mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
33388b44b6
Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/11616)
251 lines
9.1 KiB
Raku
251 lines
9.1 KiB
Raku
#! /usr/bin/env perl
|
|
# Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Wrapper around 'rep montmul', VIA-specific instruction accessing
|
|
# PadLock Montgomery Multiplier. The wrapper is designed as drop-in
|
|
# replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9].
|
|
#
|
|
# Below are interleaved outputs from 'openssl speed rsa dsa' for 4
|
|
# different software configurations on 1.5GHz VIA Esther processor.
|
|
# Lines marked with "software integer" denote performance of hand-
|
|
# coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2"
|
|
# refers to hand-coded SSE2 Montgomery multiplication procedure found
|
|
# OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from
|
|
# Padlock SDK 2.0.1 available for download from VIA, which naturally
|
|
# utilizes the magic 'repz montmul' instruction. And finally "hardware
|
|
# this" refers to *this* implementation which also uses 'repz montmul'
|
|
#
|
|
# sign verify sign/s verify/s
|
|
# rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer
|
|
# rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2
|
|
# rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK
|
|
# rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this
|
|
#
|
|
# rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer
|
|
# rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2
|
|
# rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK
|
|
# rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this
|
|
#
|
|
# rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer
|
|
# rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2
|
|
# rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK
|
|
# rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this
|
|
#
|
|
# rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer
|
|
# rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2
|
|
# rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK
|
|
# rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this
|
|
#
|
|
# dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer
|
|
# dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2
|
|
# dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK
|
|
# dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this
|
|
#
|
|
# dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer
|
|
# dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2
|
|
# dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK
|
|
# dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this
|
|
#
|
|
# dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer
|
|
# dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2
|
|
# dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK
|
|
# dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this
|
|
#
|
|
# To give you some other reference point here is output for 2.4GHz P4
|
|
# running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software
|
|
# SSE2" in above terms.
|
|
#
|
|
# rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0
|
|
# rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0
|
|
# rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9
|
|
# rsa 4096 bits 0.109770s 0.002379s 9.1 420.3
|
|
# dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1
|
|
# dsa 1024 bits 0.001346s 0.001595s 742.7 627.0
|
|
# dsa 2048 bits 0.004745s 0.005582s 210.7 179.1
|
|
#
|
|
# Conclusions:
|
|
# - VIA SDK leaves a *lot* of room for improvement (which this
|
|
# implementation successfully fills:-);
|
|
# - 'rep montmul' gives up to >3x performance improvement depending on
|
|
# key length;
|
|
# - in terms of absolute performance it delivers approximately as much
|
|
# as modern out-of-order 32-bit cores [again, for longer keys].
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
require "x86asm.pl";
|
|
|
|
$output = pop and open STDOUT,">$output";
|
|
|
|
&asm_init($ARGV[0]);
|
|
|
|
# int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num);
|
|
$func="bn_mul_mont_padlock";
|
|
|
|
$pad=16*1; # amount of reserved bytes on top of every vector
|
|
|
|
# stack layout
|
|
$mZeroPrime=&DWP(0,"esp"); # these are specified by VIA
|
|
$A=&DWP(4,"esp");
|
|
$B=&DWP(8,"esp");
|
|
$T=&DWP(12,"esp");
|
|
$M=&DWP(16,"esp");
|
|
$scratch=&DWP(20,"esp");
|
|
$rp=&DWP(24,"esp"); # these are mine
|
|
$sp=&DWP(28,"esp");
|
|
# &DWP(32,"esp") # 32 byte scratch area
|
|
# &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num]
|
|
# &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num]
|
|
# &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num]
|
|
# &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num]
|
|
# Note that SDK suggests to unconditionally allocate 2K per vector. This
|
|
# has quite an impact on performance. It naturally depends on key length,
|
|
# but to give an example 1024 bit private RSA key operations suffer >30%
|
|
# penalty. I allocate only as much as actually required...
|
|
|
|
&function_begin($func);
|
|
&xor ("eax","eax");
|
|
&mov ("ecx",&wparam(5)); # num
|
|
# meet VIA's limitations for num [note that the specification
|
|
# expresses them in bits, while we work with amount of 32-bit words]
|
|
&test ("ecx",3);
|
|
&jnz (&label("leave")); # num % 4 != 0
|
|
&cmp ("ecx",8);
|
|
&jb (&label("leave")); # num < 8
|
|
&cmp ("ecx",1024);
|
|
&ja (&label("leave")); # num > 1024
|
|
|
|
&pushf ();
|
|
&cld ();
|
|
|
|
&mov ("edi",&wparam(0)); # rp
|
|
&mov ("eax",&wparam(1)); # ap
|
|
&mov ("ebx",&wparam(2)); # bp
|
|
&mov ("edx",&wparam(3)); # np
|
|
&mov ("esi",&wparam(4)); # n0
|
|
&mov ("esi",&DWP(0,"esi")); # *n0
|
|
|
|
&lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes
|
|
&lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes
|
|
&neg ("ebp");
|
|
&add ("ebp","esp");
|
|
&and ("ebp",-64); # align to cache-line
|
|
&xchg ("ebp","esp"); # alloca
|
|
|
|
&mov ($rp,"edi"); # save rp
|
|
&mov ($sp,"ebp"); # save esp
|
|
|
|
&mov ($mZeroPrime,"esi");
|
|
&lea ("esi",&DWP(64,"esp")); # tp
|
|
&mov ($T,"esi");
|
|
&lea ("edi",&DWP(32,"esp")); # scratch area
|
|
&mov ($scratch,"edi");
|
|
&mov ("esi","eax");
|
|
|
|
&lea ("ebp",&DWP(-$pad,"ecx"));
|
|
&shr ("ebp",2); # restore original num value in ebp
|
|
|
|
&xor ("eax","eax");
|
|
|
|
&mov ("ecx","ebp");
|
|
&lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero
|
|
|
|
&mov ("ecx","ebp");
|
|
&lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy
|
|
&mov ($A,"edi");
|
|
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
|
&mov ("ecx",$pad/4);
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero pad
|
|
# edi points at the end of padded ap copy...
|
|
|
|
&mov ("ecx","ebp");
|
|
&mov ("esi","ebx");
|
|
&mov ($B,"edi");
|
|
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
|
&mov ("ecx",$pad/4);
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero pad
|
|
# edi points at the end of padded bp copy...
|
|
|
|
&mov ("ecx","ebp");
|
|
&mov ("esi","edx");
|
|
&mov ($M,"edi");
|
|
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
|
&mov ("ecx",$pad/4);
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero pad
|
|
# edi points at the end of padded np copy...
|
|
|
|
# let magic happen...
|
|
&mov ("ecx","ebp");
|
|
&mov ("esi","esp");
|
|
&shl ("ecx",5); # convert word counter to bit counter
|
|
&align (4);
|
|
&data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul
|
|
|
|
&mov ("ecx","ebp");
|
|
&lea ("esi",&DWP(64,"esp")); # tp
|
|
# edi still points at the end of padded np copy...
|
|
&neg ("ebp");
|
|
&lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind"
|
|
&mov ("edi",$rp); # restore rp
|
|
&xor ("edx","edx"); # i=0 and clear CF
|
|
|
|
&set_label("sub",8);
|
|
&mov ("eax",&DWP(0,"esi","edx",4));
|
|
&sbb ("eax",&DWP(0,"ebp","edx",4));
|
|
&mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i]
|
|
&lea ("edx",&DWP(1,"edx")); # i++
|
|
&loop (&label("sub")); # doesn't affect CF!
|
|
|
|
&mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit
|
|
&sbb ("eax",0);
|
|
|
|
&mov ("ecx","edx"); # num
|
|
&mov ("edx",0); # i=0
|
|
|
|
&set_label("copy",8);
|
|
&mov ("ebx",&DWP(0,"esi","edx",4));
|
|
&mov ("eax",&DWP(0,"edi","edx",4));
|
|
&mov (&DWP(0,"esi","edx",4),"ecx"); # zap tp
|
|
&cmovc ("eax","ebx");
|
|
&mov (&DWP(0,"edi","edx",4),"eax");
|
|
&lea ("edx",&DWP(1,"edx")); # i++
|
|
&loop (&label("copy"));
|
|
|
|
&mov ("ebp",$sp);
|
|
&xor ("eax","eax");
|
|
|
|
&mov ("ecx",64/4);
|
|
&mov ("edi","esp"); # zap frame including scratch area
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero
|
|
|
|
# zap copies of ap, bp and np
|
|
&lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap
|
|
&lea ("ecx",&DWP(3*$pad/4,"edx","edx",2));
|
|
&data_byte(0xf3,0xab); # rep stosl, bzero
|
|
|
|
&mov ("esp","ebp");
|
|
&inc ("eax"); # signal "done"
|
|
&popf ();
|
|
&set_label("leave");
|
|
&function_end($func);
|
|
|
|
&asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>");
|
|
|
|
&asm_finish();
|
|
|
|
close STDOUT or die "error closing STDOUT: $!";
|