mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
5366490822
Fixes #7894 This allows SHAKE to squeeze multiple times with different output sizes. The existing EVP_DigestFinalXOF() API has been left as a one shot operation. A similar interface is used by another toolkit. The low level SHA3_Squeeze() function needed to change slightly so that it can handle multiple squeezes. This involves changing the assembler code so that it passes a boolean to indicate whether the Keccak function should be called on entry. At the provider level, the squeeze is buffered, so that it only requests a multiple of the blocksize when SHA3_Squeeze() is called. On the first call the value is zero, on subsequent calls the value passed is 1. This PR is derived from the excellent work done by @nmathewson in https://github.com/openssl/openssl/pull/7921 Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/21511)
1261 lines
42 KiB
C
1261 lines
42 KiB
C
/*
|
|
* Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/e_os2.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
|
|
size_t r);
|
|
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r, int next);
|
|
|
|
#if !defined(KECCAK1600_ASM) || !defined(SELFTEST)
|
|
|
|
/*
|
|
* Choose some sensible defaults
|
|
*/
|
|
#if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \
|
|
!defined(KECCAK_2X) && !defined(KECCAK_INPLACE)
|
|
# define KECCAK_2X /* default to KECCAK_2X variant */
|
|
#endif
|
|
|
|
#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
(defined(__x86_64) && !defined(__BMI__)) || defined(_M_X64) || \
|
|
defined(__mips) || defined(__riscv) || defined(__s390__) || \
|
|
defined(__EMSCRIPTEN__)
|
|
/*
|
|
* These don't have "and with complement" instruction, so minimize amount
|
|
* of "not"-s. Implemented only in the [default] KECCAK_2X variant.
|
|
*/
|
|
# define KECCAK_COMPLEMENTING_TRANSFORM
|
|
#endif
|
|
|
|
#if defined(__x86_64__) || defined(__aarch64__) || \
|
|
defined(__mips64) || defined(__ia64) || \
|
|
(defined(__VMS) && !defined(__vax))
|
|
/*
|
|
* These are available even in ILP32 flavours, but even then they are
|
|
* capable of performing 64-bit operations as efficiently as in *P64.
|
|
* Since it's not given that we can use sizeof(void *), just shunt it.
|
|
*/
|
|
# define BIT_INTERLEAVE (0)
|
|
#else
|
|
# define BIT_INTERLEAVE (sizeof(void *) < 8)
|
|
#endif
|
|
|
|
#define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31)))
|
|
|
|
static uint64_t ROL64(uint64_t val, int offset)
|
|
{
|
|
if (offset == 0) {
|
|
return val;
|
|
} else if (!BIT_INTERLEAVE) {
|
|
return (val << offset) | (val >> (64-offset));
|
|
} else {
|
|
uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val;
|
|
|
|
if (offset & 1) {
|
|
uint32_t tmp = hi;
|
|
|
|
offset >>= 1;
|
|
hi = ROL32(lo, offset);
|
|
lo = ROL32(tmp, offset + 1);
|
|
} else {
|
|
offset >>= 1;
|
|
lo = ROL32(lo, offset);
|
|
hi = ROL32(hi, offset);
|
|
}
|
|
|
|
return ((uint64_t)hi << 32) | lo;
|
|
}
|
|
}
|
|
|
|
static const unsigned char rhotates[5][5] = {
|
|
{ 0, 1, 62, 28, 27 },
|
|
{ 36, 44, 6, 55, 20 },
|
|
{ 3, 10, 43, 25, 39 },
|
|
{ 41, 45, 15, 21, 8 },
|
|
{ 18, 2, 61, 56, 14 }
|
|
};
|
|
|
|
static const uint64_t iotas[] = {
|
|
BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL,
|
|
BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL,
|
|
BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL,
|
|
BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL,
|
|
BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL,
|
|
BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL,
|
|
BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL,
|
|
BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL,
|
|
BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL,
|
|
BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL,
|
|
BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL,
|
|
BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL,
|
|
BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL,
|
|
BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL,
|
|
BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL,
|
|
BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL,
|
|
BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL,
|
|
BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL,
|
|
BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL,
|
|
BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL,
|
|
BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL,
|
|
BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL,
|
|
BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL,
|
|
BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL
|
|
};
|
|
|
|
#if defined(KECCAK_REF)
|
|
/*
|
|
* This is straightforward or "maximum clarity" implementation aiming
|
|
* to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard:
|
|
* Permutation-Based Hash and Extendible-Output Functions" as much as
|
|
* possible. With one caveat. Because of the way C stores matrices,
|
|
* references to A[x,y] in the specification are presented as A[y][x].
|
|
* Implementation unrolls inner x-loops so that modulo 5 operations are
|
|
* explicitly pre-computed.
|
|
*/
|
|
static void Theta(uint64_t A[5][5])
|
|
{
|
|
uint64_t C[5], D[5];
|
|
size_t y;
|
|
|
|
C[0] = A[0][0];
|
|
C[1] = A[0][1];
|
|
C[2] = A[0][2];
|
|
C[3] = A[0][3];
|
|
C[4] = A[0][4];
|
|
|
|
for (y = 1; y < 5; y++) {
|
|
C[0] ^= A[y][0];
|
|
C[1] ^= A[y][1];
|
|
C[2] ^= A[y][2];
|
|
C[3] ^= A[y][3];
|
|
C[4] ^= A[y][4];
|
|
}
|
|
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
for (y = 0; y < 5; y++) {
|
|
A[y][0] ^= D[0];
|
|
A[y][1] ^= D[1];
|
|
A[y][2] ^= D[2];
|
|
A[y][3] ^= D[3];
|
|
A[y][4] ^= D[4];
|
|
}
|
|
}
|
|
|
|
static void Rho(uint64_t A[5][5])
|
|
{
|
|
size_t y;
|
|
|
|
for (y = 0; y < 5; y++) {
|
|
A[y][0] = ROL64(A[y][0], rhotates[y][0]);
|
|
A[y][1] = ROL64(A[y][1], rhotates[y][1]);
|
|
A[y][2] = ROL64(A[y][2], rhotates[y][2]);
|
|
A[y][3] = ROL64(A[y][3], rhotates[y][3]);
|
|
A[y][4] = ROL64(A[y][4], rhotates[y][4]);
|
|
}
|
|
}
|
|
|
|
static void Pi(uint64_t A[5][5])
|
|
{
|
|
uint64_t T[5][5];
|
|
|
|
/*
|
|
* T = A
|
|
* A[y][x] = T[x][(3*y+x)%5]
|
|
*/
|
|
memcpy(T, A, sizeof(T));
|
|
|
|
A[0][0] = T[0][0];
|
|
A[0][1] = T[1][1];
|
|
A[0][2] = T[2][2];
|
|
A[0][3] = T[3][3];
|
|
A[0][4] = T[4][4];
|
|
|
|
A[1][0] = T[0][3];
|
|
A[1][1] = T[1][4];
|
|
A[1][2] = T[2][0];
|
|
A[1][3] = T[3][1];
|
|
A[1][4] = T[4][2];
|
|
|
|
A[2][0] = T[0][1];
|
|
A[2][1] = T[1][2];
|
|
A[2][2] = T[2][3];
|
|
A[2][3] = T[3][4];
|
|
A[2][4] = T[4][0];
|
|
|
|
A[3][0] = T[0][4];
|
|
A[3][1] = T[1][0];
|
|
A[3][2] = T[2][1];
|
|
A[3][3] = T[3][2];
|
|
A[3][4] = T[4][3];
|
|
|
|
A[4][0] = T[0][2];
|
|
A[4][1] = T[1][3];
|
|
A[4][2] = T[2][4];
|
|
A[4][3] = T[3][0];
|
|
A[4][4] = T[4][1];
|
|
}
|
|
|
|
static void Chi(uint64_t A[5][5])
|
|
{
|
|
uint64_t C[5];
|
|
size_t y;
|
|
|
|
for (y = 0; y < 5; y++) {
|
|
C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
|
|
C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
|
|
C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
|
|
C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
|
|
C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
|
|
|
|
A[y][0] = C[0];
|
|
A[y][1] = C[1];
|
|
A[y][2] = C[2];
|
|
A[y][3] = C[3];
|
|
A[y][4] = C[4];
|
|
}
|
|
}
|
|
|
|
static void Iota(uint64_t A[5][5], size_t i)
|
|
{
|
|
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
|
|
A[0][0] ^= iotas[i];
|
|
}
|
|
|
|
static void KeccakF1600(uint64_t A[5][5])
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 24; i++) {
|
|
Theta(A);
|
|
Rho(A);
|
|
Pi(A);
|
|
Chi(A);
|
|
Iota(A, i);
|
|
}
|
|
}
|
|
|
|
#elif defined(KECCAK_1X)
|
|
/*
|
|
* This implementation is optimization of above code featuring unroll
|
|
* of even y-loops, their fusion and code motion. It also minimizes
|
|
* temporary storage. Compiler would normally do all these things for
|
|
* you, purpose of manual optimization is to provide "unobscured"
|
|
* reference for assembly implementation [in case this approach is
|
|
* chosen for implementation on some platform]. In the nutshell it's
|
|
* equivalent of "plane-per-plane processing" approach discussed in
|
|
* section 2.4 of "Keccak implementation overview".
|
|
*/
|
|
static void Round(uint64_t A[5][5], size_t i)
|
|
{
|
|
uint64_t C[5], E[2]; /* registers */
|
|
uint64_t D[5], T[2][5]; /* memory */
|
|
|
|
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
|
|
|
|
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
|
|
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
|
|
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
|
|
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
|
|
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
|
|
|
|
#if defined(__arm__)
|
|
D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
|
|
D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
|
|
D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
|
|
|
|
T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */
|
|
T[0][1] = A[0][1] ^ E[0]; /* D[1] */
|
|
T[0][2] = A[0][2] ^ C[1]; /* D[2] */
|
|
T[0][3] = A[0][3] ^ C[2]; /* D[3] */
|
|
T[0][4] = A[0][4] ^ E[1]; /* D[4] */
|
|
|
|
C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
|
|
C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
|
|
C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */
|
|
C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
|
|
C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */
|
|
#else
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */
|
|
T[0][1] = A[0][1] ^ D[1];
|
|
T[0][2] = A[0][2] ^ D[2];
|
|
T[0][3] = A[0][3] ^ D[3];
|
|
T[0][4] = A[0][4] ^ D[4];
|
|
|
|
C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
|
|
C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
|
|
C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
|
|
C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
|
|
#endif
|
|
A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
|
|
A[0][1] = C[1] ^ (~C[2] & C[3]);
|
|
A[0][2] = C[2] ^ (~C[3] & C[4]);
|
|
A[0][3] = C[3] ^ (~C[4] & C[0]);
|
|
A[0][4] = C[4] ^ (~C[0] & C[1]);
|
|
|
|
T[1][0] = A[1][0] ^ (C[3] = D[0]);
|
|
T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */
|
|
T[1][2] = A[1][2] ^ (E[0] = D[2]);
|
|
T[1][3] = A[1][3] ^ (E[1] = D[3]);
|
|
T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */
|
|
|
|
C[0] = ROL64(T[0][3], rhotates[0][3]);
|
|
C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */
|
|
C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */
|
|
C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */
|
|
C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */
|
|
|
|
A[1][0] = C[0] ^ (~C[1] & C[2]);
|
|
A[1][1] = C[1] ^ (~C[2] & C[3]);
|
|
A[1][2] = C[2] ^ (~C[3] & C[4]);
|
|
A[1][3] = C[3] ^ (~C[4] & C[0]);
|
|
A[1][4] = C[4] ^ (~C[0] & C[1]);
|
|
|
|
C[0] = ROL64(T[0][1], rhotates[0][1]);
|
|
C[1] = ROL64(T[1][2], rhotates[1][2]);
|
|
C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
|
|
C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
|
|
|
|
A[2][0] = C[0] ^ (~C[1] & C[2]);
|
|
A[2][1] = C[1] ^ (~C[2] & C[3]);
|
|
A[2][2] = C[2] ^ (~C[3] & C[4]);
|
|
A[2][3] = C[3] ^ (~C[4] & C[0]);
|
|
A[2][4] = C[4] ^ (~C[0] & C[1]);
|
|
|
|
C[0] = ROL64(T[0][4], rhotates[0][4]);
|
|
C[1] = ROL64(T[1][0], rhotates[1][0]);
|
|
C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */
|
|
C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
|
|
|
|
A[3][0] = C[0] ^ (~C[1] & C[2]);
|
|
A[3][1] = C[1] ^ (~C[2] & C[3]);
|
|
A[3][2] = C[2] ^ (~C[3] & C[4]);
|
|
A[3][3] = C[3] ^ (~C[4] & C[0]);
|
|
A[3][4] = C[4] ^ (~C[0] & C[1]);
|
|
|
|
C[0] = ROL64(T[0][2], rhotates[0][2]);
|
|
C[1] = ROL64(T[1][3], rhotates[1][3]);
|
|
C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */
|
|
C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */
|
|
C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
A[4][0] = C[0] ^ (~C[1] & C[2]);
|
|
A[4][1] = C[1] ^ (~C[2] & C[3]);
|
|
A[4][2] = C[2] ^ (~C[3] & C[4]);
|
|
A[4][3] = C[3] ^ (~C[4] & C[0]);
|
|
A[4][4] = C[4] ^ (~C[0] & C[1]);
|
|
}
|
|
|
|
static void KeccakF1600(uint64_t A[5][5])
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 24; i++) {
|
|
Round(A, i);
|
|
}
|
|
}
|
|
|
|
#elif defined(KECCAK_1X_ALT)
|
|
/*
|
|
* This is variant of above KECCAK_1X that reduces requirement for
|
|
* temporary storage even further, but at cost of more updates to A[][].
|
|
* It's less suitable if A[][] is memory bound, but better if it's
|
|
* register bound.
|
|
*/
|
|
|
|
static void Round(uint64_t A[5][5], size_t i)
|
|
{
|
|
uint64_t C[5], D[5];
|
|
|
|
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
|
|
|
|
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
|
|
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
|
|
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
|
|
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
|
|
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
|
|
|
|
D[1] = C[0] ^ ROL64(C[2], 1);
|
|
D[2] = C[1] ^ ROL64(C[3], 1);
|
|
D[3] = C[2] ^= ROL64(C[4], 1);
|
|
D[4] = C[3] ^= ROL64(C[0], 1);
|
|
D[0] = C[4] ^= ROL64(C[1], 1);
|
|
|
|
A[0][1] ^= D[1];
|
|
A[1][1] ^= D[1];
|
|
A[2][1] ^= D[1];
|
|
A[3][1] ^= D[1];
|
|
A[4][1] ^= D[1];
|
|
|
|
A[0][2] ^= D[2];
|
|
A[1][2] ^= D[2];
|
|
A[2][2] ^= D[2];
|
|
A[3][2] ^= D[2];
|
|
A[4][2] ^= D[2];
|
|
|
|
A[0][3] ^= C[2];
|
|
A[1][3] ^= C[2];
|
|
A[2][3] ^= C[2];
|
|
A[3][3] ^= C[2];
|
|
A[4][3] ^= C[2];
|
|
|
|
A[0][4] ^= C[3];
|
|
A[1][4] ^= C[3];
|
|
A[2][4] ^= C[3];
|
|
A[3][4] ^= C[3];
|
|
A[4][4] ^= C[3];
|
|
|
|
A[0][0] ^= C[4];
|
|
A[1][0] ^= C[4];
|
|
A[2][0] ^= C[4];
|
|
A[3][0] ^= C[4];
|
|
A[4][0] ^= C[4];
|
|
|
|
C[1] = A[0][1];
|
|
C[2] = A[0][2];
|
|
C[3] = A[0][3];
|
|
C[4] = A[0][4];
|
|
|
|
A[0][1] = ROL64(A[1][1], rhotates[1][1]);
|
|
A[0][2] = ROL64(A[2][2], rhotates[2][2]);
|
|
A[0][3] = ROL64(A[3][3], rhotates[3][3]);
|
|
A[0][4] = ROL64(A[4][4], rhotates[4][4]);
|
|
|
|
A[1][1] = ROL64(A[1][4], rhotates[1][4]);
|
|
A[2][2] = ROL64(A[2][3], rhotates[2][3]);
|
|
A[3][3] = ROL64(A[3][2], rhotates[3][2]);
|
|
A[4][4] = ROL64(A[4][1], rhotates[4][1]);
|
|
|
|
A[1][4] = ROL64(A[4][2], rhotates[4][2]);
|
|
A[2][3] = ROL64(A[3][4], rhotates[3][4]);
|
|
A[3][2] = ROL64(A[2][1], rhotates[2][1]);
|
|
A[4][1] = ROL64(A[1][3], rhotates[1][3]);
|
|
|
|
A[4][2] = ROL64(A[2][4], rhotates[2][4]);
|
|
A[3][4] = ROL64(A[4][3], rhotates[4][3]);
|
|
A[2][1] = ROL64(A[1][2], rhotates[1][2]);
|
|
A[1][3] = ROL64(A[3][1], rhotates[3][1]);
|
|
|
|
A[2][4] = ROL64(A[4][0], rhotates[4][0]);
|
|
A[4][3] = ROL64(A[3][0], rhotates[3][0]);
|
|
A[1][2] = ROL64(A[2][0], rhotates[2][0]);
|
|
A[3][1] = ROL64(A[1][0], rhotates[1][0]);
|
|
|
|
A[1][0] = ROL64(C[3], rhotates[0][3]);
|
|
A[2][0] = ROL64(C[1], rhotates[0][1]);
|
|
A[3][0] = ROL64(C[4], rhotates[0][4]);
|
|
A[4][0] = ROL64(C[2], rhotates[0][2]);
|
|
|
|
C[0] = A[0][0];
|
|
C[1] = A[1][0];
|
|
D[0] = A[0][1];
|
|
D[1] = A[1][1];
|
|
|
|
A[0][0] ^= (~A[0][1] & A[0][2]);
|
|
A[1][0] ^= (~A[1][1] & A[1][2]);
|
|
A[0][1] ^= (~A[0][2] & A[0][3]);
|
|
A[1][1] ^= (~A[1][2] & A[1][3]);
|
|
A[0][2] ^= (~A[0][3] & A[0][4]);
|
|
A[1][2] ^= (~A[1][3] & A[1][4]);
|
|
A[0][3] ^= (~A[0][4] & C[0]);
|
|
A[1][3] ^= (~A[1][4] & C[1]);
|
|
A[0][4] ^= (~C[0] & D[0]);
|
|
A[1][4] ^= (~C[1] & D[1]);
|
|
|
|
C[2] = A[2][0];
|
|
C[3] = A[3][0];
|
|
D[2] = A[2][1];
|
|
D[3] = A[3][1];
|
|
|
|
A[2][0] ^= (~A[2][1] & A[2][2]);
|
|
A[3][0] ^= (~A[3][1] & A[3][2]);
|
|
A[2][1] ^= (~A[2][2] & A[2][3]);
|
|
A[3][1] ^= (~A[3][2] & A[3][3]);
|
|
A[2][2] ^= (~A[2][3] & A[2][4]);
|
|
A[3][2] ^= (~A[3][3] & A[3][4]);
|
|
A[2][3] ^= (~A[2][4] & C[2]);
|
|
A[3][3] ^= (~A[3][4] & C[3]);
|
|
A[2][4] ^= (~C[2] & D[2]);
|
|
A[3][4] ^= (~C[3] & D[3]);
|
|
|
|
C[4] = A[4][0];
|
|
D[4] = A[4][1];
|
|
|
|
A[4][0] ^= (~A[4][1] & A[4][2]);
|
|
A[4][1] ^= (~A[4][2] & A[4][3]);
|
|
A[4][2] ^= (~A[4][3] & A[4][4]);
|
|
A[4][3] ^= (~A[4][4] & C[4]);
|
|
A[4][4] ^= (~C[4] & D[4]);
|
|
A[0][0] ^= iotas[i];
|
|
}
|
|
|
|
static void KeccakF1600(uint64_t A[5][5])
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 24; i++) {
|
|
Round(A, i);
|
|
}
|
|
}
|
|
|
|
#elif defined(KECCAK_2X)
|
|
/*
|
|
* This implementation is variant of KECCAK_1X above with outer-most
|
|
* round loop unrolled twice. This allows to take temporary storage
|
|
* out of round procedure and simplify references to it by alternating
|
|
* it with actual data (see round loop below). Originally it was meant
|
|
* rather as reference for an assembly implementation, but it seems to
|
|
* play best with compilers [as well as provide best instruction per
|
|
* processed byte ratio at minimal round unroll factor]...
|
|
*/
|
|
static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i)
|
|
{
|
|
uint64_t C[5], D[5];
|
|
|
|
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
|
|
|
|
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
|
|
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
|
|
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
|
|
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
|
|
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
|
|
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
|
|
C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
|
|
C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
|
|
C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i];
|
|
R[0][1] = C[1] ^ (~C[2] | C[3]);
|
|
R[0][2] = C[2] ^ ( C[3] & C[4]);
|
|
R[0][3] = C[3] ^ ( C[4] | C[0]);
|
|
R[0][4] = C[4] ^ ( C[0] & C[1]);
|
|
#else
|
|
R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
|
|
R[0][1] = C[1] ^ (~C[2] & C[3]);
|
|
R[0][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[0][3] = C[3] ^ (~C[4] & C[0]);
|
|
R[0][4] = C[4] ^ (~C[0] & C[1]);
|
|
#endif
|
|
|
|
C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
|
|
C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
|
|
C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
|
|
C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
R[1][0] = C[0] ^ (C[1] | C[2]);
|
|
R[1][1] = C[1] ^ (C[2] & C[3]);
|
|
R[1][2] = C[2] ^ (C[3] | ~C[4]);
|
|
R[1][3] = C[3] ^ (C[4] | C[0]);
|
|
R[1][4] = C[4] ^ (C[0] & C[1]);
|
|
#else
|
|
R[1][0] = C[0] ^ (~C[1] & C[2]);
|
|
R[1][1] = C[1] ^ (~C[2] & C[3]);
|
|
R[1][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[1][3] = C[3] ^ (~C[4] & C[0]);
|
|
R[1][4] = C[4] ^ (~C[0] & C[1]);
|
|
#endif
|
|
|
|
C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
|
|
C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
|
|
C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
|
|
C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
R[2][0] = C[0] ^ ( C[1] | C[2]);
|
|
R[2][1] = C[1] ^ ( C[2] & C[3]);
|
|
R[2][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[2][3] = ~C[3] ^ ( C[4] | C[0]);
|
|
R[2][4] = C[4] ^ ( C[0] & C[1]);
|
|
#else
|
|
R[2][0] = C[0] ^ (~C[1] & C[2]);
|
|
R[2][1] = C[1] ^ (~C[2] & C[3]);
|
|
R[2][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[2][3] = C[3] ^ (~C[4] & C[0]);
|
|
R[2][4] = C[4] ^ (~C[0] & C[1]);
|
|
#endif
|
|
|
|
C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
|
|
C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
|
|
C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
|
|
C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
R[3][0] = C[0] ^ ( C[1] & C[2]);
|
|
R[3][1] = C[1] ^ ( C[2] | C[3]);
|
|
R[3][2] = C[2] ^ (~C[3] | C[4]);
|
|
R[3][3] = ~C[3] ^ ( C[4] & C[0]);
|
|
R[3][4] = C[4] ^ ( C[0] | C[1]);
|
|
#else
|
|
R[3][0] = C[0] ^ (~C[1] & C[2]);
|
|
R[3][1] = C[1] ^ (~C[2] & C[3]);
|
|
R[3][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[3][3] = C[3] ^ (~C[4] & C[0]);
|
|
R[3][4] = C[4] ^ (~C[0] & C[1]);
|
|
#endif
|
|
|
|
C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
|
|
C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
|
|
C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
|
|
C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
|
|
C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
R[4][0] = C[0] ^ (~C[1] & C[2]);
|
|
R[4][1] = ~C[1] ^ ( C[2] | C[3]);
|
|
R[4][2] = C[2] ^ ( C[3] & C[4]);
|
|
R[4][3] = C[3] ^ ( C[4] | C[0]);
|
|
R[4][4] = C[4] ^ ( C[0] & C[1]);
|
|
#else
|
|
R[4][0] = C[0] ^ (~C[1] & C[2]);
|
|
R[4][1] = C[1] ^ (~C[2] & C[3]);
|
|
R[4][2] = C[2] ^ (~C[3] & C[4]);
|
|
R[4][3] = C[3] ^ (~C[4] & C[0]);
|
|
R[4][4] = C[4] ^ (~C[0] & C[1]);
|
|
#endif
|
|
}
|
|
|
|
static void KeccakF1600(uint64_t A[5][5])
|
|
{
|
|
uint64_t T[5][5];
|
|
size_t i;
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
A[0][1] = ~A[0][1];
|
|
A[0][2] = ~A[0][2];
|
|
A[1][3] = ~A[1][3];
|
|
A[2][2] = ~A[2][2];
|
|
A[3][2] = ~A[3][2];
|
|
A[4][0] = ~A[4][0];
|
|
#endif
|
|
|
|
for (i = 0; i < 24; i += 2) {
|
|
Round(T, A, i);
|
|
Round(A, T, i + 1);
|
|
}
|
|
|
|
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
|
|
A[0][1] = ~A[0][1];
|
|
A[0][2] = ~A[0][2];
|
|
A[1][3] = ~A[1][3];
|
|
A[2][2] = ~A[2][2];
|
|
A[3][2] = ~A[3][2];
|
|
A[4][0] = ~A[4][0];
|
|
#endif
|
|
}
|
|
|
|
#else /* define KECCAK_INPLACE to compile this code path */
|
|
/*
|
|
* This implementation is KECCAK_1X from above combined 4 times with
|
|
* a twist that allows to omit temporary storage and perform in-place
|
|
* processing. It's discussed in section 2.5 of "Keccak implementation
|
|
* overview". It's likely to be best suited for processors with large
|
|
* register bank... On the other hand processor with large register
|
|
* bank can as well use KECCAK_1X_ALT, it would be as fast but much
|
|
* more compact...
|
|
*/
|
|
static void FourRounds(uint64_t A[5][5], size_t i)
|
|
{
|
|
uint64_t B[5], C[5], D[5];
|
|
|
|
assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4));
|
|
|
|
/* Round 4*n */
|
|
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
|
|
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
|
|
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
|
|
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
|
|
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
|
|
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
|
|
B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
|
|
B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
|
|
B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
|
|
|
|
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i];
|
|
C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
|
|
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
|
|
B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
|
|
B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
|
|
|
|
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
|
|
B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
|
|
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
|
|
B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
|
|
|
|
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
|
|
B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
|
|
B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
|
|
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
|
|
|
|
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
|
|
B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
|
|
B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
|
|
B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
|
|
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
/* Round 4*n+1 */
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]);
|
|
B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]);
|
|
B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]);
|
|
B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]);
|
|
|
|
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1];
|
|
C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]);
|
|
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]);
|
|
B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]);
|
|
B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]);
|
|
|
|
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]);
|
|
B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]);
|
|
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]);
|
|
B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]);
|
|
|
|
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]);
|
|
B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]);
|
|
B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]);
|
|
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]);
|
|
|
|
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]);
|
|
B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]);
|
|
B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]);
|
|
B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]);
|
|
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
/* Round 4*n+2 */
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]);
|
|
B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]);
|
|
B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]);
|
|
B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]);
|
|
|
|
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2];
|
|
C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]);
|
|
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]);
|
|
B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]);
|
|
B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]);
|
|
|
|
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]);
|
|
B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]);
|
|
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]);
|
|
B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]);
|
|
|
|
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]);
|
|
B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]);
|
|
B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]);
|
|
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]);
|
|
|
|
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]);
|
|
B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]);
|
|
B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]);
|
|
B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]);
|
|
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
|
|
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
|
|
C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
|
|
C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
|
|
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
/* Round 4*n+3 */
|
|
D[0] = ROL64(C[1], 1) ^ C[4];
|
|
D[1] = ROL64(C[2], 1) ^ C[0];
|
|
D[2] = ROL64(C[3], 1) ^ C[1];
|
|
D[3] = ROL64(C[4], 1) ^ C[2];
|
|
D[4] = ROL64(C[0], 1) ^ C[3];
|
|
|
|
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
|
|
B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]);
|
|
B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]);
|
|
B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]);
|
|
B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]);
|
|
|
|
/* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3];
|
|
/* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]);
|
|
/* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]);
|
|
/* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]);
|
|
/* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]);
|
|
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
|
|
B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]);
|
|
B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]);
|
|
B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]);
|
|
|
|
/* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]);
|
|
/* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]);
|
|
/* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]);
|
|
/* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]);
|
|
/* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]);
|
|
B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]);
|
|
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
|
|
B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]);
|
|
B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]);
|
|
|
|
/* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]);
|
|
/* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]);
|
|
/* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]);
|
|
/* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]);
|
|
/* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]);
|
|
B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]);
|
|
B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]);
|
|
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
|
|
B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]);
|
|
|
|
/* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]);
|
|
/* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]);
|
|
/* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]);
|
|
/* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]);
|
|
/* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]);
|
|
|
|
B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]);
|
|
B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]);
|
|
B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]);
|
|
B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]);
|
|
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
|
|
|
|
/* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]);
|
|
/* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]);
|
|
/* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]);
|
|
/* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]);
|
|
/* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]);
|
|
}
|
|
|
|
static void KeccakF1600(uint64_t A[5][5])
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 24; i += 4) {
|
|
FourRounds(A, i);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static uint64_t BitInterleave(uint64_t Ai)
|
|
{
|
|
if (BIT_INTERLEAVE) {
|
|
uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
|
|
uint32_t t0, t1;
|
|
|
|
t0 = lo & 0x55555555;
|
|
t0 |= t0 >> 1; t0 &= 0x33333333;
|
|
t0 |= t0 >> 2; t0 &= 0x0f0f0f0f;
|
|
t0 |= t0 >> 4; t0 &= 0x00ff00ff;
|
|
t0 |= t0 >> 8; t0 &= 0x0000ffff;
|
|
|
|
t1 = hi & 0x55555555;
|
|
t1 |= t1 >> 1; t1 &= 0x33333333;
|
|
t1 |= t1 >> 2; t1 &= 0x0f0f0f0f;
|
|
t1 |= t1 >> 4; t1 &= 0x00ff00ff;
|
|
t1 |= t1 >> 8; t1 <<= 16;
|
|
|
|
lo &= 0xaaaaaaaa;
|
|
lo |= lo << 1; lo &= 0xcccccccc;
|
|
lo |= lo << 2; lo &= 0xf0f0f0f0;
|
|
lo |= lo << 4; lo &= 0xff00ff00;
|
|
lo |= lo << 8; lo >>= 16;
|
|
|
|
hi &= 0xaaaaaaaa;
|
|
hi |= hi << 1; hi &= 0xcccccccc;
|
|
hi |= hi << 2; hi &= 0xf0f0f0f0;
|
|
hi |= hi << 4; hi &= 0xff00ff00;
|
|
hi |= hi << 8; hi &= 0xffff0000;
|
|
|
|
Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
|
|
}
|
|
|
|
return Ai;
|
|
}
|
|
|
|
static uint64_t BitDeinterleave(uint64_t Ai)
|
|
{
|
|
if (BIT_INTERLEAVE) {
|
|
uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
|
|
uint32_t t0, t1;
|
|
|
|
t0 = lo & 0x0000ffff;
|
|
t0 |= t0 << 8; t0 &= 0x00ff00ff;
|
|
t0 |= t0 << 4; t0 &= 0x0f0f0f0f;
|
|
t0 |= t0 << 2; t0 &= 0x33333333;
|
|
t0 |= t0 << 1; t0 &= 0x55555555;
|
|
|
|
t1 = hi << 16;
|
|
t1 |= t1 >> 8; t1 &= 0xff00ff00;
|
|
t1 |= t1 >> 4; t1 &= 0xf0f0f0f0;
|
|
t1 |= t1 >> 2; t1 &= 0xcccccccc;
|
|
t1 |= t1 >> 1; t1 &= 0xaaaaaaaa;
|
|
|
|
lo >>= 16;
|
|
lo |= lo << 8; lo &= 0x00ff00ff;
|
|
lo |= lo << 4; lo &= 0x0f0f0f0f;
|
|
lo |= lo << 2; lo &= 0x33333333;
|
|
lo |= lo << 1; lo &= 0x55555555;
|
|
|
|
hi &= 0xffff0000;
|
|
hi |= hi >> 8; hi &= 0xff00ff00;
|
|
hi |= hi >> 4; hi &= 0xf0f0f0f0;
|
|
hi |= hi >> 2; hi &= 0xcccccccc;
|
|
hi |= hi >> 1; hi &= 0xaaaaaaaa;
|
|
|
|
Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
|
|
}
|
|
|
|
return Ai;
|
|
}
|
|
|
|
/*
|
|
* SHA3_absorb can be called multiple times, but at each invocation
|
|
* largest multiple of |r| out of |len| bytes are processed. Then
|
|
* remaining amount of bytes is returned. This is done to spare caller
|
|
* trouble of calculating the largest multiple of |r|. |r| can be viewed
|
|
* as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104,
|
|
* 72, but can also be (1600 - 448)/8 = 144. All this means that message
|
|
* padding and intermediate sub-block buffering, byte- or bitwise, is
|
|
* caller's responsibility.
|
|
*/
|
|
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
|
|
size_t r)
|
|
{
|
|
uint64_t *A_flat = (uint64_t *)A;
|
|
size_t i, w = r / 8;
|
|
|
|
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
|
|
|
|
while (len >= r) {
|
|
for (i = 0; i < w; i++) {
|
|
uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
|
|
(uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
|
|
(uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
|
|
(uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
|
|
inp += 8;
|
|
|
|
A_flat[i] ^= BitInterleave(Ai);
|
|
}
|
|
KeccakF1600(A);
|
|
len -= r;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* SHA3_squeeze may be called after SHA3_absorb to generate |out| hash value of
|
|
* |len| bytes.
|
|
* If multiple SHA3_squeeze calls are required the output length |len| must be a
|
|
* multiple of the blocksize, with |next| being 0 on the first call and 1 on
|
|
* subsequent calls. It is the callers responsibility to buffer the results.
|
|
* When only a single call to SHA3_squeeze is required, |len| can be any size
|
|
* and |next| must be 0.
|
|
*/
|
|
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r,
|
|
int next)
|
|
{
|
|
uint64_t *A_flat = (uint64_t *)A;
|
|
size_t i, w = r / 8;
|
|
|
|
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
|
|
|
|
while (len != 0) {
|
|
if (next)
|
|
KeccakF1600(A);
|
|
next = 1;
|
|
for (i = 0; i < w && len != 0; i++) {
|
|
uint64_t Ai = BitDeinterleave(A_flat[i]);
|
|
|
|
if (len < 8) {
|
|
for (i = 0; i < len; i++) {
|
|
*out++ = (unsigned char)Ai;
|
|
Ai >>= 8;
|
|
}
|
|
return;
|
|
}
|
|
|
|
out[0] = (unsigned char)(Ai);
|
|
out[1] = (unsigned char)(Ai >> 8);
|
|
out[2] = (unsigned char)(Ai >> 16);
|
|
out[3] = (unsigned char)(Ai >> 24);
|
|
out[4] = (unsigned char)(Ai >> 32);
|
|
out[5] = (unsigned char)(Ai >> 40);
|
|
out[6] = (unsigned char)(Ai >> 48);
|
|
out[7] = (unsigned char)(Ai >> 56);
|
|
out += 8;
|
|
len -= 8;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SELFTEST
|
|
/*
|
|
* Post-padding one-shot implementations would look as following:
|
|
*
|
|
* SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
|
|
* SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
|
|
* SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
|
|
* SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
|
|
* SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
|
|
* SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
|
|
*/
|
|
|
|
void SHA3_sponge(const unsigned char *inp, size_t len,
|
|
unsigned char *out, size_t d, size_t r)
|
|
{
|
|
uint64_t A[5][5];
|
|
|
|
memset(A, 0, sizeof(A));
|
|
SHA3_absorb(A, inp, len, r);
|
|
SHA3_squeeze(A, out, d, r);
|
|
}
|
|
|
|
# include <stdio.h>
|
|
|
|
int main(void)
|
|
{
|
|
/*
|
|
* This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
|
|
*/
|
|
unsigned char test[168] = { '\xf3', '\x3' };
|
|
unsigned char out[512];
|
|
size_t i;
|
|
static const unsigned char result[512] = {
|
|
0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
|
|
0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
|
|
0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
|
|
0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
|
|
0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
|
|
0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
|
|
0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
|
|
0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
|
|
0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
|
|
0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
|
|
0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
|
|
0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
|
|
0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
|
|
0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
|
|
0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
|
|
0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
|
|
0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
|
|
0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
|
|
0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
|
|
0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
|
|
0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
|
|
0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
|
|
0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
|
|
0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
|
|
0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
|
|
0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
|
|
0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
|
|
0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
|
|
0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
|
|
0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
|
|
0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
|
|
0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
|
|
0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
|
|
0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
|
|
0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
|
|
0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
|
|
0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
|
|
0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
|
|
0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
|
|
0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
|
|
0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
|
|
0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
|
|
0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
|
|
0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
|
|
0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
|
|
0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
|
|
0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
|
|
0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
|
|
0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
|
|
0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
|
|
0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
|
|
0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
|
|
0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
|
|
0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
|
|
0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
|
|
0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
|
|
0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
|
|
0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
|
|
0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
|
|
0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
|
|
0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
|
|
0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
|
|
0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
|
|
0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
|
|
};
|
|
|
|
test[167] = '\x80';
|
|
SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
|
|
|
|
/*
|
|
* Rationale behind keeping output [formatted as below] is that
|
|
* one should be able to redirect it to a file, then copy-n-paste
|
|
* final "output val" from official example to another file, and
|
|
* compare the two with diff(1).
|
|
*/
|
|
for (i = 0; i < sizeof(out);) {
|
|
printf("%02X", out[i]);
|
|
printf(++i % 16 && i != sizeof(out) ? " " : "\n");
|
|
}
|
|
|
|
if (memcmp(out, result, sizeof(out))) {
|
|
fprintf(stderr, "failure\n");
|
|
return 1;
|
|
} else {
|
|
fprintf(stderr, "success\n");
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|