mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
b9b2135d22
Loading the various built-in engines was unconditionally clearing the whole error stack. During config file processing processing a .include directive which fails results in errors being added to the stack - but we carry on anyway. These errors were then later being removed by the engine loading code, meaning that problems with the .include directive never get shown. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> (Merged from https://github.com/openssl/openssl/pull/13311)
925 lines
29 KiB
C
925 lines
29 KiB
C
/*
|
|
* Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* We need to use some engine deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
/*
|
|
* SHA-1 low level APIs are deprecated for public use, but still ok for
|
|
* internal use. Note, that due to symbols not being exported, only the
|
|
* #defines and strucures can be accessed, in this case SHA_CBLOCK and
|
|
* sizeof(SHA_CTX).
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <openssl/opensslconf.h>
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/engine.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/async.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/ssl.h>
|
|
#include <openssl/modes.h>
|
|
|
|
#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
|
|
# undef ASYNC_POSIX
|
|
# define ASYNC_POSIX
|
|
# include <unistd.h>
|
|
#elif defined(_WIN32)
|
|
# undef ASYNC_WIN
|
|
# define ASYNC_WIN
|
|
#endif
|
|
|
|
#include "e_dasync_err.c"
|
|
|
|
/* Engine Id and Name */
|
|
static const char *engine_dasync_id = "dasync";
|
|
static const char *engine_dasync_name = "Dummy Async engine support";
|
|
|
|
|
|
/* Engine Lifetime functions */
|
|
static int dasync_destroy(ENGINE *e);
|
|
static int dasync_init(ENGINE *e);
|
|
static int dasync_finish(ENGINE *e);
|
|
void engine_load_dasync_int(void);
|
|
|
|
|
|
/* Set up digests. Just SHA1 for now */
|
|
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
|
|
const int **nids, int nid);
|
|
|
|
static void dummy_pause_job(void);
|
|
|
|
/* SHA1 */
|
|
static int dasync_sha1_init(EVP_MD_CTX *ctx);
|
|
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
|
|
size_t count);
|
|
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
|
|
|
|
/*
|
|
* Holds the EVP_MD object for sha1 in this engine. Set up once only during
|
|
* engine bind and can then be reused many times.
|
|
*/
|
|
static EVP_MD *_hidden_sha1_md = NULL;
|
|
static const EVP_MD *dasync_sha1(void)
|
|
{
|
|
return _hidden_sha1_md;
|
|
}
|
|
static void destroy_digests(void)
|
|
{
|
|
EVP_MD_meth_free(_hidden_sha1_md);
|
|
_hidden_sha1_md = NULL;
|
|
}
|
|
|
|
static int dasync_digest_nids(const int **nids)
|
|
{
|
|
static int digest_nids[2] = { 0, 0 };
|
|
static int pos = 0;
|
|
static int init = 0;
|
|
|
|
if (!init) {
|
|
const EVP_MD *md;
|
|
if ((md = dasync_sha1()) != NULL)
|
|
digest_nids[pos++] = EVP_MD_type(md);
|
|
digest_nids[pos] = 0;
|
|
init = 1;
|
|
}
|
|
*nids = digest_nids;
|
|
return pos;
|
|
}
|
|
|
|
/* RSA */
|
|
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
|
|
const int **pnids, int nid);
|
|
|
|
static int dasync_rsa_init(EVP_PKEY_CTX *ctx);
|
|
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx);
|
|
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx);
|
|
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
|
|
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx);
|
|
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
|
|
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx);
|
|
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen);
|
|
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx);
|
|
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen);
|
|
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
|
|
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
|
|
const char *value);
|
|
|
|
static EVP_PKEY_METHOD *dasync_rsa;
|
|
static const EVP_PKEY_METHOD *dasync_rsa_orig;
|
|
|
|
/* AES */
|
|
|
|
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
|
|
void *ptr);
|
|
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc);
|
|
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t inl);
|
|
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
|
|
int arg, void *ptr);
|
|
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *key,
|
|
const unsigned char *iv,
|
|
int enc);
|
|
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
|
|
unsigned char *out,
|
|
const unsigned char *in,
|
|
size_t inl);
|
|
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
|
|
|
|
struct dasync_pipeline_ctx {
|
|
void *inner_cipher_data;
|
|
unsigned int numpipes;
|
|
unsigned char **inbufs;
|
|
unsigned char **outbufs;
|
|
size_t *lens;
|
|
unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
|
|
unsigned int aadctr;
|
|
};
|
|
|
|
/*
|
|
* Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
|
|
* during engine bind and can then be reused many times.
|
|
*/
|
|
static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
|
|
static const EVP_CIPHER *dasync_aes_128_cbc(void)
|
|
{
|
|
return _hidden_aes_128_cbc;
|
|
}
|
|
|
|
/*
|
|
* Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
|
|
* once only during engine bind and can then be reused many times.
|
|
*
|
|
* This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
|
|
* which is implemented only if the AES-NI instruction set extension is available
|
|
* (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
|
|
* be available either.
|
|
*
|
|
* Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
|
|
* negotiate the encrypt-then-mac extension) won't negotiate it anyway.
|
|
*/
|
|
static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
|
|
static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
|
|
{
|
|
return _hidden_aes_128_cbc_hmac_sha1;
|
|
}
|
|
|
|
static void destroy_ciphers(void)
|
|
{
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
|
|
_hidden_aes_128_cbc = NULL;
|
|
_hidden_aes_128_cbc_hmac_sha1 = NULL;
|
|
}
|
|
|
|
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid);
|
|
|
|
static int dasync_cipher_nids[] = {
|
|
NID_aes_128_cbc,
|
|
NID_aes_128_cbc_hmac_sha1,
|
|
0
|
|
};
|
|
|
|
static int bind_dasync(ENGINE *e)
|
|
{
|
|
/* Setup RSA */
|
|
;
|
|
if ((dasync_rsa_orig = EVP_PKEY_meth_find(EVP_PKEY_RSA)) == NULL
|
|
|| (dasync_rsa = EVP_PKEY_meth_new(EVP_PKEY_RSA, 0)) == NULL)
|
|
return 0;
|
|
EVP_PKEY_meth_set_init(dasync_rsa, dasync_rsa_init);
|
|
EVP_PKEY_meth_set_cleanup(dasync_rsa, dasync_rsa_cleanup);
|
|
EVP_PKEY_meth_set_paramgen(dasync_rsa, dasync_rsa_paramgen_init,
|
|
dasync_rsa_paramgen);
|
|
EVP_PKEY_meth_set_keygen(dasync_rsa, dasync_rsa_keygen_init,
|
|
dasync_rsa_keygen);
|
|
EVP_PKEY_meth_set_encrypt(dasync_rsa, dasync_rsa_encrypt_init,
|
|
dasync_rsa_encrypt);
|
|
EVP_PKEY_meth_set_decrypt(dasync_rsa, dasync_rsa_decrypt_init,
|
|
dasync_rsa_decrypt);
|
|
EVP_PKEY_meth_set_ctrl(dasync_rsa, dasync_rsa_ctrl,
|
|
dasync_rsa_ctrl_str);
|
|
|
|
/* Ensure the dasync error handling is set up */
|
|
ERR_load_DASYNC_strings();
|
|
|
|
if (!ENGINE_set_id(e, engine_dasync_id)
|
|
|| !ENGINE_set_name(e, engine_dasync_name)
|
|
|| !ENGINE_set_pkey_meths(e, dasync_pkey)
|
|
|| !ENGINE_set_digests(e, dasync_digests)
|
|
|| !ENGINE_set_ciphers(e, dasync_ciphers)
|
|
|| !ENGINE_set_destroy_function(e, dasync_destroy)
|
|
|| !ENGINE_set_init_function(e, dasync_init)
|
|
|| !ENGINE_set_finish_function(e, dasync_finish)) {
|
|
DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
|
|
* supplied by this engine
|
|
*/
|
|
_hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
|
|
if (_hidden_sha1_md == NULL
|
|
|| !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
|
|
|| !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
|
|
|| !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
|
|
sizeof(EVP_MD *) + sizeof(SHA_CTX))
|
|
|| !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
|
|
|| !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
|
|
|| !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
|
|
|| !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
|
|
EVP_MD_meth_free(_hidden_sha1_md);
|
|
_hidden_sha1_md = NULL;
|
|
}
|
|
|
|
_hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
|
|
16 /* block size */,
|
|
16 /* key len */);
|
|
if (_hidden_aes_128_cbc == NULL
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1
|
|
| EVP_CIPH_CBC_MODE
|
|
| EVP_CIPH_FLAG_PIPELINE)
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
|
|
dasync_aes128_init_key)
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_cipher)
|
|
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_cleanup)
|
|
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_ctrl)
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
|
|
sizeof(struct dasync_pipeline_ctx))) {
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
|
|
_hidden_aes_128_cbc = NULL;
|
|
}
|
|
|
|
_hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
|
|
NID_aes_128_cbc_hmac_sha1,
|
|
16 /* block size */,
|
|
16 /* key len */);
|
|
if (_hidden_aes_128_cbc_hmac_sha1 == NULL
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
|
|
EVP_CIPH_CBC_MODE
|
|
| EVP_CIPH_FLAG_DEFAULT_ASN1
|
|
| EVP_CIPH_FLAG_AEAD_CIPHER
|
|
| EVP_CIPH_FLAG_PIPELINE)
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_init_key)
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_cipher)
|
|
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_cleanup)
|
|
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_ctrl)
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
|
|
sizeof(struct dasync_pipeline_ctx))) {
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
|
|
_hidden_aes_128_cbc_hmac_sha1 = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void destroy_pkey(void)
|
|
{
|
|
EVP_PKEY_meth_free(dasync_rsa);
|
|
dasync_rsa_orig = NULL;
|
|
dasync_rsa = NULL;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static int bind_helper(ENGINE *e, const char *id)
|
|
{
|
|
if (id && (strcmp(id, engine_dasync_id) != 0))
|
|
return 0;
|
|
if (!bind_dasync(e))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
|
|
# endif
|
|
|
|
static ENGINE *engine_dasync(void)
|
|
{
|
|
ENGINE *ret = ENGINE_new();
|
|
if (!ret)
|
|
return NULL;
|
|
if (!bind_dasync(ret)) {
|
|
ENGINE_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void engine_load_dasync_int(void)
|
|
{
|
|
ENGINE *toadd = engine_dasync();
|
|
if (!toadd)
|
|
return;
|
|
ERR_set_mark();
|
|
ENGINE_add(toadd);
|
|
/*
|
|
* If the "add" worked, it gets a structural reference. So either way, we
|
|
* release our just-created reference.
|
|
*/
|
|
ENGINE_free(toadd);
|
|
/*
|
|
* If the "add" didn't work, it was probably a conflict because it was
|
|
* already added (eg. someone calling ENGINE_load_blah then calling
|
|
* ENGINE_load_builtin_engines() perhaps).
|
|
*/
|
|
ERR_pop_to_mark();
|
|
}
|
|
|
|
static int dasync_init(ENGINE *e)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int dasync_finish(ENGINE *e)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int dasync_destroy(ENGINE *e)
|
|
{
|
|
destroy_digests();
|
|
destroy_ciphers();
|
|
destroy_pkey();
|
|
ERR_unload_DASYNC_strings();
|
|
return 1;
|
|
}
|
|
|
|
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
|
|
const int **pnids, int nid)
|
|
{
|
|
static const int rnid = EVP_PKEY_RSA;
|
|
|
|
if (pmeth == NULL) {
|
|
*pnids = &rnid;
|
|
return 1;
|
|
}
|
|
|
|
if (nid == EVP_PKEY_RSA) {
|
|
*pmeth = dasync_rsa;
|
|
return 1;
|
|
}
|
|
|
|
*pmeth = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
|
|
const int **nids, int nid)
|
|
{
|
|
int ok = 1;
|
|
if (!digest) {
|
|
/* We are returning a list of supported nids */
|
|
return dasync_digest_nids(nids);
|
|
}
|
|
/* We are being asked for a specific digest */
|
|
switch (nid) {
|
|
case NID_sha1:
|
|
*digest = dasync_sha1();
|
|
break;
|
|
default:
|
|
ok = 0;
|
|
*digest = NULL;
|
|
break;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid)
|
|
{
|
|
int ok = 1;
|
|
if (cipher == NULL) {
|
|
/* We are returning a list of supported nids */
|
|
*nids = dasync_cipher_nids;
|
|
return (sizeof(dasync_cipher_nids) -
|
|
1) / sizeof(dasync_cipher_nids[0]);
|
|
}
|
|
/* We are being asked for a specific cipher */
|
|
switch (nid) {
|
|
case NID_aes_128_cbc:
|
|
*cipher = dasync_aes_128_cbc();
|
|
break;
|
|
case NID_aes_128_cbc_hmac_sha1:
|
|
*cipher = dasync_aes_128_cbc_hmac_sha1();
|
|
break;
|
|
default:
|
|
ok = 0;
|
|
*cipher = NULL;
|
|
break;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
|
|
OSSL_ASYNC_FD readfd, void *pvwritefd)
|
|
{
|
|
OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
|
|
#if defined(ASYNC_WIN)
|
|
CloseHandle(readfd);
|
|
CloseHandle(*pwritefd);
|
|
#elif defined(ASYNC_POSIX)
|
|
close(readfd);
|
|
close(*pwritefd);
|
|
#endif
|
|
OPENSSL_free(pwritefd);
|
|
}
|
|
|
|
#define DUMMY_CHAR 'X'
|
|
|
|
static void dummy_pause_job(void) {
|
|
ASYNC_JOB *job;
|
|
ASYNC_WAIT_CTX *waitctx;
|
|
ASYNC_callback_fn callback;
|
|
void * callback_arg;
|
|
OSSL_ASYNC_FD pipefds[2] = {0, 0};
|
|
OSSL_ASYNC_FD *writefd;
|
|
#if defined(ASYNC_WIN)
|
|
DWORD numwritten, numread;
|
|
char buf = DUMMY_CHAR;
|
|
#elif defined(ASYNC_POSIX)
|
|
char buf = DUMMY_CHAR;
|
|
#endif
|
|
|
|
if ((job = ASYNC_get_current_job()) == NULL)
|
|
return;
|
|
|
|
waitctx = ASYNC_get_wait_ctx(job);
|
|
|
|
if (ASYNC_WAIT_CTX_get_callback(waitctx, &callback, &callback_arg) && callback != NULL) {
|
|
/*
|
|
* In the Dummy async engine we are cheating. We call the callback that the job
|
|
* is complete before the call to ASYNC_pause_job(). A real
|
|
* async engine would only call the callback when the job was actually complete
|
|
*/
|
|
(*callback)(callback_arg);
|
|
ASYNC_pause_job();
|
|
return;
|
|
}
|
|
|
|
|
|
if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
|
|
(void **)&writefd)) {
|
|
pipefds[1] = *writefd;
|
|
} else {
|
|
writefd = OPENSSL_malloc(sizeof(*writefd));
|
|
if (writefd == NULL)
|
|
return;
|
|
#if defined(ASYNC_WIN)
|
|
if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
|
|
OPENSSL_free(writefd);
|
|
return;
|
|
}
|
|
#elif defined(ASYNC_POSIX)
|
|
if (pipe(pipefds) != 0) {
|
|
OPENSSL_free(writefd);
|
|
return;
|
|
}
|
|
#endif
|
|
*writefd = pipefds[1];
|
|
|
|
if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
|
|
writefd, wait_cleanup)) {
|
|
wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* In the Dummy async engine we are cheating. We signal that the job
|
|
* is complete by waking it before the call to ASYNC_pause_job(). A real
|
|
* async engine would only wake when the job was actually complete
|
|
*/
|
|
#if defined(ASYNC_WIN)
|
|
WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
|
|
#elif defined(ASYNC_POSIX)
|
|
if (write(pipefds[1], &buf, 1) < 0)
|
|
return;
|
|
#endif
|
|
|
|
/* Ignore errors - we carry on anyway */
|
|
ASYNC_pause_job();
|
|
|
|
/* Clear the wake signal */
|
|
#if defined(ASYNC_WIN)
|
|
ReadFile(pipefds[0], &buf, 1, &numread, NULL);
|
|
#elif defined(ASYNC_POSIX)
|
|
if (read(pipefds[0], &buf, 1) < 0)
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* SHA1 implementation. At the moment we just defer to the standard
|
|
* implementation
|
|
*/
|
|
static int dasync_sha1_init(EVP_MD_CTX *ctx)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return EVP_MD_meth_get_init(EVP_sha1())(ctx);
|
|
}
|
|
|
|
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
|
|
size_t count)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return EVP_MD_meth_get_update(EVP_sha1())(ctx, data, count);
|
|
}
|
|
|
|
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return EVP_MD_meth_get_final(EVP_sha1())(ctx, md);
|
|
}
|
|
|
|
/* Cipher helper functions */
|
|
|
|
static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
|
|
void *ptr, int aeadcapable)
|
|
{
|
|
int ret;
|
|
struct dasync_pipeline_ctx *pipe_ctx =
|
|
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
|
|
|
|
if (pipe_ctx == NULL)
|
|
return 0;
|
|
|
|
switch (type) {
|
|
case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->outbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->inbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->lens = (size_t *)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_AEAD_SET_MAC_KEY:
|
|
if (!aeadcapable)
|
|
return -1;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, type, arg, ptr);
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
return ret;
|
|
|
|
case EVP_CTRL_AEAD_TLS1_AAD:
|
|
{
|
|
unsigned char *p = ptr;
|
|
unsigned int len;
|
|
|
|
if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
|
|
return -1;
|
|
|
|
if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
|
|
return -1;
|
|
|
|
memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
|
|
EVP_AEAD_TLS1_AAD_LEN);
|
|
pipe_ctx->aadctr++;
|
|
|
|
len = p[arg - 2] << 8 | p[arg - 1];
|
|
|
|
if (EVP_CIPHER_CTX_encrypting(ctx)) {
|
|
if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
|
|
if (len < AES_BLOCK_SIZE)
|
|
return 0;
|
|
len -= AES_BLOCK_SIZE;
|
|
}
|
|
|
|
return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
|
|
& -AES_BLOCK_SIZE) - len;
|
|
} else {
|
|
return SHA_DIGEST_LENGTH;
|
|
}
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *key,
|
|
const unsigned char *iv, int enc,
|
|
const EVP_CIPHER *cipher)
|
|
{
|
|
int ret;
|
|
struct dasync_pipeline_ctx *pipe_ctx =
|
|
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
|
|
|
|
if (pipe_ctx->inner_cipher_data == NULL
|
|
&& EVP_CIPHER_impl_ctx_size(cipher) != 0) {
|
|
pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
|
|
EVP_CIPHER_impl_ctx_size(cipher));
|
|
if (pipe_ctx->inner_cipher_data == NULL) {
|
|
DASYNCerr(DASYNC_F_DASYNC_CIPHER_INIT_KEY_HELPER,
|
|
ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
pipe_ctx->numpipes = 0;
|
|
pipe_ctx->aadctr = 0;
|
|
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t inl,
|
|
const EVP_CIPHER *cipher)
|
|
{
|
|
int ret = 1;
|
|
unsigned int i, pipes;
|
|
struct dasync_pipeline_ctx *pipe_ctx =
|
|
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
|
|
|
|
pipes = pipe_ctx->numpipes;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
if (pipes == 0) {
|
|
if (pipe_ctx->aadctr != 0) {
|
|
if (pipe_ctx->aadctr != 1)
|
|
return -1;
|
|
EVP_CIPHER_meth_get_ctrl(cipher)
|
|
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN,
|
|
pipe_ctx->tlsaad[0]);
|
|
}
|
|
ret = EVP_CIPHER_meth_get_do_cipher(cipher)
|
|
(ctx, out, in, inl);
|
|
} else {
|
|
if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
|
|
return -1;
|
|
for (i = 0; i < pipes; i++) {
|
|
if (pipe_ctx->aadctr > 0) {
|
|
EVP_CIPHER_meth_get_ctrl(cipher)
|
|
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN,
|
|
pipe_ctx->tlsaad[i]);
|
|
}
|
|
ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
|
|
(ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
|
|
pipe_ctx->lens[i]);
|
|
}
|
|
pipe_ctx->numpipes = 0;
|
|
}
|
|
pipe_ctx->aadctr = 0;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher)
|
|
{
|
|
struct dasync_pipeline_ctx *pipe_ctx =
|
|
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
|
|
|
|
OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
|
|
EVP_CIPHER_impl_ctx_size(cipher));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* AES128 CBC Implementation
|
|
*/
|
|
|
|
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
|
|
void *ptr)
|
|
{
|
|
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0);
|
|
}
|
|
|
|
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
|
|
}
|
|
|
|
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t inl)
|
|
{
|
|
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
|
|
}
|
|
|
|
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
|
|
{
|
|
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
|
|
}
|
|
|
|
|
|
/*
|
|
* AES128 CBC HMAC SHA1 Implementation
|
|
*/
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
|
|
int arg, void *ptr)
|
|
{
|
|
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1);
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *key,
|
|
const unsigned char *iv,
|
|
int enc)
|
|
{
|
|
/*
|
|
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
|
|
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
|
|
*/
|
|
return dasync_cipher_init_key_helper(ctx, key, iv, enc,
|
|
EVP_aes_128_cbc_hmac_sha1());
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
|
|
unsigned char *out,
|
|
const unsigned char *in,
|
|
size_t inl)
|
|
{
|
|
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
|
|
{
|
|
/*
|
|
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
|
|
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
|
|
*/
|
|
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
|
|
}
|
|
|
|
|
|
/*
|
|
* RSA implementation
|
|
*/
|
|
static int dasync_rsa_init(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static int (*pinit)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pinit == NULL)
|
|
EVP_PKEY_meth_get_init(dasync_rsa_orig, &pinit);
|
|
return pinit(ctx);
|
|
}
|
|
|
|
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static void (*pcleanup)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pcleanup == NULL)
|
|
EVP_PKEY_meth_get_cleanup(dasync_rsa_orig, &pcleanup);
|
|
pcleanup(ctx);
|
|
}
|
|
|
|
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static int (*pparamgen_init)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pparamgen_init == NULL)
|
|
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, &pparamgen_init, NULL);
|
|
return pparamgen_init(ctx);
|
|
}
|
|
|
|
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
|
|
{
|
|
static int (*pparamgen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
|
|
|
|
if (pparamgen == NULL)
|
|
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, NULL, &pparamgen);
|
|
return pparamgen(ctx, pkey);
|
|
}
|
|
|
|
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static int (*pkeygen_init)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pkeygen_init == NULL)
|
|
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, &pkeygen_init, NULL);
|
|
return pkeygen_init(ctx);
|
|
}
|
|
|
|
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
|
|
{
|
|
static int (*pkeygen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
|
|
|
|
if (pkeygen == NULL)
|
|
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, NULL, &pkeygen);
|
|
return pkeygen(ctx, pkey);
|
|
}
|
|
|
|
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static int (*pencrypt_init)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pencrypt_init == NULL)
|
|
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, &pencrypt_init, NULL);
|
|
return pencrypt_init(ctx);
|
|
}
|
|
|
|
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen)
|
|
{
|
|
static int (*pencryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen);
|
|
|
|
if (pencryptfn == NULL)
|
|
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pencryptfn);
|
|
return pencryptfn(ctx, out, outlen, in, inlen);
|
|
}
|
|
|
|
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx)
|
|
{
|
|
static int (*pdecrypt_init)(EVP_PKEY_CTX *ctx);
|
|
|
|
if (pdecrypt_init == NULL)
|
|
EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, &pdecrypt_init, NULL);
|
|
return pdecrypt_init(ctx);
|
|
}
|
|
|
|
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen)
|
|
{
|
|
static int (*pdecrypt)(EVP_PKEY_CTX *ctx, unsigned char *out,
|
|
size_t *outlen, const unsigned char *in,
|
|
size_t inlen);
|
|
|
|
if (pdecrypt == NULL)
|
|
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pdecrypt);
|
|
return pdecrypt(ctx, out, outlen, in, inlen);
|
|
}
|
|
|
|
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
|
|
{
|
|
static int (*pctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
|
|
|
|
if (pctrl == NULL)
|
|
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, &pctrl, NULL);
|
|
return pctrl(ctx, type, p1, p2);
|
|
}
|
|
|
|
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
|
|
const char *value)
|
|
{
|
|
static int (*pctrl_str)(EVP_PKEY_CTX *ctx, const char *type,
|
|
const char *value);
|
|
|
|
if (pctrl_str == NULL)
|
|
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, NULL, &pctrl_str);
|
|
return pctrl_str(ctx, type, value);
|
|
}
|