openssl/crypto/sha/asm/sha1-sparcv9.pl
Richard Levitte 1aa89a7a3a Unify all assembler file generators
They now generally conform to the following argument sequence:

    script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
              $(PROCESSOR) <output file>

However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file.  This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).

While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.

There's a perl lesson in this, regarding operator priority...

This will always succeed, even when it fails:

    open FOO, "something" || die "ERR: $!";

The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:

    open FOO, "something";

This, however, will fail if "something" can't be opened:

    open FOO, "something" or die "ERR: $!";

The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
2019-09-16 16:29:57 +02:00

434 lines
9.2 KiB
Raku

#! /usr/bin/env perl
# Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
#
# Hardware SPARC T4 support by David S. Miller
# ====================================================================
# Performance improvement is not really impressive on pre-T1 CPU: +8%
# over Sun C and +25% over gcc [3.3]. While on T1, a.k.a. Niagara, it
# turned to be 40% faster than 64-bit code generated by Sun C 5.8 and
# >2x than 64-bit code generated by gcc 3.4. And there is a gimmick.
# X[16] vector is packed to 8 64-bit registers and as result nothing
# is spilled on stack. In addition input data is loaded in compact
# instruction sequence, thus minimizing the window when the code is
# subject to [inter-thread] cache-thrashing hazard. The goal is to
# ensure scalability on UltraSPARC T1, or rather to avoid decay when
# amount of active threads exceeds the number of physical cores.
# SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x
# faster than software. Multi-process benchmark saturates at 11x
# single-process result on 8-core processor, or ~9GBps per 2.85GHz
# socket.
$output=pop and open STDOUT,">$output";
@X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7");
$rot1m="%g2";
$tmp64="%g3";
$Xi="%g4";
$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
@V=($A,$B,$C,$D,$E);
$K_00_19="%l5";
$K_20_39="%l6";
$K_40_59="%l7";
$K_60_79="%g5";
@K=($K_00_19,$K_20_39,$K_40_59,$K_60_79);
$ctx="%i0";
$inp="%i1";
$len="%i2";
$tmp0="%i3";
$tmp1="%i4";
$tmp2="%i5";
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi=($i&1)?@X[($i/2)%8]:$Xi;
$code.=<<___;
sll $a,5,$tmp0 !! $i
add @K[$i/20],$e,$e
srl $a,27,$tmp1
add $tmp0,$e,$e
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
andn $d,$b,$tmp1
srl $b,2,$b
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $xi,$e,$e
___
if ($i&1 && $i<15) {
$code.=
" srlx @X[(($i+1)/2)%8],32,$Xi\n";
}
$code.=<<___;
add $tmp1,$e,$e
___
}
sub Xupdate {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i/2;
if ($i&1) {
$code.=<<___;
sll $a,5,$tmp0 !! $i
add @K[$i/20],$e,$e
srl $a,27,$tmp1
___
} else {
$code.=<<___;
sllx @X[($j+6)%8],32,$Xi ! Xupdate($i)
xor @X[($j+1)%8],@X[$j%8],@X[$j%8]
srlx @X[($j+7)%8],32,$tmp1
xor @X[($j+4)%8],@X[$j%8],@X[$j%8]
sll $a,5,$tmp0 !! $i
or $tmp1,$Xi,$Xi
add @K[$i/20],$e,$e !!
xor $Xi,@X[$j%8],@X[$j%8]
srlx @X[$j%8],31,$Xi
add @X[$j%8],@X[$j%8],@X[$j%8]
and $Xi,$rot1m,$Xi
andn @X[$j%8],$rot1m,@X[$j%8]
srl $a,27,$tmp1 !!
or $Xi,@X[$j%8],@X[$j%8]
___
}
}
sub BODY_16_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
add $xi,$e,$e
andn $d,$b,$tmp1
srl $b,2,$b
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
___
}
sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $xi,$e,$e
___
}
sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
or $c,$b,$tmp1
srl $b,2,$b
and $d,$tmp1,$tmp1
add $xi,$e,$e
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
___
}
$code.=<<___;
#include "sparc_arch.h"
#ifdef __arch64__
.register %g2,#scratch
.register %g3,#scratch
#endif
.section ".text",#alloc,#execinstr
#ifdef __PIC__
SPARC_PIC_THUNK(%g1)
#endif
.align 32
.globl sha1_block_data_order
sha1_block_data_order:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1]
andcc %g1, CFR_SHA1, %g0
be .Lsoftware
nop
ld [%o0 + 0x00], %f0 ! load context
ld [%o0 + 0x04], %f1
ld [%o0 + 0x08], %f2
andcc %o1, 0x7, %g0
ld [%o0 + 0x0c], %f3
bne,pn %icc, .Lhwunaligned
ld [%o0 + 0x10], %f4
.Lhw_loop:
ldd [%o1 + 0x00], %f8
ldd [%o1 + 0x08], %f10
ldd [%o1 + 0x10], %f12
ldd [%o1 + 0x18], %f14
ldd [%o1 + 0x20], %f16
ldd [%o1 + 0x28], %f18
ldd [%o1 + 0x30], %f20
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x38], %f22
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
.word 0x81b02820 ! SHA1
bne,pt SIZE_T_CC, .Lhw_loop
nop
.Lhwfinish:
st %f0, [%o0 + 0x00] ! store context
st %f1, [%o0 + 0x04]
st %f2, [%o0 + 0x08]
st %f3, [%o0 + 0x0c]
retl
st %f4, [%o0 + 0x10]
.align 8
.Lhwunaligned:
alignaddr %o1, %g0, %o1
ldd [%o1 + 0x00], %f10
.Lhwunaligned_loop:
ldd [%o1 + 0x08], %f12
ldd [%o1 + 0x10], %f14
ldd [%o1 + 0x18], %f16
ldd [%o1 + 0x20], %f18
ldd [%o1 + 0x28], %f20
ldd [%o1 + 0x30], %f22
ldd [%o1 + 0x38], %f24
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x40], %f26
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
faligndata %f10, %f12, %f8
faligndata %f12, %f14, %f10
faligndata %f14, %f16, %f12
faligndata %f16, %f18, %f14
faligndata %f18, %f20, %f16
faligndata %f20, %f22, %f18
faligndata %f22, %f24, %f20
faligndata %f24, %f26, %f22
.word 0x81b02820 ! SHA1
bne,pt SIZE_T_CC, .Lhwunaligned_loop
for %f26, %f26, %f10 ! %f10=%f26
ba .Lhwfinish
nop
.align 16
.Lsoftware:
save %sp,-STACK_FRAME,%sp
sllx $len,6,$len
add $inp,$len,$len
or %g0,1,$rot1m
sllx $rot1m,32,$rot1m
or $rot1m,1,$rot1m
ld [$ctx+0],$A
ld [$ctx+4],$B
ld [$ctx+8],$C
ld [$ctx+12],$D
ld [$ctx+16],$E
andn $inp,7,$tmp0
sethi %hi(0x5a827999),$K_00_19
or $K_00_19,%lo(0x5a827999),$K_00_19
sethi %hi(0x6ed9eba1),$K_20_39
or $K_20_39,%lo(0x6ed9eba1),$K_20_39
sethi %hi(0x8f1bbcdc),$K_40_59
or $K_40_59,%lo(0x8f1bbcdc),$K_40_59
sethi %hi(0xca62c1d6),$K_60_79
or $K_60_79,%lo(0xca62c1d6),$K_60_79
.Lloop:
ldx [$tmp0+0],@X[0]
ldx [$tmp0+16],@X[2]
ldx [$tmp0+32],@X[4]
ldx [$tmp0+48],@X[6]
and $inp,7,$tmp1
ldx [$tmp0+8],@X[1]
sll $tmp1,3,$tmp1
ldx [$tmp0+24],@X[3]
subcc %g0,$tmp1,$tmp2 ! should be 64-$tmp1, but -$tmp1 works too
ldx [$tmp0+40],@X[5]
bz,pt %icc,.Laligned
ldx [$tmp0+56],@X[7]
sllx @X[0],$tmp1,@X[0]
ldx [$tmp0+64],$tmp64
___
for($i=0;$i<7;$i++)
{ $code.=<<___;
srlx @X[$i+1],$tmp2,$Xi
sllx @X[$i+1],$tmp1,@X[$i+1]
or $Xi,@X[$i],@X[$i]
___
}
$code.=<<___;
srlx $tmp64,$tmp2,$tmp64
or $tmp64,@X[7],@X[7]
.Laligned:
srlx @X[0],32,$Xi
___
for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
for (;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
ld [$ctx+0],@X[0]
ld [$ctx+4],@X[1]
ld [$ctx+8],@X[2]
ld [$ctx+12],@X[3]
add $inp,64,$inp
ld [$ctx+16],@X[4]
cmp $inp,$len
add $A,@X[0],$A
st $A,[$ctx+0]
add $B,@X[1],$B
st $B,[$ctx+4]
add $C,@X[2],$C
st $C,[$ctx+8]
add $D,@X[3],$D
st $D,[$ctx+12]
add $E,@X[4],$E
st $E,[$ctx+16]
bne SIZE_T_CC,.Lloop
andn $inp,7,$tmp0
ret
restore
.type sha1_block_data_order,#function
.size sha1_block_data_order,(.-sha1_block_data_order)
.asciz "SHA1 block transform for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my $ref,$opf;
my %visopf = ( "faligndata" => 0x048,
"for" => 0x07c );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";
foreach ($rs1,$rs2,$rd) {
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
else { return $ref; }
}
return sprintf ".word\t0x%08x !%s",
0x81b00300|$rd<<25|$rs1<<14|$rs2,
$ref;
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
&unvis($1,$2,$3,$4)
/ge;
s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unalignaddr($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT;