, BN_FLG_CONSTTIME);
|
|
if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) {
|
|
goto err; /* d */
|
|
}
|
|
|
|
/* derive any missing exponents and coefficients */
|
|
if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,
|
|
factors, exps, coeffs))
|
|
goto err;
|
|
|
|
/*
|
|
* first 2 factors/exps are already tracked in p/q/dmq1/dmp1
|
|
* and the first coeff is in iqmp, so pop those off the stack
|
|
* Note, the first 2 factors/exponents are already tracked by p and q
|
|
* assign dmp1/dmq1 and iqmp
|
|
* the remaining pinfo values are separately allocated, so copy and delete
|
|
* those
|
|
*/
|
|
BN_clear_free(sk_BIGNUM_delete(factors, 0));
|
|
BN_clear_free(sk_BIGNUM_delete(factors, 0));
|
|
rsa->dmp1 = sk_BIGNUM_delete(exps, 0);
|
|
rsa->dmq1 = sk_BIGNUM_delete(exps, 0);
|
|
rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
tmp = sk_BIGNUM_delete(factors, 0);
|
|
BN_copy(pinfo->r, tmp);
|
|
BN_clear_free(tmp);
|
|
tmp = sk_BIGNUM_delete(exps, 0);
|
|
tmp2 = BN_copy(pinfo->d, tmp);
|
|
BN_clear_free(tmp);
|
|
if (tmp2 == NULL)
|
|
goto err;
|
|
tmp = sk_BIGNUM_delete(coeffs, 0);
|
|
tmp2 = BN_copy(pinfo->t, tmp);
|
|
BN_clear_free(tmp);
|
|
if (tmp2 == NULL)
|
|
goto err;
|
|
}
|
|
ok = 1;
|
|
err:
|
|
sk_BIGNUM_free(factors);
|
|
sk_BIGNUM_free(exps);
|
|
sk_BIGNUM_free(coeffs);
|
|
if (ok == -1) {
|
|
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
|
ok = 0;
|
|
}
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
return ok;
|
|
}
|
|
#endif /* FIPS_MODULE */
|
|
|
|
static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
|
|
{
|
|
int ok = 0;
|
|
|
|
#ifdef FIPS_MODULE
|
|
ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
|
|
pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
|
|
#else
|
|
/*
|
|
* Only multi-prime keys or insecure keys with a small key length or a
|
|
* public exponent <= 2^16 will use the older rsa_multiprime_keygen().
|
|
*/
|
|
if (primes == 2
|
|
&& bits >= 2048
|
|
&& (e_value == NULL || BN_num_bits(e_value) > 16))
|
|
ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
|
|
else
|
|
ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
|
|
#endif /* FIPS_MODULE */
|
|
|
|
if (pairwise_test && ok > 0) {
|
|
OSSL_CALLBACK *stcb = NULL;
|
|
void *stcbarg = NULL;
|
|
|
|
OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
|
|
ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
|
|
if (!ok) {
|
|
ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
|
|
/* Clear intermediate results */
|
|
BN_clear_free(rsa->d);
|
|
BN_clear_free(rsa->p);
|
|
BN_clear_free(rsa->q);
|
|
BN_clear_free(rsa->dmp1);
|
|
BN_clear_free(rsa->dmq1);
|
|
BN_clear_free(rsa->iqmp);
|
|
rsa->d = NULL;
|
|
rsa->p = NULL;
|
|
rsa->q = NULL;
|
|
rsa->dmp1 = NULL;
|
|
rsa->dmq1 = NULL;
|
|
rsa->iqmp = NULL;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* For RSA key generation it is not known whether the key pair will be used
|
|
* for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
|
|
* either a signature verification OR an encryption operation may be used to
|
|
* perform the pairwise consistency check. The simpler encrypt/decrypt operation
|
|
* has been chosen for this case.
|
|
*/
|
|
static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
|
|
{
|
|
int ret = 0;
|
|
unsigned int ciphertxt_len;
|
|
unsigned char *ciphertxt = NULL;
|
|
const unsigned char plaintxt[16] = {0};
|
|
unsigned char *decoded = NULL;
|
|
unsigned int decoded_len;
|
|
unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
|
|
int padding = RSA_PKCS1_PADDING;
|
|
OSSL_SELF_TEST *st = NULL;
|
|
|
|
st = OSSL_SELF_TEST_new(cb, cbarg);
|
|
if (st == NULL)
|
|
goto err;
|
|
OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
|
|
OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
|
|
|
|
ciphertxt_len = RSA_size(rsa);
|
|
/*
|
|
* RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'
|
|
* parameter to be a maximum of RSA_size() - allocate space for both.
|
|
*/
|
|
ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);
|
|
if (ciphertxt == NULL)
|
|
goto err;
|
|
decoded = ciphertxt + ciphertxt_len;
|
|
|
|
ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
|
|
padding);
|
|
if (ciphertxt_len <= 0)
|
|
goto err;
|
|
if (ciphertxt_len == plaintxt_len
|
|
&& memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
|
|
goto err;
|
|
|
|
OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
|
|
|
|
decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
|
|
padding);
|
|
if (decoded_len != plaintxt_len
|
|
|| memcmp(decoded, plaintxt, decoded_len) != 0)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
OSSL_SELF_TEST_onend(st, ret);
|
|
OSSL_SELF_TEST_free(st);
|
|
OPENSSL_free(ciphertxt);
|
|
|
|
return ret;
|
|
}
|