mirror of
https://github.com/openssl/openssl.git
synced 2025-01-24 13:55:42 +08:00
ad062480f7
This supports all the modes, suites and export mechanisms defined in RFC9180 and should be relatively easily extensible if/as new suites are added. The APIs are based on the pseudo-code from the RFC, e.g. OSS_HPKE_encap() roughly maps to SetupBaseS(). External APIs are defined in include/openssl/hpke.h and documented in doc/man3/OSSL_HPKE_CTX_new.pod. Tests (test/hpke_test.c) include verifying a number of the test vectors from the RFC as well as round-tripping for all the modes and suites. We have demonstrated interoperability with other HPKE implementations via a fork [1] that implements TLS Encrypted ClientHello (ECH) which uses HPKE. @slontis provided huge help in getting this done and this makes extensive use of the KEM handling code from his PR#19068. [1] https://github.com/sftcd/openssl/tree/ECH-draft-13c Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/17172)
815 lines
26 KiB
C
815 lines
26 KiB
C
/*
|
|
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* The following implementation is part of RFC 9180 related to DHKEM using
|
|
* EC keys (i.e. P-256, P-384 and P-521)
|
|
* References to Sections in the comments below refer to RFC 9180.
|
|
*/
|
|
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/core_dispatch.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/params.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/proverr.h>
|
|
#include <openssl/kdf.h>
|
|
#include <openssl/rand.h>
|
|
#include "prov/provider_ctx.h"
|
|
#include "prov/implementations.h"
|
|
#include "prov/securitycheck.h"
|
|
#include "prov/providercommon.h"
|
|
|
|
#include <openssl/hpke.h>
|
|
#include "internal/hpke_util.h"
|
|
#include "crypto/ec.h"
|
|
#include "prov/ecx.h"
|
|
#include "eckem.h"
|
|
|
|
typedef struct {
|
|
EC_KEY *recipient_key;
|
|
EC_KEY *sender_authkey;
|
|
OSSL_LIB_CTX *libctx;
|
|
char *propq;
|
|
unsigned int mode;
|
|
unsigned int op;
|
|
unsigned char *ikm;
|
|
size_t ikmlen;
|
|
const char *kdfname;
|
|
const OSSL_HPKE_KEM_INFO *info;
|
|
} PROV_EC_CTX;
|
|
|
|
static OSSL_FUNC_kem_newctx_fn eckem_newctx;
|
|
static OSSL_FUNC_kem_encapsulate_init_fn eckem_encapsulate_init;
|
|
static OSSL_FUNC_kem_auth_encapsulate_init_fn eckem_auth_encapsulate_init;
|
|
static OSSL_FUNC_kem_encapsulate_fn eckem_encapsulate;
|
|
static OSSL_FUNC_kem_decapsulate_init_fn eckem_decapsulate_init;
|
|
static OSSL_FUNC_kem_auth_decapsulate_init_fn eckem_auth_decapsulate_init;
|
|
static OSSL_FUNC_kem_decapsulate_fn eckem_decapsulate;
|
|
static OSSL_FUNC_kem_freectx_fn eckem_freectx;
|
|
static OSSL_FUNC_kem_set_ctx_params_fn eckem_set_ctx_params;
|
|
static OSSL_FUNC_kem_settable_ctx_params_fn eckem_settable_ctx_params;
|
|
|
|
/* ASCII: "KEM", in hex for EBCDIC compatibility */
|
|
static const char LABEL_KEM[] = "\x4b\x45\x4d";
|
|
|
|
static int eckey_check(const EC_KEY *ec, int requires_privatekey)
|
|
{
|
|
int rv = 0;
|
|
BN_CTX *bnctx = NULL;
|
|
BIGNUM *rem = NULL;
|
|
const BIGNUM *priv = EC_KEY_get0_private_key(ec);
|
|
const EC_POINT *pub = EC_KEY_get0_public_key(ec);
|
|
|
|
/* Keys always require a public component */
|
|
if (pub == NULL) {
|
|
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
|
|
return 0;
|
|
}
|
|
if (priv == NULL) {
|
|
return (requires_privatekey == 0);
|
|
} else {
|
|
/* If there is a private key, check that is non zero (mod order) */
|
|
const EC_GROUP *group = EC_KEY_get0_group(ec);
|
|
const BIGNUM *order = EC_GROUP_get0_order(group);
|
|
|
|
bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(ec));
|
|
rem = BN_new();
|
|
|
|
if (order != NULL && rem != NULL && bnctx != NULL) {
|
|
rv = BN_mod(rem, priv, order, bnctx)
|
|
&& !BN_is_zero(rem);
|
|
}
|
|
}
|
|
BN_free(rem);
|
|
BN_CTX_free(bnctx);
|
|
return rv;
|
|
}
|
|
|
|
/* Returns NULL if the curve is not supported */
|
|
static const char *ec_curvename_get0(const EC_KEY *ec)
|
|
{
|
|
const EC_GROUP *group = EC_KEY_get0_group(ec);
|
|
|
|
return EC_curve_nid2nist(EC_GROUP_get_curve_name(group));
|
|
}
|
|
|
|
/*
|
|
* Set the recipient key, and free any existing key.
|
|
* ec can be NULL.
|
|
* The ec key may have only a private or public component
|
|
* (but it must have a group).
|
|
*/
|
|
static int recipient_key_set(PROV_EC_CTX *ctx, EC_KEY *ec)
|
|
{
|
|
EC_KEY_free(ctx->recipient_key);
|
|
ctx->recipient_key = NULL;
|
|
|
|
if (ec != NULL) {
|
|
const char *curve = ec_curvename_get0(ec);
|
|
|
|
if (curve == NULL)
|
|
return -2;
|
|
ctx->info = ossl_HPKE_KEM_INFO_find_curve(curve);
|
|
if (ctx->info == NULL)
|
|
return -2;
|
|
if (!EC_KEY_up_ref(ec))
|
|
return 0;
|
|
ctx->recipient_key = ec;
|
|
ctx->kdfname = "HKDF";
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set the senders auth key, and free any existing auth key.
|
|
* ec can be NULL.
|
|
*/
|
|
static int sender_authkey_set(PROV_EC_CTX *ctx, EC_KEY *ec)
|
|
{
|
|
EC_KEY_free(ctx->sender_authkey);
|
|
ctx->sender_authkey = NULL;
|
|
|
|
if (ec != NULL) {
|
|
if (!EC_KEY_up_ref(ec))
|
|
return 0;
|
|
ctx->sender_authkey = ec;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Serializes a encoded public key buffer into a EC public key.
|
|
* Params:
|
|
* in Contains the group.
|
|
* pubbuf The encoded public key buffer
|
|
* Returns: The created public EC key, or NULL if there is an error.
|
|
*/
|
|
static EC_KEY *eckey_frompub(EC_KEY *in,
|
|
const unsigned char *pubbuf, size_t pubbuflen)
|
|
{
|
|
EC_KEY *key;
|
|
|
|
key = EC_KEY_new_ex(ossl_ec_key_get_libctx(in), ossl_ec_key_get0_propq(in));
|
|
if (key == NULL)
|
|
goto err;
|
|
if (!EC_KEY_set_group(key, EC_KEY_get0_group(in)))
|
|
goto err;
|
|
if (!EC_KEY_oct2key(key, pubbuf, pubbuflen, NULL))
|
|
goto err;
|
|
return key;
|
|
err:
|
|
EC_KEY_free(key);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Deserialises a EC public key into a encoded byte array.
|
|
* Returns: 1 if successful or 0 otherwise.
|
|
*/
|
|
static int ecpubkey_todata(const EC_KEY *ec, unsigned char *out, size_t *outlen,
|
|
size_t maxoutlen)
|
|
{
|
|
const EC_POINT *pub;
|
|
const EC_GROUP *group;
|
|
|
|
group = EC_KEY_get0_group(ec);
|
|
pub = EC_KEY_get0_public_key(ec);
|
|
*outlen = EC_POINT_point2oct(group, pub, POINT_CONVERSION_UNCOMPRESSED,
|
|
out, maxoutlen, NULL);
|
|
return *outlen != 0;
|
|
}
|
|
|
|
static void *eckem_newctx(void *provctx)
|
|
{
|
|
PROV_EC_CTX *ctx = OPENSSL_zalloc(sizeof(PROV_EC_CTX));
|
|
|
|
if (ctx == NULL)
|
|
return NULL;
|
|
ctx->libctx = PROV_LIBCTX_OF(provctx);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void eckem_freectx(void *vectx)
|
|
{
|
|
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vectx;
|
|
|
|
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
|
|
recipient_key_set(ctx, NULL);
|
|
sender_authkey_set(ctx, NULL);
|
|
OPENSSL_free(ctx);
|
|
}
|
|
|
|
static int ossl_ec_match_params(const EC_KEY *key1, const EC_KEY *key2)
|
|
{
|
|
int ret;
|
|
BN_CTX *ctx = NULL;
|
|
const EC_GROUP *group1 = EC_KEY_get0_group(key1);
|
|
const EC_GROUP *group2 = EC_KEY_get0_group(key2);
|
|
|
|
ctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(key1));
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
ret = group1 != NULL
|
|
&& group2 != NULL
|
|
&& EC_GROUP_cmp(group1, group2, ctx) == 0;
|
|
if (!ret)
|
|
ERR_raise(ERR_LIB_PROV, PROV_R_MISMATCHING_DOMAIN_PARAMETERS);
|
|
BN_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int eckem_init(void *vctx, int operation, void *vec, void *vauth,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
int rv;
|
|
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
|
|
EC_KEY *ec = vec;
|
|
EC_KEY *auth = vauth;
|
|
|
|
if (!ossl_prov_is_running())
|
|
return 0;
|
|
|
|
if (!eckey_check(ec, operation == EVP_PKEY_OP_DECAPSULATE))
|
|
return 0;
|
|
rv = recipient_key_set(ctx, ec);
|
|
if (rv <= 0)
|
|
return rv;
|
|
|
|
if (auth != NULL) {
|
|
if (!ossl_ec_match_params(ec, auth)
|
|
|| !eckey_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE)
|
|
|| !sender_authkey_set(ctx, auth))
|
|
return 0;
|
|
}
|
|
|
|
ctx->op = operation;
|
|
return eckem_set_ctx_params(vctx, params);
|
|
}
|
|
|
|
static int eckem_encapsulate_init(void *vctx, void *vec,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vec, NULL, params);
|
|
}
|
|
|
|
static int eckem_decapsulate_init(void *vctx, void *vec,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vec, NULL, params);
|
|
}
|
|
|
|
static int eckem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
return eckem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params);
|
|
}
|
|
|
|
static int eckem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
return eckem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params);
|
|
}
|
|
|
|
static int eckem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
|
|
{
|
|
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
|
|
const OSSL_PARAM *p;
|
|
int mode;
|
|
|
|
if (params == NULL)
|
|
return 1;
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_IKME);
|
|
if (p != NULL) {
|
|
void *tmp = NULL;
|
|
size_t tmplen = 0;
|
|
|
|
if (p->data != NULL && p->data_size != 0) {
|
|
if (!OSSL_PARAM_get_octet_string(p, &tmp, 0, &tmplen))
|
|
return 0;
|
|
}
|
|
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
|
|
/* Set the ephemeral seed */
|
|
ctx->ikm = tmp;
|
|
ctx->ikmlen = tmplen;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
|
|
if (p != NULL) {
|
|
if (p->data_type != OSSL_PARAM_UTF8_STRING)
|
|
return 0;
|
|
mode = ossl_eckem_modename2id(p->data);
|
|
if (mode == KEM_MODE_UNDEFINED)
|
|
return 0;
|
|
ctx->mode = mode;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static const OSSL_PARAM known_settable_eckem_ctx_params[] = {
|
|
OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
|
|
OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
static const OSSL_PARAM *eckem_settable_ctx_params(ossl_unused void *vctx,
|
|
ossl_unused void *provctx)
|
|
{
|
|
return known_settable_eckem_ctx_params;
|
|
}
|
|
|
|
/*
|
|
* See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand
|
|
*/
|
|
static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx,
|
|
unsigned char *okm, size_t okmlen,
|
|
uint16_t kemid,
|
|
const unsigned char *dhkm, size_t dhkmlen,
|
|
const unsigned char *kemctx,
|
|
size_t kemctxlen)
|
|
{
|
|
uint8_t suiteid[2];
|
|
uint8_t prk[EVP_MAX_MD_SIZE];
|
|
size_t prklen = okmlen;
|
|
int ret;
|
|
|
|
if (prklen > sizeof(prk))
|
|
return 0;
|
|
|
|
suiteid[0] = (kemid >> 8) & 0xff;
|
|
suiteid[1] = kemid & 0xff;
|
|
|
|
ret = ossl_hpke_labeled_extract(kctx, prk, prklen,
|
|
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
|
|
OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen)
|
|
&& ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen,
|
|
LABEL_KEM, suiteid, sizeof(suiteid),
|
|
OSSL_DHKEM_LABEL_SHARED_SECRET,
|
|
kemctx, kemctxlen);
|
|
OPENSSL_cleanse(prk, prklen);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* See Section 7.1.3 DeriveKeyPair.
|
|
*
|
|
* This function is used by ec keygen.
|
|
* (For this reason it does not use any of the state stored in PROV_EC_CTX).
|
|
*
|
|
* Params:
|
|
* ec An initialized ec key.
|
|
* priv The buffer to store the generated private key into (it is assumed
|
|
* this is of length alg->encodedprivlen).
|
|
* ikm buffer containing the input key material (seed). This must be set.
|
|
* ikmlen size of the ikm buffer in bytes
|
|
* Returns:
|
|
* 1 if successful or 0 otherwise.
|
|
*/
|
|
int ossl_ec_dhkem_derive_private(EC_KEY *ec, BIGNUM *priv,
|
|
const unsigned char *ikm, size_t ikmlen)
|
|
{
|
|
int ret = 0;
|
|
EVP_KDF_CTX *kdfctx = NULL;
|
|
uint8_t suiteid[2];
|
|
unsigned char prk[OSSL_HPKE_MAX_SECRET];
|
|
unsigned char privbuf[OSSL_HPKE_MAX_PRIVATE];
|
|
const BIGNUM *order;
|
|
unsigned char counter = 0;
|
|
const char *curve = ec_curvename_get0(ec);
|
|
const OSSL_HPKE_KEM_INFO *info;
|
|
|
|
if (curve == NULL)
|
|
return -2;
|
|
|
|
info = ossl_HPKE_KEM_INFO_find_curve(curve);
|
|
if (info == NULL)
|
|
return -2;
|
|
|
|
kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname,
|
|
ossl_ec_key_get_libctx(ec),
|
|
ossl_ec_key_get0_propq(ec));
|
|
if (kdfctx == NULL)
|
|
return 0;
|
|
|
|
/* ikmlen should have a length of at least Nsk */
|
|
if (ikmlen < info->Nsecret) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH,
|
|
"ikm length is :%zu, should be at least %zu",
|
|
ikmlen, info->Nsecret);
|
|
goto err;
|
|
}
|
|
|
|
suiteid[0] = info->kem_id / 256;
|
|
suiteid[1] = info->kem_id % 256;
|
|
|
|
if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret,
|
|
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
|
|
OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen))
|
|
goto err;
|
|
|
|
order = EC_GROUP_get0_order(EC_KEY_get0_group(ec));
|
|
do {
|
|
if (!ossl_hpke_labeled_expand(kdfctx, privbuf, info->Nsk,
|
|
prk, info->Nsecret,
|
|
LABEL_KEM, suiteid, sizeof(suiteid),
|
|
OSSL_DHKEM_LABEL_CANDIDATE,
|
|
&counter, 1))
|
|
goto err;
|
|
privbuf[0] &= info->bitmask;
|
|
if (BN_bin2bn(privbuf, info->Nsk, priv) == NULL)
|
|
goto err;
|
|
if (counter == 0xFF) {
|
|
ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GENERATE_KEY);
|
|
goto err;
|
|
}
|
|
counter++;
|
|
} while (BN_is_zero(priv) || BN_cmp(priv, order) >= 0);
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_cleanse(prk, sizeof(prk));
|
|
OPENSSL_cleanse(privbuf, sizeof(privbuf));
|
|
EVP_KDF_CTX_free(kdfctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do a keygen operation without having to use EVP_PKEY.
|
|
* Params:
|
|
* ctx Context object
|
|
* ikm The seed material - if this is NULL, then a random seed is used.
|
|
* Returns:
|
|
* The generated EC key, or NULL on failure.
|
|
*/
|
|
static EC_KEY *derivekey(PROV_EC_CTX *ctx,
|
|
const unsigned char *ikm, size_t ikmlen)
|
|
{
|
|
int ret = 0;
|
|
EC_KEY *key;
|
|
unsigned char *seed = (unsigned char *)ikm;
|
|
size_t seedlen = ikmlen;
|
|
unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE];
|
|
|
|
key = EC_KEY_new_ex(ctx->libctx, ctx->propq);
|
|
if (key == NULL)
|
|
goto err;
|
|
if (!EC_KEY_set_group(key, EC_KEY_get0_group(ctx->recipient_key)))
|
|
goto err;
|
|
|
|
/* Generate a random seed if there is no input ikm */
|
|
if (seed == NULL || seedlen == 0) {
|
|
seedlen = ctx->info->Nsk;
|
|
if (seedlen > sizeof(tmpbuf))
|
|
goto err;
|
|
if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, seedlen, 0) <= 0)
|
|
goto err;
|
|
seed = tmpbuf;
|
|
}
|
|
ret = ossl_ec_generate_key_dhkem(key, seed, seedlen);
|
|
err:
|
|
if (seed != ikm)
|
|
OPENSSL_cleanse(seed, seedlen);
|
|
if (ret <= 0) {
|
|
EC_KEY_free(key);
|
|
key = NULL;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
/*
|
|
* Before doing a key exchange the public key of the peer needs to be checked
|
|
* Note that the group check is not done here as we have already checked
|
|
* that it only uses one of the approved curve names when the key was set.
|
|
*
|
|
* Returns 1 if the public key is valid, or 0 if it fails.
|
|
*/
|
|
static int check_publickey(const EC_KEY *pub)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(pub));
|
|
|
|
if (bnctx == NULL)
|
|
return 0;
|
|
ret = ossl_ec_key_public_check(pub, bnctx);
|
|
BN_CTX_free(bnctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do an ecdh key exchange.
|
|
* dhkm = DH(sender, peer)
|
|
*
|
|
* NOTE: Instead of using EVP_PKEY_derive() API's, we use EC_KEY operations
|
|
* to avoid messy conversions back to EVP_PKEY.
|
|
*
|
|
* Returns the size of the secret if successful, or 0 otherwise,
|
|
*/
|
|
static int generate_ecdhkm(const EC_KEY *sender, const EC_KEY *peer,
|
|
unsigned char *out, size_t maxout,
|
|
unsigned int secretsz)
|
|
{
|
|
const EC_GROUP *group = EC_KEY_get0_group(sender);
|
|
size_t secretlen = (EC_GROUP_get_degree(group) + 7) / 8;
|
|
|
|
if (secretlen != secretsz || secretlen > maxout) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "secretsz invalid");
|
|
return 0;
|
|
}
|
|
|
|
if (!check_publickey(peer))
|
|
return 0;
|
|
return ECDH_compute_key(out, secretlen, EC_KEY_get0_public_key(peer),
|
|
sender, NULL) > 0;
|
|
}
|
|
|
|
/*
|
|
* Derive a secret using ECDH (code is shared by the encap and decap)
|
|
*
|
|
* dhkm = Concat(ecdh(privkey1, peerkey1), ecdh(privkey2, peerkey2)
|
|
* kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey)
|
|
* secret = dhkem_extract_and_expand(kemid, dhkm, kemctx);
|
|
*
|
|
* Params:
|
|
* ctx Object that contains algorithm state and constants.
|
|
* secret The returned secret (with a length ctx->alg->secretlen bytes).
|
|
* privkey1 A private key used for ECDH key derivation.
|
|
* peerkey1 A public key used for ECDH key derivation with privkey1
|
|
* privkey2 A optional private key used for a second ECDH key derivation.
|
|
* It can be NULL.
|
|
* peerkey2 A optional public key used for a second ECDH key derivation
|
|
* with privkey2,. It can be NULL.
|
|
* sender_pub The senders public key in encoded form.
|
|
* recipient_pub The recipients public key in encoded form.
|
|
* Notes:
|
|
* The second ecdh() is only used for the HPKE auth modes when both privkey2
|
|
* and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL).
|
|
*/
|
|
static int derive_secret(PROV_EC_CTX *ctx, unsigned char *secret,
|
|
const EC_KEY *privkey1, const EC_KEY *peerkey1,
|
|
const EC_KEY *privkey2, const EC_KEY *peerkey2,
|
|
const unsigned char *sender_pub,
|
|
const unsigned char *recipient_pub)
|
|
{
|
|
int ret = 0;
|
|
EVP_KDF_CTX *kdfctx = NULL;
|
|
unsigned char sender_authpub[OSSL_HPKE_MAX_PUBLIC];
|
|
unsigned char dhkm[OSSL_HPKE_MAX_PRIVATE * 2];
|
|
unsigned char kemctx[OSSL_HPKE_MAX_PUBLIC * 3];
|
|
size_t sender_authpublen;
|
|
size_t kemctxlen = 0, dhkmlen = 0;
|
|
const OSSL_HPKE_KEM_INFO *info = ctx->info;
|
|
size_t encodedpublen = info->Npk;
|
|
size_t encodedprivlen = info->Nsk;
|
|
int auth = ctx->sender_authkey != NULL;
|
|
|
|
if (!generate_ecdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), encodedprivlen))
|
|
goto err;
|
|
dhkmlen = encodedprivlen;
|
|
kemctxlen = 2 * encodedpublen;
|
|
|
|
/* Concat the optional second ECDH (used for Auth) */
|
|
if (auth) {
|
|
/* Get the public key of the auth sender in encoded form */
|
|
if (!ecpubkey_todata(ctx->sender_authkey, sender_authpub,
|
|
&sender_authpublen, sizeof(sender_authpub)))
|
|
goto err;
|
|
if (sender_authpublen != encodedpublen) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY,
|
|
"Invalid sender auth public key");
|
|
goto err;
|
|
}
|
|
if (!generate_ecdhkm(privkey2, peerkey2,
|
|
dhkm + dhkmlen, sizeof(dhkm) - dhkmlen,
|
|
encodedprivlen))
|
|
goto err;
|
|
dhkmlen += encodedprivlen;
|
|
kemctxlen += encodedpublen;
|
|
}
|
|
if (kemctxlen > sizeof(kemctx))
|
|
goto err;
|
|
|
|
/* kemctx is the concat of both sides encoded public key */
|
|
memcpy(kemctx, sender_pub, info->Npk);
|
|
memcpy(kemctx + info->Npk, recipient_pub, info->Npk);
|
|
if (auth)
|
|
memcpy(kemctx + 2 * encodedpublen, sender_authpub, encodedpublen);
|
|
kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname,
|
|
ctx->libctx, ctx->propq);
|
|
if (kdfctx == NULL)
|
|
goto err;
|
|
if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret,
|
|
info->kem_id, dhkm, dhkmlen,
|
|
kemctx, kemctxlen))
|
|
goto err;
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_cleanse(dhkm, dhkmlen);
|
|
EVP_KDF_CTX_free(kdfctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do a DHKEM encapsulate operation.
|
|
*
|
|
* See Section 4.1 Encap() and AuthEncap()
|
|
*
|
|
* Params:
|
|
* ctx A context object holding the recipients public key and the
|
|
* optional senders auth private key.
|
|
* enc A buffer to return the senders ephemeral public key.
|
|
* Setting this to NULL allows the enclen and secretlen to return
|
|
* values, without calculating the secret.
|
|
* enclen Passes in the max size of the enc buffer and returns the
|
|
* encoded public key length.
|
|
* secret A buffer to return the calculated shared secret.
|
|
* secretlen Passes in the max size of the secret buffer and returns the
|
|
* secret length.
|
|
* Returns: 1 on success or 0 otherwise.
|
|
*/
|
|
static int dhkem_encap(PROV_EC_CTX *ctx,
|
|
unsigned char *enc, size_t *enclen,
|
|
unsigned char *secret, size_t *secretlen)
|
|
{
|
|
int ret = 0;
|
|
EC_KEY *sender_ephemkey = NULL;
|
|
unsigned char sender_pub[OSSL_HPKE_MAX_PUBLIC];
|
|
unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC];
|
|
size_t sender_publen, recipient_publen;
|
|
const OSSL_HPKE_KEM_INFO *info = ctx->info;
|
|
|
|
if (enc == NULL) {
|
|
if (enclen == NULL && secretlen == NULL)
|
|
return 0;
|
|
if (enclen != NULL)
|
|
*enclen = info->Nenc;
|
|
if (secretlen != NULL)
|
|
*secretlen = info->Nsecret;
|
|
return 1;
|
|
}
|
|
|
|
if (*secretlen < info->Nsecret) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
|
|
return 0;
|
|
}
|
|
if (*enclen < info->Nenc) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small");
|
|
return 0;
|
|
}
|
|
|
|
/* Create an ephemeral key */
|
|
sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen);
|
|
if (sender_ephemkey == NULL)
|
|
goto err;
|
|
if (!ecpubkey_todata(sender_ephemkey, sender_pub, &sender_publen,
|
|
sizeof(sender_pub))
|
|
|| !ecpubkey_todata(ctx->recipient_key, recipient_pub,
|
|
&recipient_publen, sizeof(recipient_pub)))
|
|
goto err;
|
|
|
|
if (sender_publen != info->Npk
|
|
|| recipient_publen != sender_publen) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid public key");
|
|
goto err;
|
|
}
|
|
|
|
if (!derive_secret(ctx, secret,
|
|
sender_ephemkey, ctx->recipient_key,
|
|
ctx->sender_authkey, ctx->recipient_key,
|
|
sender_pub, recipient_pub))
|
|
goto err;
|
|
|
|
/* Return the senders ephemeral public key in encoded form */
|
|
memcpy(enc, sender_pub, sender_publen);
|
|
*enclen = sender_publen;
|
|
*secretlen = info->Nsecret;
|
|
ret = 1;
|
|
err:
|
|
EC_KEY_free(sender_ephemkey);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do a DHKEM decapsulate operation.
|
|
* See Section 4.1 Decap() and Auth Decap()
|
|
*
|
|
* Params:
|
|
* ctx A context object holding the recipients private key and the
|
|
* optional senders auth public key.
|
|
* secret A buffer to return the calculated shared secret. Setting this to
|
|
* NULL can be used to return the secretlen.
|
|
* secretlen Passes in the max size of the secret buffer and returns the
|
|
* secret length.
|
|
* enc A buffer containing the senders ephemeral public key that was returned
|
|
* from dhkem_encap().
|
|
* enclen The length in bytes of enc.
|
|
* Returns: 1 If the shared secret is returned or 0 on error.
|
|
*/
|
|
static int dhkem_decap(PROV_EC_CTX *ctx,
|
|
unsigned char *secret, size_t *secretlen,
|
|
const unsigned char *enc, size_t enclen)
|
|
{
|
|
int ret = 0;
|
|
EC_KEY *sender_ephempubkey = NULL;
|
|
const OSSL_HPKE_KEM_INFO *info = ctx->info;
|
|
unsigned char recipient_pub[OSSL_HPKE_MAX_PUBLIC];
|
|
size_t recipient_publen;
|
|
size_t encodedpublen = info->Npk;
|
|
|
|
if (secret == NULL) {
|
|
*secretlen = info->Nsecret;
|
|
return 1;
|
|
}
|
|
|
|
if (*secretlen < info->Nsecret) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
|
|
return 0;
|
|
}
|
|
if (enclen != encodedpublen) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key");
|
|
return 0;
|
|
}
|
|
|
|
sender_ephempubkey = eckey_frompub(ctx->recipient_key, enc, enclen);
|
|
if (sender_ephempubkey == NULL)
|
|
goto err;
|
|
if (!ecpubkey_todata(ctx->recipient_key, recipient_pub, &recipient_publen,
|
|
sizeof(recipient_pub)))
|
|
goto err;
|
|
if (recipient_publen != encodedpublen) {
|
|
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid recipient public key");
|
|
goto err;
|
|
}
|
|
|
|
if (!derive_secret(ctx, secret,
|
|
ctx->recipient_key, sender_ephempubkey,
|
|
ctx->recipient_key, ctx->sender_authkey,
|
|
enc, recipient_pub))
|
|
goto err;
|
|
*secretlen = info->Nsecret;
|
|
ret = 1;
|
|
err:
|
|
EC_KEY_free(sender_ephempubkey);
|
|
return ret;
|
|
}
|
|
|
|
static int eckem_encapsulate(void *vctx, unsigned char *out, size_t *outlen,
|
|
unsigned char *secret, size_t *secretlen)
|
|
{
|
|
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
|
|
|
|
switch (ctx->mode) {
|
|
case KEM_MODE_DHKEM:
|
|
return dhkem_encap(ctx, out, outlen, secret, secretlen);
|
|
default:
|
|
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int eckem_decapsulate(void *vctx, unsigned char *out, size_t *outlen,
|
|
const unsigned char *in, size_t inlen)
|
|
{
|
|
PROV_EC_CTX *ctx = (PROV_EC_CTX *)vctx;
|
|
|
|
switch (ctx->mode) {
|
|
case KEM_MODE_DHKEM:
|
|
return dhkem_decap(ctx, out, outlen, in, inlen);
|
|
default:
|
|
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
const OSSL_DISPATCH ossl_ec_asym_kem_functions[] = {
|
|
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))eckem_newctx },
|
|
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT,
|
|
(void (*)(void))eckem_encapsulate_init },
|
|
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))eckem_encapsulate },
|
|
{ OSSL_FUNC_KEM_DECAPSULATE_INIT,
|
|
(void (*)(void))eckem_decapsulate_init },
|
|
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))eckem_decapsulate },
|
|
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))eckem_freectx },
|
|
{ OSSL_FUNC_KEM_SET_CTX_PARAMS,
|
|
(void (*)(void))eckem_set_ctx_params },
|
|
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
|
|
(void (*)(void))eckem_settable_ctx_params },
|
|
{ OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT,
|
|
(void (*)(void))eckem_auth_encapsulate_init },
|
|
{ OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT,
|
|
(void (*)(void))eckem_auth_decapsulate_init },
|
|
{ 0, NULL }
|
|
};
|