mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
94af0cd7f3
There was an unused macro in ssl_locl.h that used an internal type, so I removed it. Move bio_st from bio.h to ossl_type.h Reviewed-by: Andy Polyakov <appro@openssl.org>
2033 lines
50 KiB
C
2033 lines
50 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the Eric Young open source
|
|
* license provided above.
|
|
*
|
|
* The binary polynomial arithmetic software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "e_os.h"
|
|
|
|
#include <openssl/bio.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/x509.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "../crypto/bn/bn_lcl.h"
|
|
|
|
static const int num0 = 100; /* number of tests */
|
|
static const int num1 = 50; /* additional tests for some functions */
|
|
static const int num2 = 5; /* number of tests for slow functions */
|
|
|
|
int test_add(BIO *bp);
|
|
int test_sub(BIO *bp);
|
|
int test_lshift1(BIO *bp);
|
|
int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_);
|
|
int test_rshift1(BIO *bp);
|
|
int test_rshift(BIO *bp, BN_CTX *ctx);
|
|
int test_div(BIO *bp, BN_CTX *ctx);
|
|
int test_div_word(BIO *bp);
|
|
int test_div_recp(BIO *bp, BN_CTX *ctx);
|
|
int test_mul(BIO *bp);
|
|
int test_sqr(BIO *bp, BN_CTX *ctx);
|
|
int test_mont(BIO *bp, BN_CTX *ctx);
|
|
int test_mod(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_mul(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx);
|
|
int test_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_add(BIO *bp);
|
|
int test_gf2m_mod(BIO *bp);
|
|
int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx);
|
|
int test_kron(BIO *bp, BN_CTX *ctx);
|
|
int test_sqrt(BIO *bp, BN_CTX *ctx);
|
|
int test_small_prime(BIO *bp, BN_CTX *ctx);
|
|
int rand_neg(void);
|
|
static int results = 0;
|
|
|
|
static unsigned char lst[] =
|
|
"\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9"
|
|
"\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0";
|
|
|
|
static const char rnd_seed[] =
|
|
"string to make the random number generator think it has entropy";
|
|
|
|
static void message(BIO *out, char *m)
|
|
{
|
|
fprintf(stderr, "test %s\n", m);
|
|
BIO_puts(out, "print \"test ");
|
|
BIO_puts(out, m);
|
|
BIO_puts(out, "\\n\"\n");
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
BN_CTX *ctx;
|
|
BIO *out;
|
|
char *outfile = NULL;
|
|
|
|
results = 0;
|
|
|
|
RAND_seed(rnd_seed, sizeof rnd_seed); /* or BN_generate_prime may fail */
|
|
|
|
argc--;
|
|
argv++;
|
|
while (argc >= 1) {
|
|
if (strcmp(*argv, "-results") == 0)
|
|
results = 1;
|
|
else if (strcmp(*argv, "-out") == 0) {
|
|
if (--argc < 1)
|
|
break;
|
|
outfile = *(++argv);
|
|
}
|
|
argc--;
|
|
argv++;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
EXIT(1);
|
|
|
|
out = BIO_new(BIO_s_file());
|
|
if (out == NULL)
|
|
EXIT(1);
|
|
if (outfile == NULL) {
|
|
BIO_set_fp(out, stdout, BIO_NOCLOSE | BIO_FP_TEXT);
|
|
} else {
|
|
if (!BIO_write_filename(out, outfile)) {
|
|
perror(outfile);
|
|
EXIT(1);
|
|
}
|
|
}
|
|
#ifdef OPENSSL_SYS_VMS
|
|
{
|
|
BIO *tmpbio = BIO_new(BIO_f_linebuffer());
|
|
out = BIO_push(tmpbio, out);
|
|
}
|
|
#endif
|
|
|
|
if (!results)
|
|
BIO_puts(out, "obase=16\nibase=16\n");
|
|
|
|
message(out, "BN_add");
|
|
if (!test_add(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_sub");
|
|
if (!test_sub(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift1");
|
|
if (!test_lshift1(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift (fixed)");
|
|
if (!test_lshift(out, ctx, BN_bin2bn(lst, sizeof(lst) - 1, NULL)))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift");
|
|
if (!test_lshift(out, ctx, NULL))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_rshift1");
|
|
if (!test_rshift1(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_rshift");
|
|
if (!test_rshift(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_sqr");
|
|
if (!test_sqr(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mul");
|
|
if (!test_mul(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div");
|
|
if (!test_div(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div_word");
|
|
if (!test_div_word(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div_recp");
|
|
if (!test_div_recp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod");
|
|
if (!test_mod(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_mul");
|
|
if (!test_mod_mul(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mont");
|
|
if (!test_mont(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_exp");
|
|
if (!test_mod_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_exp_mont_consttime");
|
|
if (!test_mod_exp_mont_consttime(out, ctx))
|
|
goto err;
|
|
if (!test_mod_exp_mont5(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_exp");
|
|
if (!test_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_kronecker");
|
|
if (!test_kron(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_sqrt");
|
|
if (!test_sqrt(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "Small prime generation");
|
|
if (!test_small_prime(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
message(out, "BN_GF2m_add");
|
|
if (!test_gf2m_add(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod");
|
|
if (!test_gf2m_mod(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_mul");
|
|
if (!test_gf2m_mod_mul(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_sqr");
|
|
if (!test_gf2m_mod_sqr(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_inv");
|
|
if (!test_gf2m_mod_inv(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_div");
|
|
if (!test_gf2m_mod_div(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_exp");
|
|
if (!test_gf2m_mod_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_sqrt");
|
|
if (!test_gf2m_mod_sqrt(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_solve_quad");
|
|
if (!test_gf2m_mod_solve_quad(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
#endif
|
|
BN_CTX_free(ctx);
|
|
BIO_free(out);
|
|
|
|
EXIT(0);
|
|
err:
|
|
BIO_puts(out, "1\n"); /* make sure the Perl script fed by bc
|
|
* notices the failure, see test_bn in
|
|
* test/Makefile.ssl */
|
|
(void)BIO_flush(out);
|
|
ERR_load_crypto_strings();
|
|
ERR_print_errors_fp(stderr);
|
|
EXIT(1);
|
|
}
|
|
|
|
int test_add(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(b, 450 + i, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_add(c, a, b);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " + ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
a->neg = !a->neg;
|
|
b->neg = !b->neg;
|
|
BN_add(c, c, b);
|
|
BN_add(c, c, a);
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "Add test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_sub(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_copy(b, a);
|
|
if (BN_set_bit(a, i) == 0)
|
|
return (0);
|
|
BN_add_word(b, i);
|
|
} else {
|
|
BN_bntest_rand(b, 400 + i - num1, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
}
|
|
BN_sub(c, a, b);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_add(c, c, b);
|
|
BN_sub(c, c, a);
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "Subtract test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_div(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_zero(b);
|
|
|
|
if (BN_div(d, c, a, b, ctx)) {
|
|
fprintf(stderr, "Division by zero succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 400, 0, 0);
|
|
BN_copy(b, a);
|
|
BN_lshift(a, a, i);
|
|
BN_add_word(a, i);
|
|
} else
|
|
BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_div(d, c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(e, d, b, ctx);
|
|
BN_add(d, e, c);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Division test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
static void print_word(BIO *bp, BN_ULONG w)
|
|
{
|
|
int i = sizeof(w) * 8;
|
|
char *fmt = NULL;
|
|
unsigned char byte;
|
|
|
|
do {
|
|
i -= 8;
|
|
byte = (unsigned char)(w >> i);
|
|
if (fmt == NULL)
|
|
fmt = byte ? "%X" : NULL;
|
|
else
|
|
fmt = "%02X";
|
|
|
|
if (fmt != NULL)
|
|
BIO_printf(bp, fmt, byte);
|
|
} while (i);
|
|
|
|
/* If we haven't printed anything, at least print a zero! */
|
|
if (fmt == NULL)
|
|
BIO_printf(bp, "0");
|
|
}
|
|
|
|
int test_div_word(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b;
|
|
BN_ULONG r, s;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
do {
|
|
BN_bntest_rand(a, 512, -1, 0);
|
|
BN_bntest_rand(b, BN_BITS2, -1, 0);
|
|
} while (BN_is_zero(b));
|
|
|
|
s = b->d[0];
|
|
BN_copy(b, a);
|
|
r = BN_div_word(b, s);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
print_word(bp, s);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
print_word(bp, s);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
print_word(bp, r);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul_word(b, s);
|
|
BN_add_word(b, r);
|
|
BN_sub(b, a, b);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Division (word) test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
return (1);
|
|
}
|
|
|
|
int test_div_recp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
BN_RECP_CTX *recp;
|
|
int i;
|
|
|
|
recp = BN_RECP_CTX_new();
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 400, 0, 0);
|
|
BN_copy(b, a);
|
|
BN_lshift(a, a, i);
|
|
BN_add_word(a, i);
|
|
} else
|
|
BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_RECP_CTX_set(recp, b, ctx);
|
|
BN_div_recp(d, c, a, recp, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(e, d, b, ctx);
|
|
BN_add(d, e, c);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Reciprocal division test failed!\n");
|
|
fprintf(stderr, "a=");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, "\nb=");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_RECP_CTX_free(recp);
|
|
return (1);
|
|
}
|
|
|
|
int test_mul(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
BN_CTX *ctx;
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
EXIT(1);
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i <= num1) {
|
|
BN_bntest_rand(a, 100, 0, 0);
|
|
BN_bntest_rand(b, 100, 0, 0);
|
|
} else
|
|
BN_bntest_rand(b, i - num1, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_mul(c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, c, a, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d) || !BN_is_zero(e)) {
|
|
fprintf(stderr, "Multiplication test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_CTX_free(ctx);
|
|
return (1);
|
|
}
|
|
|
|
int test_sqr(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *c, *d, *e;
|
|
int i, ret = 0;
|
|
|
|
a = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
if (a == NULL || c == NULL || d == NULL || e == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 40 + i * 10, 0, 0);
|
|
a->neg = rand_neg();
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, c, a, ctx);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d) || !BN_is_zero(e)) {
|
|
fprintf(stderr, "Square test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Regression test for a BN_sqr overflow bug. */
|
|
BN_hex2bn(&a,
|
|
"80000000000000008000000000000001"
|
|
"FFFFFFFFFFFFFFFE0000000000000000");
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, a, ctx);
|
|
if (BN_cmp(c, d)) {
|
|
fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce "
|
|
"different results!\n");
|
|
goto err;
|
|
}
|
|
|
|
/* Regression test for a BN_sqr overflow bug. */
|
|
BN_hex2bn(&a,
|
|
"80000000000000000000000080000001"
|
|
"FFFFFFFE000000000000000000000000");
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, a, ctx);
|
|
if (BN_cmp(c, d)) {
|
|
fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce "
|
|
"different results!\n");
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
|
|
int test_mont(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *A, *B;
|
|
BIGNUM *n;
|
|
int i;
|
|
BN_MONT_CTX *mont;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
A = BN_new();
|
|
B = BN_new();
|
|
n = BN_new();
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL)
|
|
return 0;
|
|
|
|
BN_zero(n);
|
|
if (BN_MONT_CTX_set(mont, n, ctx)) {
|
|
fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_set_word(n, 16);
|
|
if (BN_MONT_CTX_set(mont, n, ctx)) {
|
|
fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(a, 100, 0, 0);
|
|
BN_bntest_rand(b, 100, 0, 0);
|
|
for (i = 0; i < num2; i++) {
|
|
int bits = (200 * (i + 1)) / num2;
|
|
|
|
if (bits == 0)
|
|
continue;
|
|
BN_bntest_rand(n, bits, 0, 1);
|
|
BN_MONT_CTX_set(mont, n, ctx);
|
|
|
|
BN_nnmod(a, a, n, ctx);
|
|
BN_nnmod(b, b, n, ctx);
|
|
|
|
BN_to_montgomery(A, a, mont, ctx);
|
|
BN_to_montgomery(B, b, mont, ctx);
|
|
|
|
BN_mod_mul_montgomery(c, A, B, mont, ctx);
|
|
BN_from_montgomery(A, c, mont, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, &mont->N);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, A);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mod_mul(d, a, b, n, ctx);
|
|
BN_sub(d, d, A);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Montgomery multiplication test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_MONT_CTX_free(mont);
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(A);
|
|
BN_free(B);
|
|
BN_free(n);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(b, 450 + i * 10, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_mod(c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, a, b, ctx);
|
|
BN_sub(e, e, c);
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "Modulo test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_mul(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i, j;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_mul(e, a, b, c, ctx)) {
|
|
fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
BN_bntest_rand(c, 1024, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 475 + i * 10, 0, 0);
|
|
BN_bntest_rand(b, 425 + i * 11, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
if (!BN_mod_mul(e, a, b, c, ctx)) {
|
|
unsigned long l;
|
|
|
|
while ((l = ERR_get_error()))
|
|
fprintf(stderr, "ERROR:%s\n", ERR_error_string(l, NULL));
|
|
EXIT(1);
|
|
}
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
if ((a->neg ^ b->neg) && !BN_is_zero(e)) {
|
|
/*
|
|
* If (a*b) % c is negative, c must be added in order
|
|
* to obtain the normalized remainder (new with
|
|
* OpenSSL 0.9.7, previous versions of BN_mod_mul
|
|
* could generate negative results)
|
|
*/
|
|
BIO_puts(bp, " + ");
|
|
BN_print(bp, c);
|
|
}
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, e);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, b, ctx);
|
|
BN_sub(d, d, e);
|
|
BN_div(a, b, d, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo multiply test failed!\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_exp(d, a, b, c, ctx)) {
|
|
fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (!BN_mod_exp(d, a, b, c, ctx))
|
|
return (0);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_exp(e, a, b, ctx);
|
|
BN_sub(e, e, d);
|
|
BN_div(a, b, e, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Regression test for carry propagation bug in sqr8x_reduction */
|
|
BN_hex2bn(&a, "050505050505");
|
|
BN_hex2bn(&b, "02");
|
|
BN_hex2bn(&c,
|
|
"4141414141414141414141274141414141414141414141414141414141414141"
|
|
"4141414141414141414141414141414141414141414141414141414141414141"
|
|
"4141414141414141414141800000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000001");
|
|
BN_mod_exp(d, a, b, c, ctx);
|
|
BN_mul(e, a, a, ctx);
|
|
if (BN_cmp(d, e)) {
|
|
fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) {
|
|
fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus "
|
|
"succeeded\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_set_word(c, 16);
|
|
if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) {
|
|
fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus "
|
|
"succeeded\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (!BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL))
|
|
return (00);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_exp(e, a, b, ctx);
|
|
BN_sub(e, e, d);
|
|
BN_div(a, b, e, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Test constant-time modular exponentiation with 1024-bit inputs, which on
|
|
* x86_64 cause a different code branch to be taken.
|
|
*/
|
|
int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *p, *m, *d, *e;
|
|
BN_MONT_CTX *mont;
|
|
|
|
a = BN_new();
|
|
p = BN_new();
|
|
m = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
mont = BN_MONT_CTX_new();
|
|
|
|
BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */
|
|
/* Zero exponent */
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
BN_zero(p);
|
|
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_is_one(d)) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/* Zero input */
|
|
BN_bntest_rand(p, 1024, 0, 0);
|
|
BN_zero(a);
|
|
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/*
|
|
* Craft an input whose Montgomery representation is 1, i.e., shorter
|
|
* than the modulus m, in order to test the const time precomputation
|
|
* scattering/gathering.
|
|
*/
|
|
BN_one(a);
|
|
BN_MONT_CTX_set(mont, m, ctx);
|
|
if (!BN_from_montgomery(e, a, mont, ctx))
|
|
return 0;
|
|
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_mod_exp_simple(a, e, p, m, ctx))
|
|
return 0;
|
|
if (BN_cmp(a, d) != 0) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/* Finally, some regular test vectors. */
|
|
BN_bntest_rand(e, 1024, 0, 0);
|
|
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_mod_exp_simple(a, e, p, m, ctx))
|
|
return 0;
|
|
if (BN_cmp(a, d) != 0) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
BN_MONT_CTX_free(mont);
|
|
BN_free(a);
|
|
BN_free(p);
|
|
BN_free(m);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *d, *e, *one;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
one = BN_new();
|
|
BN_one(one);
|
|
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (BN_exp(d, a, b, ctx) <= 0)
|
|
return (0);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_one(e);
|
|
for (; !BN_is_zero(b); BN_sub(b, b, one))
|
|
BN_mul(e, e, a, ctx);
|
|
BN_sub(e, e, d);
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "Exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(one);
|
|
return (1);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
int test_gf2m_add(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i, ret = 0;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rand(a, 512, 0, 0);
|
|
BN_copy(b, BN_value_one());
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_GF2m_add(c, a, b);
|
|
/* Test that two added values have the correct parity. */
|
|
if ((BN_is_odd(a) && BN_is_odd(c))
|
|
|| (!BN_is_odd(a) && !BN_is_odd(c))) {
|
|
fprintf(stderr, "GF(2^m) addition test (a) failed!\n");
|
|
goto err;
|
|
}
|
|
BN_GF2m_add(c, c, c);
|
|
/* Test that c + c = 0. */
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "GF(2^m) addition test (b) failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod(c, a, b[j]);
|
|
BN_GF2m_add(d, a, c);
|
|
BN_GF2m_mod(e, d, b[j]);
|
|
/* Test that a + (a mod p) mod p == 0. */
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "GF(2^m) modulo test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
g = BN_new();
|
|
h = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
BN_bntest_rand(c, 1024, 0, 0);
|
|
BN_bntest_rand(d, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_mul(e, a, c, b[j], ctx);
|
|
BN_GF2m_add(f, a, d);
|
|
BN_GF2m_mod_mul(g, f, c, b[j], ctx);
|
|
BN_GF2m_mod_mul(h, d, c, b[j], ctx);
|
|
BN_GF2m_add(f, e, g);
|
|
BN_GF2m_add(f, f, h);
|
|
/* Test that (a+d)*c = a*c + d*c. */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular multiplication test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
BN_free(g);
|
|
BN_free(h);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_sqr(c, a, b[j], ctx);
|
|
BN_copy(d, a);
|
|
BN_GF2m_mod_mul(d, a, d, b[j], ctx);
|
|
BN_GF2m_add(d, c, d);
|
|
/* Test that a*a = a^2. */
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "GF(2^m) modular squaring test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_inv(c, a, b[j], ctx);
|
|
BN_GF2m_mod_mul(d, a, c, b[j], ctx);
|
|
/* Test that ((1/a)*a) = 1. */
|
|
if (!BN_is_one(d)) {
|
|
fprintf(stderr, "GF(2^m) modular inversion test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_bntest_rand(c, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_div(d, a, c, b[j], ctx);
|
|
BN_GF2m_mod_mul(e, d, c, b[j], ctx);
|
|
BN_GF2m_mod_div(f, a, e, b[j], ctx);
|
|
/* Test that ((a/c)*c)/a = 1. */
|
|
if (!BN_is_one(f)) {
|
|
fprintf(stderr, "GF(2^m) modular division test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_bntest_rand(c, 512, 0, 0);
|
|
BN_bntest_rand(d, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_exp(e, a, c, b[j], ctx);
|
|
BN_GF2m_mod_exp(f, a, d, b[j], ctx);
|
|
BN_GF2m_mod_mul(e, e, f, b[j], ctx);
|
|
BN_add(f, c, d);
|
|
BN_GF2m_mod_exp(f, a, f, b[j], ctx);
|
|
BN_GF2m_add(f, e, f);
|
|
/* Test that a^(c+d)=a^c*a^d. */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular exponentiation test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod(c, a, b[j]);
|
|
BN_GF2m_mod_sqrt(d, a, b[j], ctx);
|
|
BN_GF2m_mod_sqr(e, d, b[j], ctx);
|
|
BN_GF2m_add(f, c, e);
|
|
/* Test that d^2 = a, where d = sqrt(a). */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr, "GF(2^m) modular square root test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e;
|
|
int i, j, s = 0, t, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx);
|
|
if (t) {
|
|
s++;
|
|
BN_GF2m_mod_sqr(d, c, b[j], ctx);
|
|
BN_GF2m_add(d, c, d);
|
|
BN_GF2m_mod(e, a, b[j]);
|
|
BN_GF2m_add(e, e, d);
|
|
/*
|
|
* Test that solution of quadratic c satisfies c^2 + c = a.
|
|
*/
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular solve quadratic test failed!\n");
|
|
goto err;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
if (s == 0) {
|
|
fprintf(stderr,
|
|
"All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n",
|
|
num0);
|
|
fprintf(stderr,
|
|
"this is very unlikely and probably indicates an error.\n");
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
#endif
|
|
static int genprime_cb(int p, int n, BN_GENCB *arg)
|
|
{
|
|
char c = '*';
|
|
|
|
if (p == 0)
|
|
c = '.';
|
|
if (p == 1)
|
|
c = '+';
|
|
if (p == 2)
|
|
c = '*';
|
|
if (p == 3)
|
|
c = '\n';
|
|
putc(c, stderr);
|
|
fflush(stderr);
|
|
return 1;
|
|
}
|
|
|
|
int test_kron(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BN_GENCB cb;
|
|
BIGNUM *a, *b, *r, *t;
|
|
int i;
|
|
int legendre, kronecker;
|
|
int ret = 0;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
r = BN_new();
|
|
t = BN_new();
|
|
if (a == NULL || b == NULL || r == NULL || t == NULL)
|
|
goto err;
|
|
|
|
BN_GENCB_set(&cb, genprime_cb, NULL);
|
|
|
|
/*
|
|
* We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In
|
|
* this case we know that if b is prime, then BN_kronecker(a, b, ctx) is
|
|
* congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we
|
|
* generate a random prime b and compare these values for a number of
|
|
* random a's. (That is, we run the Solovay-Strassen primality test to
|
|
* confirm that b is prime, except that we don't want to test whether b
|
|
* is prime but whether BN_kronecker works.)
|
|
*/
|
|
|
|
if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, &cb))
|
|
goto err;
|
|
b->neg = rand_neg();
|
|
putc('\n', stderr);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
if (!BN_bntest_rand(a, 512, 0, 0))
|
|
goto err;
|
|
a->neg = rand_neg();
|
|
|
|
/* t := (|b|-1)/2 (note that b is odd) */
|
|
if (!BN_copy(t, b))
|
|
goto err;
|
|
t->neg = 0;
|
|
if (!BN_sub_word(t, 1))
|
|
goto err;
|
|
if (!BN_rshift1(t, t))
|
|
goto err;
|
|
/* r := a^t mod b */
|
|
b->neg = 0;
|
|
|
|
if (!BN_mod_exp_recp(r, a, t, b, ctx))
|
|
goto err;
|
|
b->neg = 1;
|
|
|
|
if (BN_is_word(r, 1))
|
|
legendre = 1;
|
|
else if (BN_is_zero(r))
|
|
legendre = 0;
|
|
else {
|
|
if (!BN_add_word(r, 1))
|
|
goto err;
|
|
if (0 != BN_ucmp(r, b)) {
|
|
fprintf(stderr, "Legendre symbol computation failed\n");
|
|
goto err;
|
|
}
|
|
legendre = -1;
|
|
}
|
|
|
|
kronecker = BN_kronecker(a, b, ctx);
|
|
if (kronecker < -1)
|
|
goto err;
|
|
/* we actually need BN_kronecker(a, |b|) */
|
|
if (a->neg && b->neg)
|
|
kronecker = -kronecker;
|
|
|
|
if (legendre != kronecker) {
|
|
fprintf(stderr, "legendre != kronecker; a = ");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, ", b = ");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\n");
|
|
goto err;
|
|
}
|
|
|
|
putc('.', stderr);
|
|
fflush(stderr);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
fflush(stderr);
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(r);
|
|
BN_free(t);
|
|
return ret;
|
|
}
|
|
|
|
int test_sqrt(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BN_GENCB cb;
|
|
BIGNUM *a, *p, *r;
|
|
int i, j;
|
|
int ret = 0;
|
|
|
|
a = BN_new();
|
|
p = BN_new();
|
|
r = BN_new();
|
|
if (a == NULL || p == NULL || r == NULL)
|
|
goto err;
|
|
|
|
BN_GENCB_set(&cb, genprime_cb, NULL);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (i < 8) {
|
|
unsigned primes[8] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
|
|
|
if (!BN_set_word(p, primes[i]))
|
|
goto err;
|
|
} else {
|
|
if (!BN_set_word(a, 32))
|
|
goto err;
|
|
if (!BN_set_word(r, 2 * i + 1))
|
|
goto err;
|
|
|
|
if (!BN_generate_prime_ex(p, 256, 0, a, r, &cb))
|
|
goto err;
|
|
putc('\n', stderr);
|
|
}
|
|
p->neg = rand_neg();
|
|
|
|
for (j = 0; j < num2; j++) {
|
|
/*
|
|
* construct 'a' such that it is a square modulo p, but in
|
|
* general not a proper square and not reduced modulo p
|
|
*/
|
|
if (!BN_bntest_rand(r, 256, 0, 3))
|
|
goto err;
|
|
if (!BN_nnmod(r, r, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(r, r, p, ctx))
|
|
goto err;
|
|
if (!BN_bntest_rand(a, 256, 0, 3))
|
|
goto err;
|
|
if (!BN_nnmod(a, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(a, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mul(a, a, r, ctx))
|
|
goto err;
|
|
if (rand_neg())
|
|
if (!BN_sub(a, a, p))
|
|
goto err;
|
|
|
|
if (!BN_mod_sqrt(r, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(r, r, p, ctx))
|
|
goto err;
|
|
|
|
if (!BN_nnmod(a, a, p, ctx))
|
|
goto err;
|
|
|
|
if (BN_cmp(a, r) != 0) {
|
|
fprintf(stderr, "BN_mod_sqrt failed: a = ");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, ", r = ");
|
|
BN_print_fp(stderr, r);
|
|
fprintf(stderr, ", p = ");
|
|
BN_print_fp(stderr, p);
|
|
fprintf(stderr, "\n");
|
|
goto err;
|
|
}
|
|
|
|
putc('.', stderr);
|
|
fflush(stderr);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
fflush(stderr);
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(p);
|
|
BN_free(r);
|
|
return ret;
|
|
}
|
|
|
|
int test_small_prime(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
static const int bits = 10;
|
|
int ret = 0;
|
|
BIGNUM *r;
|
|
|
|
r = BN_new();
|
|
if (!BN_generate_prime_ex(r, bits, 0, NULL, NULL, NULL))
|
|
goto err;
|
|
if (BN_num_bits(r) != bits) {
|
|
BIO_printf(bp, "Expected %d bit prime, got %d bit number\n", bits,
|
|
BN_num_bits(r));
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_clear_free(r);
|
|
return ret;
|
|
}
|
|
|
|
int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_)
|
|
{
|
|
BIGNUM *a, *b, *c, *d;
|
|
int i;
|
|
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
BN_one(c);
|
|
|
|
if (a_)
|
|
a = a_;
|
|
else {
|
|
a = BN_new();
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
}
|
|
for (i = 0; i < num0; i++) {
|
|
BN_lshift(b, a, i + 1);
|
|
BN_add(c, c, c);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, c, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Left shift test failed!\n");
|
|
fprintf(stderr, "a=");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, "\nb=");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\nc=");
|
|
BN_print_fp(stderr, c);
|
|
fprintf(stderr, "\nd=");
|
|
BN_print_fp(stderr, d);
|
|
fprintf(stderr, "\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return (1);
|
|
}
|
|
|
|
int test_lshift1(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_lshift1(b, a);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * 2");
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_add(c, a, a);
|
|
BN_sub(a, b, c);
|
|
if (!BN_is_zero(a)) {
|
|
fprintf(stderr, "Left shift one test failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_copy(a, b);
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_rshift(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
BN_one(c);
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rshift(b, a, i + 1);
|
|
BN_add(c, c, c);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, a, c, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Right shift test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_rshift1(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rshift1(b, a);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / 2");
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_sub(c, a, b);
|
|
BN_sub(c, c, b);
|
|
if (!BN_is_zero(c) && !BN_abs_is_word(c, 1)) {
|
|
fprintf(stderr, "Right shift one test failed!\n");
|
|
return 0;
|
|
}
|
|
BN_copy(a, b);
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int rand_neg(void)
|
|
{
|
|
static unsigned int neg = 0;
|
|
static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 };
|
|
|
|
return (sign[(neg++) % 8]);
|
|
}
|