mirror of
https://github.com/openssl/openssl.git
synced 2024-12-03 05:41:46 +08:00
1aa89a7a3a
They now generally conform to the following argument sequence: script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \ $(PROCESSOR) <output file> However, in the spirit of being able to use these scripts manually, they also allow for no argument, or for only the flavour, or for only the output file. This is done by only using the last argument as output file if it's a file (it has an extension), and only using the first argument as flavour if it isn't a file (it doesn't have an extension). While we're at it, we make all $xlate calls the same, i.e. the $output argument is always quoted, and we always die on error when trying to start $xlate. There's a perl lesson in this, regarding operator priority... This will always succeed, even when it fails: open FOO, "something" || die "ERR: $!"; The reason is that '||' has higher priority than list operators (a function is essentially a list operator and gobbles up everything following it that isn't lower priority), and since a non-empty string is always true, so that ends up being exactly the same as: open FOO, "something"; This, however, will fail if "something" can't be opened: open FOO, "something" or die "ERR: $!"; The reason is that 'or' has lower priority that list operators, i.e. it's performed after the 'open' call. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9884)
482 lines
16 KiB
Raku
Executable File
482 lines
16 KiB
Raku
Executable File
#!/usr/bin/env perl
|
|
# Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Keccak-1600 for AVX2.
|
|
#
|
|
# July 2017.
|
|
#
|
|
# To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page
|
|
# 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data
|
|
# other than A[0][0] in magic order into 6 [256-bit] registers, *each
|
|
# dedicated to one axis*, Pi permutation is reduced to intra-register
|
|
# shuffles...
|
|
#
|
|
# It makes other steps more intricate, but overall, is it a win? To be
|
|
# more specific index permutations organized by quadruples are:
|
|
#
|
|
# [4][4] [3][3] [2][2] [1][1]<-+
|
|
# [0][4] [0][3] [0][2] [0][1]<-+
|
|
# [3][0] [1][0] [4][0] [2][0] |
|
|
# [4][3] [3][1] [2][4] [1][2] |
|
|
# [3][4] [1][3] [4][2] [2][1] |
|
|
# [2][3] [4][1] [1][4] [3][2] |
|
|
# [2][2] [4][4] [1][1] [3][3] -+
|
|
#
|
|
# This however is highly impractical for Theta and Chi. What would help
|
|
# Theta is if x indices were aligned column-wise, or in other words:
|
|
#
|
|
# [0][4] [0][3] [0][2] [0][1]
|
|
# [3][0] [1][0] [4][0] [2][0]
|
|
#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
|
|
# [2][4] [4][3] [1][2] [3][1]
|
|
#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
|
|
# [3][4] [1][3] [4][2] [2][1]
|
|
#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
|
|
# [1][4] [2][3] [3][2] [4][1]
|
|
#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
|
|
# [4][4] [3][3] [2][2] [1][1]
|
|
#
|
|
# So here we have it, lines not marked with vpermq() represent the magic
|
|
# order in which data is to be loaded and maintained. [And lines marked
|
|
# with vpermq() represent Pi circular permutation in chosen layout. Note
|
|
# that first step is permutation-free.] A[0][0] is loaded to register of
|
|
# its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.]
|
|
# Digits in variables' names denote right-most coordinates:
|
|
|
|
my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0
|
|
$A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1
|
|
$A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2
|
|
$A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3
|
|
$A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4
|
|
$A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5
|
|
$A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6
|
|
map("%ymm$_",(0..6));
|
|
|
|
# We also need to map the magic order into offsets within structure:
|
|
|
|
my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4]
|
|
[2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4]
|
|
[2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4]
|
|
[2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4]
|
|
[2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4]
|
|
@A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear
|
|
|
|
# But on the other hand Chi is much better off if y indices were aligned
|
|
# column-wise, not x. For this reason we have to shuffle data prior
|
|
# Chi and revert it afterwards. Prior shuffle is naturally merged with
|
|
# Pi itself:
|
|
#
|
|
# [0][4] [0][3] [0][2] [0][1]
|
|
# [3][0] [1][0] [4][0] [2][0]
|
|
#vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
|
|
#vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101
|
|
# [3][1] [1][2] [4][3] [2][4]
|
|
#vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
|
|
#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101
|
|
# [3][4] [1][3] [4][2] [2][1]
|
|
#vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
|
|
#vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011
|
|
# [3][2] [1][4] [4][1] [2][3]
|
|
#vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
|
|
#vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010
|
|
# [3][3] [1][1] [4][4] [2][2]
|
|
#
|
|
# And reverse post-Chi permutation:
|
|
#
|
|
# [0][4] [0][3] [0][2] [0][1]
|
|
# [3][0] [1][0] [4][0] [2][0]
|
|
#vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011)
|
|
# [2][4] [4][3] [1][2] [3][1]
|
|
#vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-)
|
|
# [3][4] [1][3] [4][2] [2][1]
|
|
#vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101)
|
|
# [1][4] [2][3] [3][2] [4][1]
|
|
#vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010)
|
|
# [4][4] [3][3] [2][2] [1][1]
|
|
#
|
|
########################################################################
|
|
# Numbers are cycles per processed byte out of large message.
|
|
#
|
|
# r=1088(*)
|
|
#
|
|
# Haswell 8.7/+10%
|
|
# Skylake 7.8/+20%
|
|
# Ryzen 17(**)
|
|
#
|
|
# (*) Corresponds to SHA3-256. Percentage after slash is improvement
|
|
# coefficient in comparison to scalar keccak1600-x86_64.pl.
|
|
# (**) It's expected that Ryzen performs poorly, because instruction
|
|
# issue rate is limited to two AVX2 instructions per cycle and
|
|
# in addition vpblendd is reportedly bound to specific port.
|
|
# Obviously this code path should not be executed on Ryzen.
|
|
|
|
my @T = map("%ymm$_",(7..15));
|
|
my ($C14,$C00,$D00,$D14) = @T[5..8];
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.type __KeccakF1600,\@function
|
|
.align 32
|
|
__KeccakF1600:
|
|
lea rhotates_left+96(%rip),%r8
|
|
lea rhotates_right+96(%rip),%r9
|
|
lea iotas(%rip),%r10
|
|
mov \$24,%eax
|
|
jmp .Loop_avx2
|
|
|
|
.align 32
|
|
.Loop_avx2:
|
|
######################################### Theta
|
|
vpshufd \$0b01001110,$A20,$C00
|
|
vpxor $A31,$A41,$C14
|
|
vpxor $A11,$A21,@T[2]
|
|
vpxor $A01,$C14,$C14
|
|
vpxor @T[2],$C14,$C14 # C[1..4]
|
|
|
|
vpermq \$0b10010011,$C14,@T[4]
|
|
vpxor $A20,$C00,$C00
|
|
vpermq \$0b01001110,$C00,@T[0]
|
|
|
|
vpsrlq \$63,$C14,@T[1]
|
|
vpaddq $C14,$C14,@T[2]
|
|
vpor @T[2],@T[1],@T[1] # ROL64(C[1..4],1)
|
|
|
|
vpermq \$0b00111001,@T[1],$D14
|
|
vpxor @T[4],@T[1],$D00
|
|
vpermq \$0b00000000,$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4]
|
|
|
|
vpxor $A00,$C00,$C00
|
|
vpxor @T[0],$C00,$C00 # C[0..0]
|
|
|
|
vpsrlq \$63,$C00,@T[0]
|
|
vpaddq $C00,$C00,@T[1]
|
|
vpor @T[0],@T[1],@T[1] # ROL64(C[0..0],1)
|
|
|
|
vpxor $D00,$A20,$A20 # ^= D[0..0]
|
|
vpxor $D00,$A00,$A00 # ^= D[0..0]
|
|
|
|
vpblendd \$0b11000000,@T[1],$D14,$D14
|
|
vpblendd \$0b00000011,$C00,@T[4],@T[4]
|
|
vpxor @T[4],$D14,$D14 # D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3]
|
|
|
|
######################################### Rho + Pi + pre-Chi shuffle
|
|
vpsllvq 0*32-96(%r8),$A20,@T[3]
|
|
vpsrlvq 0*32-96(%r9),$A20,$A20
|
|
vpor @T[3],$A20,$A20
|
|
|
|
vpxor $D14,$A31,$A31 # ^= D[1..4] from Theta
|
|
vpsllvq 2*32-96(%r8),$A31,@T[4]
|
|
vpsrlvq 2*32-96(%r9),$A31,$A31
|
|
vpor @T[4],$A31,$A31
|
|
|
|
vpxor $D14,$A21,$A21 # ^= D[1..4] from Theta
|
|
vpsllvq 3*32-96(%r8),$A21,@T[5]
|
|
vpsrlvq 3*32-96(%r9),$A21,$A21
|
|
vpor @T[5],$A21,$A21
|
|
|
|
vpxor $D14,$A41,$A41 # ^= D[1..4] from Theta
|
|
vpsllvq 4*32-96(%r8),$A41,@T[6]
|
|
vpsrlvq 4*32-96(%r9),$A41,$A41
|
|
vpor @T[6],$A41,$A41
|
|
|
|
vpxor $D14,$A11,$A11 # ^= D[1..4] from Theta
|
|
vpermq \$0b10001101,$A20,@T[3] # $A20 -> future $A31
|
|
vpermq \$0b10001101,$A31,@T[4] # $A31 -> future $A21
|
|
vpsllvq 5*32-96(%r8),$A11,@T[7]
|
|
vpsrlvq 5*32-96(%r9),$A11,@T[1]
|
|
vpor @T[7],@T[1],@T[1] # $A11 -> future $A01
|
|
|
|
vpxor $D14,$A01,$A01 # ^= D[1..4] from Theta
|
|
vpermq \$0b00011011,$A21,@T[5] # $A21 -> future $A41
|
|
vpermq \$0b01110010,$A41,@T[6] # $A41 -> future $A11
|
|
vpsllvq 1*32-96(%r8),$A01,@T[8]
|
|
vpsrlvq 1*32-96(%r9),$A01,@T[2]
|
|
vpor @T[8],@T[2],@T[2] # $A01 -> future $A20
|
|
|
|
######################################### Chi
|
|
vpsrldq \$8,@T[1],@T[7]
|
|
vpandn @T[7],@T[1],@T[0] # tgting [0][0] [0][0] [0][0] [0][0]
|
|
|
|
vpblendd \$0b00001100,@T[6],@T[2],$A31 # [4][4] [2][0]
|
|
vpblendd \$0b00001100,@T[2],@T[4],@T[8] # [4][0] [2][1]
|
|
vpblendd \$0b00001100,@T[4],@T[3],$A41 # [4][2] [2][4]
|
|
vpblendd \$0b00001100,@T[3],@T[2],@T[7] # [4][3] [2][0]
|
|
vpblendd \$0b00110000,@T[4],$A31,$A31 # [1][3] [4][4] [2][0]
|
|
vpblendd \$0b00110000,@T[5],@T[8],@T[8] # [1][4] [4][0] [2][1]
|
|
vpblendd \$0b00110000,@T[2],$A41,$A41 # [1][0] [4][2] [2][4]
|
|
vpblendd \$0b00110000,@T[6],@T[7],@T[7] # [1][1] [4][3] [2][0]
|
|
vpblendd \$0b11000000,@T[5],$A31,$A31 # [3][2] [1][3] [4][4] [2][0]
|
|
vpblendd \$0b11000000,@T[6],@T[8],@T[8] # [3][3] [1][4] [4][0] [2][1]
|
|
vpblendd \$0b11000000,@T[6],$A41,$A41 # [3][3] [1][0] [4][2] [2][4]
|
|
vpblendd \$0b11000000,@T[4],@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0]
|
|
vpandn @T[8],$A31,$A31 # tgting [3][1] [1][2] [4][3] [2][4]
|
|
vpandn @T[7],$A41,$A41 # tgting [3][2] [1][4] [4][1] [2][3]
|
|
|
|
vpblendd \$0b00001100,@T[2],@T[5],$A11 # [4][0] [2][3]
|
|
vpblendd \$0b00001100,@T[5],@T[3],@T[8] # [4][1] [2][4]
|
|
vpxor @T[3],$A31,$A31
|
|
vpblendd \$0b00110000,@T[3],$A11,$A11 # [1][2] [4][0] [2][3]
|
|
vpblendd \$0b00110000,@T[4],@T[8],@T[8] # [1][3] [4][1] [2][4]
|
|
vpxor @T[5],$A41,$A41
|
|
vpblendd \$0b11000000,@T[4],$A11,$A11 # [3][4] [1][2] [4][0] [2][3]
|
|
vpblendd \$0b11000000,@T[2],@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4]
|
|
vpandn @T[8],$A11,$A11 # tgting [3][3] [1][1] [4][4] [2][2]
|
|
vpxor @T[6],$A11,$A11
|
|
|
|
vpermq \$0b00011110,@T[1],$A21 # [0][1] [0][2] [0][4] [0][3]
|
|
vpblendd \$0b00110000,$A00,$A21,@T[8] # [0][1] [0][0] [0][4] [0][3]
|
|
vpermq \$0b00111001,@T[1],$A01 # [0][1] [0][4] [0][3] [0][2]
|
|
vpblendd \$0b11000000,$A00,$A01,$A01 # [0][0] [0][4] [0][3] [0][2]
|
|
vpandn @T[8],$A01,$A01 # tgting [0][4] [0][3] [0][2] [0][1]
|
|
|
|
vpblendd \$0b00001100,@T[5],@T[4],$A20 # [4][1] [2][1]
|
|
vpblendd \$0b00001100,@T[4],@T[6],@T[7] # [4][2] [2][2]
|
|
vpblendd \$0b00110000,@T[6],$A20,$A20 # [1][1] [4][1] [2][1]
|
|
vpblendd \$0b00110000,@T[3],@T[7],@T[7] # [1][2] [4][2] [2][2]
|
|
vpblendd \$0b11000000,@T[3],$A20,$A20 # [3][1] [1][1] [4][1] [2][1]
|
|
vpblendd \$0b11000000,@T[5],@T[7],@T[7] # [3][2] [1][2] [4][2] [2][2]
|
|
vpandn @T[7],$A20,$A20 # tgting [3][0] [1][0] [4][0] [2][0]
|
|
vpxor @T[2],$A20,$A20
|
|
|
|
vpermq \$0b00000000,@T[0],@T[0] # [0][0] [0][0] [0][0] [0][0]
|
|
vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle
|
|
vpermq \$0b10001101,$A41,$A41
|
|
vpermq \$0b01110010,$A11,$A11
|
|
|
|
vpblendd \$0b00001100,@T[3],@T[6],$A21 # [4][3] [2][2]
|
|
vpblendd \$0b00001100,@T[6],@T[5],@T[7] # [4][4] [2][3]
|
|
vpblendd \$0b00110000,@T[5],$A21,$A21 # [1][4] [4][3] [2][2]
|
|
vpblendd \$0b00110000,@T[2],@T[7],@T[7] # [1][0] [4][4] [2][3]
|
|
vpblendd \$0b11000000,@T[2],$A21,$A21 # [3][0] [1][4] [4][3] [2][2]
|
|
vpblendd \$0b11000000,@T[3],@T[7],@T[7] # [3][1] [1][0] [4][4] [2][3]
|
|
vpandn @T[7],$A21,$A21 # tgting [3][4] [1][3] [4][2] [2][1]
|
|
|
|
vpxor @T[0],$A00,$A00
|
|
vpxor @T[1],$A01,$A01
|
|
vpxor @T[4],$A21,$A21
|
|
|
|
######################################### Iota
|
|
vpxor (%r10),$A00,$A00
|
|
lea 32(%r10),%r10
|
|
|
|
dec %eax
|
|
jnz .Loop_avx2
|
|
|
|
ret
|
|
.size __KeccakF1600,.-__KeccakF1600
|
|
___
|
|
my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
|
|
my $out = $inp; # in squeeze
|
|
|
|
$code.=<<___;
|
|
.globl SHA3_absorb
|
|
.type SHA3_absorb,\@function
|
|
.align 32
|
|
SHA3_absorb:
|
|
mov %rsp,%r11
|
|
|
|
lea -240(%rsp),%rsp
|
|
and \$-32,%rsp
|
|
|
|
lea 96($A_flat),$A_flat
|
|
lea 96($inp),$inp
|
|
lea 96(%rsp),%r10
|
|
|
|
vzeroupper
|
|
|
|
vpbroadcastq -96($A_flat),$A00 # load A[5][5]
|
|
vmovdqu 8+32*0-96($A_flat),$A01
|
|
vmovdqu 8+32*1-96($A_flat),$A20
|
|
vmovdqu 8+32*2-96($A_flat),$A31
|
|
vmovdqu 8+32*3-96($A_flat),$A21
|
|
vmovdqu 8+32*4-96($A_flat),$A41
|
|
vmovdqu 8+32*5-96($A_flat),$A11
|
|
|
|
vpxor @T[0],@T[0],@T[0]
|
|
vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack
|
|
vmovdqa @T[0],32*3-96(%r10)
|
|
vmovdqa @T[0],32*4-96(%r10)
|
|
vmovdqa @T[0],32*5-96(%r10)
|
|
vmovdqa @T[0],32*6-96(%r10)
|
|
|
|
.Loop_absorb_avx2:
|
|
mov $bsz,%rax
|
|
sub $bsz,$len
|
|
jc .Ldone_absorb_avx2
|
|
|
|
shr \$3,%eax
|
|
vpbroadcastq 0-96($inp),@T[0]
|
|
vmovdqu 8-96($inp),@T[1]
|
|
sub \$4,%eax
|
|
___
|
|
for(my $i=5; $i<25; $i++) {
|
|
$code.=<<___
|
|
dec %eax
|
|
jz .Labsorved_avx2
|
|
mov 8*$i-96($inp),%r8
|
|
mov %r8,$A_jagged[$i]-96(%r10)
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.Labsorved_avx2:
|
|
lea ($inp,$bsz),$inp
|
|
|
|
vpxor @T[0],$A00,$A00
|
|
vpxor @T[1],$A01,$A01
|
|
vpxor 32*2-96(%r10),$A20,$A20
|
|
vpxor 32*3-96(%r10),$A31,$A31
|
|
vpxor 32*4-96(%r10),$A21,$A21
|
|
vpxor 32*5-96(%r10),$A41,$A41
|
|
vpxor 32*6-96(%r10),$A11,$A11
|
|
|
|
call __KeccakF1600
|
|
|
|
lea 96(%rsp),%r10
|
|
jmp .Loop_absorb_avx2
|
|
|
|
.Ldone_absorb_avx2:
|
|
vmovq %xmm0,-96($A_flat)
|
|
vmovdqu $A01,8+32*0-96($A_flat)
|
|
vmovdqu $A20,8+32*1-96($A_flat)
|
|
vmovdqu $A31,8+32*2-96($A_flat)
|
|
vmovdqu $A21,8+32*3-96($A_flat)
|
|
vmovdqu $A41,8+32*4-96($A_flat)
|
|
vmovdqu $A11,8+32*5-96($A_flat)
|
|
|
|
vzeroupper
|
|
|
|
lea (%r11),%rsp
|
|
lea ($len,$bsz),%rax # return value
|
|
ret
|
|
.size SHA3_absorb,.-SHA3_absorb
|
|
|
|
.globl SHA3_squeeze
|
|
.type SHA3_squeeze,\@function
|
|
.align 32
|
|
SHA3_squeeze:
|
|
mov %rsp,%r11
|
|
|
|
lea 96($A_flat),$A_flat
|
|
shr \$3,$bsz
|
|
|
|
vzeroupper
|
|
|
|
vpbroadcastq -96($A_flat),$A00
|
|
vpxor @T[0],@T[0],@T[0]
|
|
vmovdqu 8+32*0-96($A_flat),$A01
|
|
vmovdqu 8+32*1-96($A_flat),$A20
|
|
vmovdqu 8+32*2-96($A_flat),$A31
|
|
vmovdqu 8+32*3-96($A_flat),$A21
|
|
vmovdqu 8+32*4-96($A_flat),$A41
|
|
vmovdqu 8+32*5-96($A_flat),$A11
|
|
|
|
mov $bsz,%rax
|
|
|
|
.Loop_squeeze_avx2:
|
|
mov @A_jagged[$i]-96($A_flat),%r8
|
|
___
|
|
for (my $i=0; $i<25; $i++) {
|
|
$code.=<<___;
|
|
sub \$8,$len
|
|
jc .Ltail_squeeze_avx2
|
|
mov %r8,($out)
|
|
lea 8($out),$out
|
|
je .Ldone_squeeze_avx2
|
|
dec %eax
|
|
je .Lextend_output_avx2
|
|
mov @A_jagged[$i+1]-120($A_flat),%r8
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.Lextend_output_avx2:
|
|
call __KeccakF1600
|
|
|
|
vmovq %xmm0,-96($A_flat)
|
|
vmovdqu $A01,8+32*0-96($A_flat)
|
|
vmovdqu $A20,8+32*1-96($A_flat)
|
|
vmovdqu $A31,8+32*2-96($A_flat)
|
|
vmovdqu $A21,8+32*3-96($A_flat)
|
|
vmovdqu $A41,8+32*4-96($A_flat)
|
|
vmovdqu $A11,8+32*5-96($A_flat)
|
|
|
|
mov $bsz,%rax
|
|
jmp .Loop_squeeze_avx2
|
|
|
|
|
|
.Ltail_squeeze_avx2:
|
|
add \$8,$len
|
|
.Loop_tail_avx2:
|
|
mov %r8b,($out)
|
|
lea 1($out),$out
|
|
shr \$8,%r8
|
|
dec $len
|
|
jnz .Loop_tail_avx2
|
|
|
|
.Ldone_squeeze_avx2:
|
|
vzeroupper
|
|
|
|
lea (%r11),%rsp
|
|
ret
|
|
.size SHA3_squeeze,.-SHA3_squeeze
|
|
|
|
.align 64
|
|
rhotates_left:
|
|
.quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0]
|
|
.quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4]
|
|
.quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4]
|
|
.quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4]
|
|
.quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4]
|
|
.quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4]
|
|
rhotates_right:
|
|
.quad 64-3, 64-18, 64-36, 64-41
|
|
.quad 64-1, 64-62, 64-28, 64-27
|
|
.quad 64-45, 64-6, 64-56, 64-39
|
|
.quad 64-10, 64-61, 64-55, 64-8
|
|
.quad 64-2, 64-15, 64-25, 64-20
|
|
.quad 64-44, 64-43, 64-21, 64-14
|
|
iotas:
|
|
.quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001
|
|
.quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082
|
|
.quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a
|
|
.quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000
|
|
.quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b
|
|
.quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
|
|
.quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
|
|
.quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009
|
|
.quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a
|
|
.quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088
|
|
.quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009
|
|
.quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a
|
|
.quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b
|
|
.quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b
|
|
.quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089
|
|
.quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003
|
|
.quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002
|
|
.quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080
|
|
.quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a
|
|
.quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a
|
|
.quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
|
|
.quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080
|
|
.quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
|
|
.quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008
|
|
|
|
.asciz "Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by <appro\@openssl.org>"
|
|
___
|
|
|
|
$output=pop and open STDOUT,">$output";
|
|
print $code;
|
|
close STDOUT;
|