openssl/ssl/quic/quic_record_shared.c
Hugo Landau 948c656c66 TX key update support, RX time and PN reporting, general refactoring
- Adds an RX time field to the OSSL_QRX_PKT structure.

- Adds a timekeeping argument to ossl_demux_new which is used to determine
  packet reception time.

- Adds a decoded PN field to the OSSL_QRX_PKT structure.
  This has to be decoded by the QRX anyway, and its omission was an oversight.

- Key update support for the TX side.

- Minor refactoring.

Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18949)
2022-09-02 10:03:55 +02:00

438 lines
14 KiB
C

#include "quic_record_shared.h"
#include "internal/quic_record_util.h"
#include "internal/common.h"
#include "../ssl_local.h"
/* Constants used for key derivation in QUIC v1. */
static const unsigned char quic_v1_iv_label[] = {
0x71, 0x75, 0x69, 0x63, 0x20, 0x69, 0x76 /* "quic iv" */
};
static const unsigned char quic_v1_key_label[] = {
0x71, 0x75, 0x69, 0x63, 0x20, 0x6b, 0x65, 0x79 /* "quic key" */
};
static const unsigned char quic_v1_hp_label[] = {
0x71, 0x75, 0x69, 0x63, 0x20, 0x68, 0x70 /* "quic hp" */
};
static const unsigned char quic_v1_ku_label[] = {
0x71, 0x75, 0x69, 0x63, 0x20, 0x6b, 0x75 /* "quic ku" */
};
OSSL_QRL_ENC_LEVEL *ossl_qrl_enc_level_set_get(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level,
int require_prov)
{
OSSL_QRL_ENC_LEVEL *el;
if (!ossl_assert(enc_level < QUIC_ENC_LEVEL_NUM))
return NULL;
el = &els->el[enc_level];
if (require_prov)
switch (el->state) {
case QRL_EL_STATE_PROV_NORMAL:
case QRL_EL_STATE_PROV_UPDATING:
case QRL_EL_STATE_PROV_COOLDOWN:
break;
default:
return NULL;
}
return el;
}
int ossl_qrl_enc_level_set_have_el(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
switch (el->state) {
case QRL_EL_STATE_UNPROV:
return 0;
case QRL_EL_STATE_PROV_NORMAL:
case QRL_EL_STATE_PROV_UPDATING:
case QRL_EL_STATE_PROV_COOLDOWN:
return 1;
default:
case QRL_EL_STATE_DISCARDED:
return -1;
}
}
int ossl_qrl_enc_level_set_has_keyslot(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level,
unsigned char tgt_state,
size_t keyslot)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
if (!ossl_assert(el != NULL && keyslot < 2))
return 0;
switch (tgt_state) {
case QRL_EL_STATE_PROV_NORMAL:
case QRL_EL_STATE_PROV_UPDATING:
return enc_level == QUIC_ENC_LEVEL_1RTT || keyslot == 0;
case QRL_EL_STATE_PROV_COOLDOWN:
assert(enc_level == QUIC_ENC_LEVEL_1RTT);
return keyslot == (el->key_epoch & 1);
default:
return 0;
}
}
static void el_teardown_keyslot(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level,
size_t keyslot)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
if (!ossl_qrl_enc_level_set_has_keyslot(els, enc_level, el->state, keyslot))
return;
if (el->cctx[keyslot] != NULL) {
EVP_CIPHER_CTX_free(el->cctx[keyslot]);
el->cctx[keyslot] = NULL;
}
OPENSSL_cleanse(el->iv[keyslot], sizeof(el->iv[keyslot]));
}
static int el_setup_keyslot(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level,
unsigned char tgt_state,
size_t keyslot,
const unsigned char *secret,
size_t secret_len)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
unsigned char key[EVP_MAX_KEY_LENGTH];
size_t key_len = 0, iv_len = 0;
const char *cipher_name = NULL;
EVP_CIPHER *cipher = NULL;
EVP_CIPHER_CTX *cctx = NULL;
if (!ossl_assert(el != NULL
&& ossl_qrl_enc_level_set_has_keyslot(els, enc_level,
tgt_state, keyslot)))
return 0;
cipher_name = ossl_qrl_get_suite_cipher_name(el->suite_id);
iv_len = ossl_qrl_get_suite_cipher_iv_len(el->suite_id);
key_len = ossl_qrl_get_suite_cipher_key_len(el->suite_id);
if (cipher_name == NULL)
return 0;
if (secret_len != ossl_qrl_get_suite_secret_len(el->suite_id)
|| secret_len > EVP_MAX_KEY_LENGTH)
return 0;
assert(el->cctx[keyslot] == NULL);
/* Derive "quic iv" key. */
if (!tls13_hkdf_expand_ex(el->libctx, el->propq,
el->md,
secret,
quic_v1_iv_label,
sizeof(quic_v1_iv_label),
NULL, 0,
el->iv[keyslot], iv_len, 0))
goto err;
/* Derive "quic key" key. */
if (!tls13_hkdf_expand_ex(el->libctx, el->propq,
el->md,
secret,
quic_v1_key_label,
sizeof(quic_v1_key_label),
NULL, 0,
key, key_len, 0))
goto err;
/* Create and initialise cipher context. */
if ((cipher = EVP_CIPHER_fetch(el->libctx, cipher_name, el->propq)) == NULL)
goto err;
if ((cctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
if (!ossl_assert(iv_len == (size_t)EVP_CIPHER_get_iv_length(cipher))
|| !ossl_assert(key_len == (size_t)EVP_CIPHER_get_key_length(cipher)))
goto err;
/* IV will be changed on RX/TX so we don't need to use a real value here. */
if (!EVP_CipherInit_ex(cctx, cipher, NULL, key, el->iv[keyslot], 0))
goto err;
el->cctx[keyslot] = cctx;
/* Zeroize intermediate keys. */
OPENSSL_cleanse(key, sizeof(key));
EVP_CIPHER_free(cipher);
return 1;
err:
EVP_CIPHER_CTX_free(cctx);
EVP_CIPHER_free(cipher);
OPENSSL_cleanse(el->iv[keyslot], sizeof(el->iv[keyslot]));
OPENSSL_cleanse(key, sizeof(key));
return 0;
}
int ossl_qrl_enc_level_set_provide_secret(OSSL_QRL_ENC_LEVEL_SET *els,
OSSL_LIB_CTX *libctx,
const char *propq,
uint32_t enc_level,
uint32_t suite_id,
EVP_MD *md,
const unsigned char *secret,
size_t secret_len,
unsigned char init_key_phase_bit,
int is_tx)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
unsigned char ku_key[EVP_MAX_KEY_LENGTH], hpr_key[EVP_MAX_KEY_LENGTH];
int have_ks0 = 0, have_ks1 = 0, own_md = 0;
const char *md_name = ossl_qrl_get_suite_md_name(suite_id);
size_t hpr_key_len, init_keyslot;
if (el == NULL || el->state != QRL_EL_STATE_UNPROV || md_name == NULL
|| init_key_phase_bit > 1 || is_tx < 0 || is_tx > 1)
return 0;
init_keyslot = is_tx ? 0 : init_key_phase_bit;
hpr_key_len = ossl_qrl_get_suite_hdr_prot_key_len(suite_id);
if (hpr_key_len == 0)
return 0;
if (md == NULL) {
md = EVP_MD_fetch(libctx, md_name, propq);
if (md == NULL)
return 0;
own_md = 1;
}
el->libctx = libctx;
el->propq = propq;
el->md = md;
el->suite_id = suite_id;
el->tag_len = ossl_qrl_get_suite_cipher_tag_len(suite_id);
el->op_count = 0;
el->key_epoch = (uint64_t)init_key_phase_bit;
el->is_tx = (unsigned char)is_tx;
/* Derive "quic hp" key. */
if (!tls13_hkdf_expand_ex(libctx, propq,
md,
secret,
quic_v1_hp_label,
sizeof(quic_v1_hp_label),
NULL, 0,
hpr_key, hpr_key_len, 0))
goto err;
/* Setup KS0 (or KS1 if init_key_phase_bit), our initial keyslot. */
if (!el_setup_keyslot(els, enc_level, QRL_EL_STATE_PROV_NORMAL,
init_keyslot, secret, secret_len))
goto err;
have_ks0 = 1;
if (enc_level == QUIC_ENC_LEVEL_1RTT) {
/* Derive "quic ku" key (the epoch 1 secret). */
if (!tls13_hkdf_expand_ex(libctx, propq,
md,
secret,
quic_v1_ku_label,
sizeof(quic_v1_ku_label),
NULL, 0,
is_tx ? el->ku : ku_key, secret_len, 0))
goto err;
if (!is_tx) {
/* Setup KS1 (or KS0 if init_key_phase_bit), our next keyslot. */
if (!el_setup_keyslot(els, enc_level, QRL_EL_STATE_PROV_NORMAL,
!init_keyslot, ku_key, secret_len))
goto err;
have_ks1 = 1;
/* Derive NEXT "quic ku" key (the epoch 2 secret). */
if (!tls13_hkdf_expand_ex(libctx, propq,
md,
ku_key,
quic_v1_ku_label,
sizeof(quic_v1_ku_label),
NULL, 0,
el->ku, secret_len, 0))
goto err;
}
}
/* Setup header protection context. */
if (!ossl_quic_hdr_protector_init(&el->hpr,
libctx, propq,
ossl_qrl_get_suite_hdr_prot_cipher_id(suite_id),
hpr_key, hpr_key_len))
goto err;
/*
* We are now provisioned: KS0 has our current key (for key epoch 0), KS1
* has our next key (for key epoch 1, in the case of the 1-RTT EL only), and
* el->ku has the secret which will be used to generate keys for key epoch
* 2.
*/
OPENSSL_cleanse(hpr_key, sizeof(hpr_key));
OPENSSL_cleanse(ku_key, sizeof(ku_key));
el->state = QRL_EL_STATE_PROV_NORMAL;
return 1;
err:
el->suite_id = 0;
OPENSSL_cleanse(hpr_key, sizeof(hpr_key));
OPENSSL_cleanse(ku_key, sizeof(ku_key));
OPENSSL_cleanse(el->ku, sizeof(el->ku));
if (have_ks0)
el_teardown_keyslot(els, enc_level, 0);
if (have_ks1)
el_teardown_keyslot(els, enc_level, 1);
if (own_md)
EVP_MD_free(md);
return 0;
}
int ossl_qrl_enc_level_set_key_update(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
size_t secret_len;
unsigned char new_ku[EVP_MAX_KEY_LENGTH];
if (el == NULL || !ossl_assert(enc_level == QUIC_ENC_LEVEL_1RTT))
return 0;
if (el->state != QRL_EL_STATE_PROV_NORMAL)
return 0;
if (!el->is_tx) {
/*
* We already have the key for the next epoch, so just move to using it.
*/
++el->key_epoch;
el->state = QRL_EL_STATE_PROV_UPDATING;
return 1;
}
/*
* TX case. For the TX side we use only keyslot 0; it replaces the old key
* immediately.
*/
secret_len = ossl_qrl_get_suite_secret_len(el->suite_id);
/* Derive NEXT "quic ku" key (the epoch n+1 secret). */
if (!tls13_hkdf_expand_ex(el->libctx, el->propq,
el->md, el->ku,
quic_v1_ku_label,
sizeof(quic_v1_ku_label),
NULL, 0,
new_ku, secret_len, 0))
return 0;
el_teardown_keyslot(els, enc_level, 0);
/* Setup keyslot for CURRENT "quic ku" key. */
if (!el_setup_keyslot(els, enc_level, QRL_EL_STATE_PROV_NORMAL,
0, el->ku, secret_len))
return 0;
++el->key_epoch;
el->op_count = 0;
memcpy(el->ku, new_ku, secret_len);
/* Remain in PROV_NORMAL state */
return 1;
}
/* Transitions from PROV_UPDATING to PROV_COOLDOWN. */
int ossl_qrl_enc_level_set_key_update_done(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
if (el == NULL || !ossl_assert(enc_level == QUIC_ENC_LEVEL_1RTT))
return 0;
/* No new key yet, but erase key material to aid PFS. */
el_teardown_keyslot(els, enc_level, ~el->key_epoch & 1);
el->state = QRL_EL_STATE_PROV_COOLDOWN;
return 1;
}
/*
* Transitions from PROV_COOLDOWN to PROV_NORMAL. (If in PROV_UPDATING,
* auto-transitions to PROV_COOLDOWN first.)
*/
int ossl_qrl_enc_level_set_key_cooldown_done(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
size_t secret_len;
unsigned char new_ku[EVP_MAX_KEY_LENGTH];
if (el == NULL || !ossl_assert(enc_level == QUIC_ENC_LEVEL_1RTT))
return 0;
if (el->state == QRL_EL_STATE_PROV_UPDATING
&& !ossl_qrl_enc_level_set_key_update_done(els, enc_level))
return 0;
if (el->state != QRL_EL_STATE_PROV_COOLDOWN)
return 0;
secret_len = ossl_qrl_get_suite_secret_len(el->suite_id);
if (!el_setup_keyslot(els, enc_level, QRL_EL_STATE_PROV_NORMAL,
~el->key_epoch & 1, el->ku, secret_len))
return 0;
/* Derive NEXT "quic ku" key (the epoch n+1 secret). */
if (!tls13_hkdf_expand_ex(el->libctx, el->propq,
el->md,
el->ku,
quic_v1_ku_label,
sizeof(quic_v1_ku_label),
NULL, 0,
new_ku, secret_len, 0)) {
el_teardown_keyslot(els, enc_level, ~el->key_epoch & 1);
return 0;
}
memcpy(el->ku, new_ku, secret_len);
el->state = QRL_EL_STATE_PROV_NORMAL;
return 1;
}
/*
* Discards keying material for a given encryption level. Transitions from any
* state to DISCARDED.
*/
void ossl_qrl_enc_level_set_discard(OSSL_QRL_ENC_LEVEL_SET *els,
uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(els, enc_level, 0);
if (el == NULL || el->state == QRL_EL_STATE_DISCARDED)
return;
if (ossl_qrl_enc_level_set_have_el(els, enc_level) == 1) {
ossl_quic_hdr_protector_cleanup(&el->hpr);
el_teardown_keyslot(els, enc_level, 0);
el_teardown_keyslot(els, enc_level, 1);
}
EVP_MD_free(el->md);
el->md = NULL;
el->state = QRL_EL_STATE_DISCARDED;
}