mirror of
https://github.com/openssl/openssl.git
synced 2024-12-03 05:41:46 +08:00
1aa89a7a3a
They now generally conform to the following argument sequence: script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \ $(PROCESSOR) <output file> However, in the spirit of being able to use these scripts manually, they also allow for no argument, or for only the flavour, or for only the output file. This is done by only using the last argument as output file if it's a file (it has an extension), and only using the first argument as flavour if it isn't a file (it doesn't have an extension). While we're at it, we make all $xlate calls the same, i.e. the $output argument is always quoted, and we always die on error when trying to start $xlate. There's a perl lesson in this, regarding operator priority... This will always succeed, even when it fails: open FOO, "something" || die "ERR: $!"; The reason is that '||' has higher priority than list operators (a function is essentially a list operator and gobbles up everything following it that isn't lower priority), and since a non-empty string is always true, so that ends up being exactly the same as: open FOO, "something"; This, however, will fail if "something" can't be opened: open FOO, "something" or die "ERR: $!"; The reason is that 'or' has lower priority that list operators, i.e. it's performed after the 'open' call. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9884)
440 lines
14 KiB
Raku
Executable File
440 lines
14 KiB
Raku
Executable File
#!/usr/bin/env perl
|
|
# Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Keccak-1600 for x86 MMX.
|
|
#
|
|
# June 2017.
|
|
#
|
|
# Below code is KECCAK_2X implementation (see sha/keccak1600.c) with
|
|
# C[5] held in register bank and D[5] offloaded to memory. Though
|
|
# instead of actually unrolling the loop pair-wise I simply flip
|
|
# pointers to T[][] and A[][] and the end of round. Since number of
|
|
# rounds is even, last round writes to A[][] and everything works out.
|
|
# It's argued that MMX is the only code path meaningful to implement
|
|
# for x86. This is because non-MMX-capable processors is an extinct
|
|
# breed, and they as well can lurk executing compiler-generated code.
|
|
# For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per
|
|
# processed byte on Pentium. Which is fair result. But older compilers
|
|
# produce worse code. On the other hand one can wonder why not 128-bit
|
|
# SSE2? Well, SSE2 won't provide double improvement, rather far from
|
|
# that, if any at all on some processors, because it will take extra
|
|
# permutations and inter-bank data trasfers. Besides, contemporary
|
|
# CPUs are better off executing 64-bit code, and it makes lesser sense
|
|
# to invest into fancy 32-bit code. And the decision doesn't seem to
|
|
# be inadequate, if one compares below results to "64-bit platforms in
|
|
# 32-bit mode" SIMD data points available at
|
|
# http://keccak.noekeon.org/sw_performance.html.
|
|
#
|
|
########################################################################
|
|
# Numbers are cycles per processed byte out of large message.
|
|
#
|
|
# r=1088(i)
|
|
#
|
|
# PIII 30/+150%
|
|
# Pentium M 27/+150%
|
|
# P4 40/+85%
|
|
# Core 2 19/+170%
|
|
# Sandy Bridge(ii) 18/+140%
|
|
# Atom 33/+180%
|
|
# Silvermont(ii) 30/+180%
|
|
# VIA Nano(ii) 43/+60%
|
|
# Sledgehammer(ii)(iii) 24/+130%
|
|
#
|
|
# (i) Corresponds to SHA3-256. Numbers after slash are improvement
|
|
# coefficients over KECCAK_2X [with bit interleave and lane
|
|
# complementing] position-independent *scalar* code generated
|
|
# by gcc-5.x. It's not exactly fair comparison, but it's a
|
|
# datapoint...
|
|
# (ii) 64-bit processor executing 32-bit code.
|
|
# (iii) Result is considered to be representative even for older AMD
|
|
# processors.
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
require "x86asm.pl";
|
|
|
|
$output=pop and open STDOUT,">$output";
|
|
|
|
&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
|
|
|
|
my @C = map("mm$_",(0..4));
|
|
my @T = map("mm$_",(5..7));
|
|
my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100,
|
|
8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20));
|
|
my @D = map(8*$_+4, (0..4));
|
|
my @rhotates = ([ 0, 1, 62, 28, 27 ],
|
|
[ 36, 44, 6, 55, 20 ],
|
|
[ 3, 10, 43, 25, 39 ],
|
|
[ 41, 45, 15, 21, 8 ],
|
|
[ 18, 2, 61, 56, 14 ]);
|
|
|
|
&static_label("iotas");
|
|
|
|
&function_begin_B("_KeccakF1600");
|
|
&movq (@C[0],&QWP($A[4][0],"esi"));
|
|
&movq (@C[1],&QWP($A[4][1],"esi"));
|
|
&movq (@C[2],&QWP($A[4][2],"esi"));
|
|
&movq (@C[3],&QWP($A[4][3],"esi"));
|
|
&movq (@C[4],&QWP($A[4][4],"esi"));
|
|
|
|
&mov ("ecx",24); # loop counter
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
######################################### Theta
|
|
&pxor (@C[0],&QWP($A[0][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[0][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[0][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[0][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[0][4],"esi"));
|
|
|
|
&pxor (@C[0],&QWP($A[1][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[1][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[1][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[1][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[1][4],"esi"));
|
|
|
|
&pxor (@C[0],&QWP($A[2][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[2][1],"esi"));
|
|
&pxor (@C[2],&QWP($A[2][2],"esi"));
|
|
&pxor (@C[3],&QWP($A[2][3],"esi"));
|
|
&pxor (@C[4],&QWP($A[2][4],"esi"));
|
|
|
|
&pxor (@C[2],&QWP($A[3][2],"esi"));
|
|
&pxor (@C[0],&QWP($A[3][0],"esi"));
|
|
&pxor (@C[1],&QWP($A[3][1],"esi"));
|
|
&pxor (@C[3],&QWP($A[3][3],"esi"));
|
|
&movq (@T[0],@C[2]);
|
|
&pxor (@C[4],&QWP($A[3][4],"esi"));
|
|
|
|
&movq (@T[2],@C[2]);
|
|
&psrlq (@T[0],63);
|
|
&movq (@T[1],@C[0]);
|
|
&psllq (@T[2],1);
|
|
&pxor (@T[0],@C[0]);
|
|
&psrlq (@C[0],63);
|
|
&pxor (@T[0],@T[2]);
|
|
&psllq (@T[1],1);
|
|
&movq (@T[2],@C[1]);
|
|
&movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
|
|
|
|
&pxor (@T[1],@C[0]);
|
|
&psrlq (@T[2],63);
|
|
&pxor (@T[1],@C[3]);
|
|
&movq (@C[0],@C[1]);
|
|
&movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
&psllq (@C[0],1);
|
|
&pxor (@T[2],@C[4]);
|
|
&pxor (@C[0],@T[2]);
|
|
|
|
&movq (@T[2],@C[3]);
|
|
&psrlq (@C[3],63);
|
|
&movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
|
|
&psllq (@T[2],1);
|
|
&movq (@T[0],@C[4]);
|
|
&psrlq (@C[4],63);
|
|
&pxor (@C[1],@C[3]);
|
|
&psllq (@T[0],1);
|
|
&pxor (@C[1],@T[2]);
|
|
&pxor (@C[2],@C[4]);
|
|
&movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
|
|
&pxor (@C[2],@T[0]);
|
|
|
|
######################################### first Rho(0) is special
|
|
&movq (@C[3],&QWP($A[3][3],"esi"));
|
|
&movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
|
|
&pxor (@C[3],@C[2]);
|
|
&movq (@C[4],&QWP($A[4][4],"esi"));
|
|
&movq (@T[2],@C[3]);
|
|
&psrlq (@C[3],64-$rhotates[3][3]);
|
|
&pxor (@C[4],@T[1]);
|
|
&psllq (@T[2],$rhotates[3][3]);
|
|
&movq (@T[1],@C[4]);
|
|
&psrlq (@C[4],64-$rhotates[4][4]);
|
|
&por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
|
|
&psllq (@T[1],$rhotates[4][4]);
|
|
|
|
&movq (@C[2],&QWP($A[2][2],"esi"));
|
|
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
|
|
&pxor (@C[2],@C[1]);
|
|
&movq (@C[1],&QWP($A[1][1],"esi"));
|
|
&movq (@T[1],@C[2]);
|
|
&psrlq (@C[2],64-$rhotates[2][2]);
|
|
&pxor (@C[1],&QWP(@D[1],"esp"));
|
|
&psllq (@T[1],$rhotates[2][2]);
|
|
|
|
&movq (@T[2],@C[1]);
|
|
&psrlq (@C[1],64-$rhotates[1][1]);
|
|
&por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
|
|
&psllq (@T[2],$rhotates[1][1]);
|
|
&pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */
|
|
&por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
|
|
|
|
sub Chi() { ######### regular Chi step
|
|
my ($y,$xrho) = @_;
|
|
|
|
&movq (@T[0],@C[1]);
|
|
&movq (@T[1],@C[2]);
|
|
&pandn (@T[0],@C[2]);
|
|
&pandn (@C[2],@C[3]);
|
|
&pxor (@T[0],@C[0]);
|
|
&pxor (@C[2],@C[1]);
|
|
&pxor (@T[0],&QWP(0,"ebx")) if ($y == 0);
|
|
&lea ("ebx",&DWP(8,"ebx")) if ($y == 0);
|
|
|
|
&movq (@T[2],@C[3]);
|
|
&movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
|
|
&movq (@T[0],@C[4]);
|
|
&pandn (@C[3],@C[4]);
|
|
&pandn (@C[4],@C[0]);
|
|
&pxor (@C[3],@T[1]);
|
|
&movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]);
|
|
&pxor (@C[4],@T[2]);
|
|
&movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho));
|
|
|
|
&movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]);
|
|
&pandn (@C[0],@C[1]);
|
|
&movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]);
|
|
&pxor (@C[0],@T[0]);
|
|
&pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho));
|
|
&movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]);
|
|
}
|
|
&Chi (0, 3);
|
|
|
|
sub Rho() { ######### regular Rho step
|
|
my $x = shift;
|
|
|
|
#&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi
|
|
#&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi
|
|
&movq (@C[0],@T[2]);
|
|
&psrlq (@T[2],64-$rhotates[0][$x]);
|
|
&movq (@C[1],&QWP($A[1][($x+1)%5],"esi"));
|
|
&psllq (@C[0],$rhotates[0][$x]);
|
|
&pxor (@C[1],&QWP(@D[($x+1)%5],"esp"));
|
|
&por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
|
|
|
|
&movq (@T[1],@C[1]);
|
|
&psrlq (@C[1],64-$rhotates[1][($x+1)%5]);
|
|
&movq (@C[2],&QWP($A[2][($x+2)%5],"esi"));
|
|
&psllq (@T[1],$rhotates[1][($x+1)%5]);
|
|
&pxor (@C[2],&QWP(@D[($x+2)%5],"esp"));
|
|
&por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
|
|
&movq (@T[2],@C[2]);
|
|
&psrlq (@C[2],64-$rhotates[2][($x+2)%5]);
|
|
&movq (@C[3],&QWP($A[3][($x+3)%5],"esi"));
|
|
&psllq (@T[2],$rhotates[2][($x+2)%5]);
|
|
&pxor (@C[3],&QWP(@D[($x+3)%5],"esp"));
|
|
&por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
|
|
|
|
&movq (@T[0],@C[3]);
|
|
&psrlq (@C[3],64-$rhotates[3][($x+3)%5]);
|
|
&movq (@C[4],&QWP($A[4][($x+4)%5],"esi"));
|
|
&psllq (@T[0],$rhotates[3][($x+3)%5]);
|
|
&pxor (@C[4],&QWP(@D[($x+4)%5],"esp"));
|
|
&por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
|
|
|
|
&movq (@T[1],@C[4]);
|
|
&psrlq (@C[4],64-$rhotates[4][($x+4)%5]);
|
|
&psllq (@T[1],$rhotates[4][($x+4)%5]);
|
|
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
|
|
}
|
|
&Rho (3); &Chi (1, 1);
|
|
&Rho (1); &Chi (2, 4);
|
|
&Rho (4); &Chi (3, 2);
|
|
&Rho (2); ###&Chi (4);
|
|
|
|
&movq (@T[0],@C[0]); ######### last Chi(4) is special
|
|
&xor ("edi","esi"); # &xchg ("esi","edi");
|
|
&movq (&QWP(@D[1],"esp"),@C[1]);
|
|
&xor ("esi","edi");
|
|
&xor ("edi","esi");
|
|
|
|
&movq (@T[1],@C[1]);
|
|
&movq (@T[2],@C[2]);
|
|
&pandn (@T[1],@C[2]);
|
|
&pandn (@T[2],@C[3]);
|
|
&pxor (@C[0],@T[1]);
|
|
&pxor (@C[1],@T[2]);
|
|
|
|
&movq (@T[1],@C[3]);
|
|
&movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]);
|
|
&pandn (@T[1],@C[4]);
|
|
&movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]);
|
|
&pxor (@C[2],@T[1]);
|
|
&movq (@T[2],@C[4]);
|
|
&movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]);
|
|
|
|
&pandn (@T[2],@T[0]);
|
|
&pandn (@T[0],&QWP(@D[1],"esp"));
|
|
&pxor (@C[3],@T[2]);
|
|
&pxor (@C[4],@T[0]);
|
|
&movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]);
|
|
&sub ("ecx",1);
|
|
&movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]);
|
|
&jnz (&label("loop"));
|
|
|
|
&lea ("ebx",&DWP(-192,"ebx")); # rewind iotas
|
|
&ret ();
|
|
&function_end_B("_KeccakF1600");
|
|
|
|
&function_begin("KeccakF1600");
|
|
&mov ("esi",&wparam(0));
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
|
|
&call ("_KeccakF1600");
|
|
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("KeccakF1600");
|
|
|
|
&function_begin("SHA3_absorb");
|
|
&mov ("esi",&wparam(0)); # A[][]
|
|
&mov ("eax",&wparam(1)); # inp
|
|
&mov ("ecx",&wparam(2)); # len
|
|
&mov ("edx",&wparam(3)); # bsz
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240+8);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
|
|
&mov ("edi","esi");
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
&cmp ("ecx","edx"); # len < bsz?
|
|
&jc (&label("absorbed"));
|
|
|
|
&shr ("edx",3); # bsz /= 8
|
|
&set_label("block");
|
|
&movq ("mm0",&QWP(0,"eax"));
|
|
&lea ("eax",&DWP(8,"eax"));
|
|
&pxor ("mm0",&QWP(0,"edi"));
|
|
&lea ("edi",&DWP(8,"edi"));
|
|
&sub ("ecx",8); # len -= 8
|
|
&movq (&QWP(-8,"edi"),"mm0");
|
|
&dec ("edx"); # bsz--
|
|
&jnz (&label("block"));
|
|
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
&mov (&DWP(-8,"ebp"),"ecx"); # save len
|
|
&call ("_KeccakF1600");
|
|
&mov ("ecx",&DWP(-8,"ebp")); # pull len
|
|
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
|
|
&lea ("edi",&DWP(-100,"esi"));
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("absorbed",16);
|
|
&mov ("eax","ecx"); # return value
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("SHA3_absorb");
|
|
|
|
&function_begin("SHA3_squeeze");
|
|
&mov ("esi",&wparam(0)); # A[][]
|
|
&mov ("eax",&wparam(1)); # out
|
|
&mov ("ecx",&wparam(2)); # len
|
|
&mov ("edx",&wparam(3)); # bsz
|
|
&mov ("ebp","esp");
|
|
&sub ("esp",240+8);
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("ebx");
|
|
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
|
|
&and ("esp",-8);
|
|
|
|
&shr ("edx",3); # bsz /= 8
|
|
&mov ("edi","esi");
|
|
&lea ("esi",&DWP(100,"esi")); # size optimization
|
|
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("loop",16);
|
|
&cmp ("ecx",8); # len < 8?
|
|
&jc (&label("tail"));
|
|
|
|
&movq ("mm0",&QWP(0,"edi"));
|
|
&lea ("edi",&DWP(8,"edi"));
|
|
&movq (&QWP(0,"eax"),"mm0");
|
|
&lea ("eax",&DWP(8,"eax"));
|
|
&sub ("ecx",8); # len -= 8
|
|
&jz (&label("done"));
|
|
|
|
&dec ("edx"); # bsz--
|
|
&jnz (&label("loop"));
|
|
|
|
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
|
|
&mov (&DWP(-8,"ebp"),"ecx"); # save len
|
|
&call ("_KeccakF1600");
|
|
&mov ("ecx",&DWP(-8,"ebp")); # pull len
|
|
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
|
|
&lea ("edi",&DWP(-100,"esi"));
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("tail",16);
|
|
&mov ("esi","edi");
|
|
&mov ("edi","eax");
|
|
&data_word("0xA4F39066"); # rep movsb
|
|
|
|
&set_label("done");
|
|
&mov ("esp","ebp");
|
|
&emms ();
|
|
&function_end("SHA3_squeeze");
|
|
|
|
&set_label("iotas",32);
|
|
&data_word(0x00000001,0x00000000);
|
|
&data_word(0x00008082,0x00000000);
|
|
&data_word(0x0000808a,0x80000000);
|
|
&data_word(0x80008000,0x80000000);
|
|
&data_word(0x0000808b,0x00000000);
|
|
&data_word(0x80000001,0x00000000);
|
|
&data_word(0x80008081,0x80000000);
|
|
&data_word(0x00008009,0x80000000);
|
|
&data_word(0x0000008a,0x00000000);
|
|
&data_word(0x00000088,0x00000000);
|
|
&data_word(0x80008009,0x00000000);
|
|
&data_word(0x8000000a,0x00000000);
|
|
&data_word(0x8000808b,0x00000000);
|
|
&data_word(0x0000008b,0x80000000);
|
|
&data_word(0x00008089,0x80000000);
|
|
&data_word(0x00008003,0x80000000);
|
|
&data_word(0x00008002,0x80000000);
|
|
&data_word(0x00000080,0x80000000);
|
|
&data_word(0x0000800a,0x00000000);
|
|
&data_word(0x8000000a,0x80000000);
|
|
&data_word(0x80008081,0x80000000);
|
|
&data_word(0x00008080,0x80000000);
|
|
&data_word(0x80000001,0x00000000);
|
|
&data_word(0x80008008,0x80000000);
|
|
&asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by <appro\@openssl.org>");
|
|
|
|
&asm_finish();
|
|
|
|
close STDOUT;
|