mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
b4f1b7b658
Fixes #15484 Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/16217)
3478 lines
109 KiB
C
3478 lines
109 KiB
C
/*
|
|
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/ocsp.h>
|
|
#include <openssl/conf.h>
|
|
#include <openssl/x509v3.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/provider.h>
|
|
#include <openssl/param_build.h>
|
|
#include "internal/nelem.h"
|
|
#include "internal/sizes.h"
|
|
#include "internal/tlsgroups.h"
|
|
#include "ssl_local.h"
|
|
#include <openssl/ct.h>
|
|
|
|
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
|
|
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
|
|
|
|
SSL3_ENC_METHOD const TLSv1_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
0,
|
|
ssl3_set_handshake_header,
|
|
tls_close_construct_packet,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV,
|
|
ssl3_set_handshake_header,
|
|
tls_close_construct_packet,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
|
|
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
|
|
ssl3_set_handshake_header,
|
|
tls_close_construct_packet,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
|
|
tls13_enc,
|
|
tls1_mac,
|
|
tls13_setup_key_block,
|
|
tls13_generate_master_secret,
|
|
tls13_change_cipher_state,
|
|
tls13_final_finish_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls13_alert_code,
|
|
tls13_export_keying_material,
|
|
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
|
|
ssl3_set_handshake_header,
|
|
tls_close_construct_packet,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
long tls1_default_timeout(void)
|
|
{
|
|
/*
|
|
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
|
|
* http, the cache would over fill
|
|
*/
|
|
return (60 * 60 * 2);
|
|
}
|
|
|
|
int tls1_new(SSL *s)
|
|
{
|
|
if (!ssl3_new(s))
|
|
return 0;
|
|
if (!s->method->ssl_clear(s))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void tls1_free(SSL *s)
|
|
{
|
|
OPENSSL_free(s->ext.session_ticket);
|
|
ssl3_free(s);
|
|
}
|
|
|
|
int tls1_clear(SSL *s)
|
|
{
|
|
if (!ssl3_clear(s))
|
|
return 0;
|
|
|
|
if (s->method->version == TLS_ANY_VERSION)
|
|
s->version = TLS_MAX_VERSION_INTERNAL;
|
|
else
|
|
s->version = s->method->version;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Legacy NID to group_id mapping. Only works for groups we know about */
|
|
static struct {
|
|
int nid;
|
|
uint16_t group_id;
|
|
} nid_to_group[] = {
|
|
{NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
|
|
{NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
|
|
{NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
|
|
{NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
|
|
{NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
|
|
{NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
|
|
{NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
|
|
{NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
|
|
{NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
|
|
{NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
|
|
{NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
|
|
{NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
|
|
{NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
|
|
{NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
|
|
{NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
|
|
{NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
|
|
{NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
|
|
{NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
|
|
{NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
|
|
{NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
|
|
{NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
|
|
{NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
|
|
{NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
|
|
{NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
|
|
{NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
|
|
{NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
|
|
{NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
|
|
{NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
|
|
{EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
|
|
{EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
|
|
{NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
|
|
{NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
|
|
{NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
|
|
{NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
|
|
{NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
|
|
{NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
|
|
{NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
|
|
{NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
|
|
{NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
|
|
{NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
|
|
{NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
|
|
{NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
|
|
};
|
|
|
|
static const unsigned char ecformats_default[] = {
|
|
TLSEXT_ECPOINTFORMAT_uncompressed,
|
|
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
|
|
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
|
|
};
|
|
|
|
/* The default curves */
|
|
static const uint16_t supported_groups_default[] = {
|
|
29, /* X25519 (29) */
|
|
23, /* secp256r1 (23) */
|
|
30, /* X448 (30) */
|
|
25, /* secp521r1 (25) */
|
|
24, /* secp384r1 (24) */
|
|
34, /* GC256A (34) */
|
|
35, /* GC256B (35) */
|
|
36, /* GC256C (36) */
|
|
37, /* GC256D (37) */
|
|
38, /* GC512A (38) */
|
|
39, /* GC512B (39) */
|
|
40, /* GC512C (40) */
|
|
0x100, /* ffdhe2048 (0x100) */
|
|
0x101, /* ffdhe3072 (0x101) */
|
|
0x102, /* ffdhe4096 (0x102) */
|
|
0x103, /* ffdhe6144 (0x103) */
|
|
0x104, /* ffdhe8192 (0x104) */
|
|
};
|
|
|
|
static const uint16_t suiteb_curves[] = {
|
|
TLSEXT_curve_P_256,
|
|
TLSEXT_curve_P_384
|
|
};
|
|
|
|
struct provider_group_data_st {
|
|
SSL_CTX *ctx;
|
|
OSSL_PROVIDER *provider;
|
|
};
|
|
|
|
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
|
|
static OSSL_CALLBACK add_provider_groups;
|
|
static int add_provider_groups(const OSSL_PARAM params[], void *data)
|
|
{
|
|
struct provider_group_data_st *pgd = data;
|
|
SSL_CTX *ctx = pgd->ctx;
|
|
OSSL_PROVIDER *provider = pgd->provider;
|
|
const OSSL_PARAM *p;
|
|
TLS_GROUP_INFO *ginf = NULL;
|
|
EVP_KEYMGMT *keymgmt;
|
|
unsigned int gid;
|
|
unsigned int is_kem = 0;
|
|
int ret = 0;
|
|
|
|
if (ctx->group_list_max_len == ctx->group_list_len) {
|
|
TLS_GROUP_INFO *tmp = NULL;
|
|
|
|
if (ctx->group_list_max_len == 0)
|
|
tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
|
|
* TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
|
else
|
|
tmp = OPENSSL_realloc(ctx->group_list,
|
|
(ctx->group_list_max_len
|
|
+ TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
|
|
* sizeof(TLS_GROUP_INFO));
|
|
if (tmp == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
ctx->group_list = tmp;
|
|
memset(tmp + ctx->group_list_max_len,
|
|
0,
|
|
sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
|
ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
|
|
}
|
|
|
|
ginf = &ctx->group_list[ctx->group_list_len];
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
|
|
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
ginf->tlsname = OPENSSL_strdup(p->data);
|
|
if (ginf->tlsname == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
|
|
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
ginf->realname = OPENSSL_strdup(p->data);
|
|
if (ginf->realname == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
|
|
if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
ginf->group_id = (uint16_t)gid;
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
|
|
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
ginf->algorithm = OPENSSL_strdup(p->data);
|
|
if (ginf->algorithm == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
|
|
if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
|
|
if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
ginf->is_kem = 1 & is_kem;
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
|
|
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
|
|
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
|
|
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
|
|
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
goto err;
|
|
}
|
|
/*
|
|
* Now check that the algorithm is actually usable for our property query
|
|
* string. Regardless of the result we still return success because we have
|
|
* successfully processed this group, even though we may decide not to use
|
|
* it.
|
|
*/
|
|
ret = 1;
|
|
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
|
|
if (keymgmt != NULL) {
|
|
/*
|
|
* We have successfully fetched the algorithm - however if the provider
|
|
* doesn't match this one then we ignore it.
|
|
*
|
|
* Note: We're cheating a little here. Technically if the same algorithm
|
|
* is available from more than one provider then it is undefined which
|
|
* implementation you will get back. Theoretically this could be
|
|
* different every time...we assume here that you'll always get the
|
|
* same one back if you repeat the exact same fetch. Is this a reasonable
|
|
* assumption to make (in which case perhaps we should document this
|
|
* behaviour)?
|
|
*/
|
|
if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
|
|
/* We have a match - so we will use this group */
|
|
ctx->group_list_len++;
|
|
ginf = NULL;
|
|
}
|
|
EVP_KEYMGMT_free(keymgmt);
|
|
}
|
|
err:
|
|
if (ginf != NULL) {
|
|
OPENSSL_free(ginf->tlsname);
|
|
OPENSSL_free(ginf->realname);
|
|
OPENSSL_free(ginf->algorithm);
|
|
ginf->tlsname = ginf->realname = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
|
|
{
|
|
struct provider_group_data_st pgd;
|
|
|
|
pgd.ctx = vctx;
|
|
pgd.provider = provider;
|
|
return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
|
|
add_provider_groups, &pgd);
|
|
}
|
|
|
|
int ssl_load_groups(SSL_CTX *ctx)
|
|
{
|
|
size_t i, j, num_deflt_grps = 0;
|
|
uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
|
|
|
|
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
|
|
return 0;
|
|
|
|
for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
|
|
for (j = 0; j < ctx->group_list_len; j++) {
|
|
if (ctx->group_list[j].group_id == supported_groups_default[i]) {
|
|
tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (num_deflt_grps == 0)
|
|
return 1;
|
|
|
|
ctx->ext.supported_groups_default
|
|
= OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
|
|
|
|
if (ctx->ext.supported_groups_default == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(ctx->ext.supported_groups_default,
|
|
tmp_supp_groups,
|
|
num_deflt_grps * sizeof(tmp_supp_groups[0]));
|
|
ctx->ext.supported_groups_default_len = num_deflt_grps;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < ctx->group_list_len; i++) {
|
|
if (strcmp(ctx->group_list[i].tlsname, name) == 0
|
|
|| strcmp(ctx->group_list[i].realname, name) == 0)
|
|
return ctx->group_list[i].group_id;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < ctx->group_list_len; i++) {
|
|
if (ctx->group_list[i].group_id == group_id)
|
|
return &ctx->group_list[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
|
|
{
|
|
size_t i;
|
|
|
|
if (group_id == 0)
|
|
return NID_undef;
|
|
|
|
/*
|
|
* Return well known Group NIDs - for backwards compatibility. This won't
|
|
* work for groups we don't know about.
|
|
*/
|
|
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
|
{
|
|
if (nid_to_group[i].group_id == group_id)
|
|
return nid_to_group[i].nid;
|
|
}
|
|
if (!include_unknown)
|
|
return NID_undef;
|
|
return TLSEXT_nid_unknown | (int)group_id;
|
|
}
|
|
|
|
uint16_t tls1_nid2group_id(int nid)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* Return well known Group ids - for backwards compatibility. This won't
|
|
* work for groups we don't know about.
|
|
*/
|
|
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
|
{
|
|
if (nid_to_group[i].nid == nid)
|
|
return nid_to_group[i].group_id;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set *pgroups to the supported groups list and *pgroupslen to
|
|
* the number of groups supported.
|
|
*/
|
|
void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
|
|
size_t *pgroupslen)
|
|
{
|
|
/* For Suite B mode only include P-256, P-384 */
|
|
switch (tls1_suiteb(s)) {
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS:
|
|
*pgroups = suiteb_curves;
|
|
*pgroupslen = OSSL_NELEM(suiteb_curves);
|
|
break;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
|
*pgroups = suiteb_curves;
|
|
*pgroupslen = 1;
|
|
break;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_192_LOS:
|
|
*pgroups = suiteb_curves + 1;
|
|
*pgroupslen = 1;
|
|
break;
|
|
|
|
default:
|
|
if (s->ext.supportedgroups == NULL) {
|
|
*pgroups = s->ctx->ext.supported_groups_default;
|
|
*pgroupslen = s->ctx->ext.supported_groups_default_len;
|
|
} else {
|
|
*pgroups = s->ext.supportedgroups;
|
|
*pgroupslen = s->ext.supportedgroups_len;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
|
|
int isec, int *okfortls13)
|
|
{
|
|
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
|
|
int ret;
|
|
|
|
if (okfortls13 != NULL)
|
|
*okfortls13 = 0;
|
|
|
|
if (ginfo == NULL)
|
|
return 0;
|
|
|
|
if (SSL_IS_DTLS(s)) {
|
|
if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
|
|
return 0;
|
|
if (ginfo->maxdtls == 0)
|
|
ret = 1;
|
|
else
|
|
ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
|
|
if (ginfo->mindtls > 0)
|
|
ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
|
|
} else {
|
|
if (ginfo->mintls < 0 || ginfo->maxtls < 0)
|
|
return 0;
|
|
if (ginfo->maxtls == 0)
|
|
ret = 1;
|
|
else
|
|
ret = (minversion <= ginfo->maxtls);
|
|
if (ginfo->mintls > 0)
|
|
ret &= (maxversion >= ginfo->mintls);
|
|
if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
|
|
*okfortls13 = (ginfo->maxtls == 0)
|
|
|| (ginfo->maxtls >= TLS1_3_VERSION);
|
|
}
|
|
ret &= !isec
|
|
|| strcmp(ginfo->algorithm, "EC") == 0
|
|
|| strcmp(ginfo->algorithm, "X25519") == 0
|
|
|| strcmp(ginfo->algorithm, "X448") == 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* See if group is allowed by security callback */
|
|
int tls_group_allowed(SSL *s, uint16_t group, int op)
|
|
{
|
|
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
|
|
unsigned char gtmp[2];
|
|
|
|
if (ginfo == NULL)
|
|
return 0;
|
|
|
|
gtmp[0] = group >> 8;
|
|
gtmp[1] = group & 0xff;
|
|
return ssl_security(s, op, ginfo->secbits,
|
|
tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
|
|
}
|
|
|
|
/* Return 1 if "id" is in "list" */
|
|
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < listlen; i++)
|
|
if (list[i] == id)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* For nmatch >= 0, return the id of the |nmatch|th shared group or 0
|
|
* if there is no match.
|
|
* For nmatch == -1, return number of matches
|
|
* For nmatch == -2, return the id of the group to use for
|
|
* a tmp key, or 0 if there is no match.
|
|
*/
|
|
uint16_t tls1_shared_group(SSL *s, int nmatch)
|
|
{
|
|
const uint16_t *pref, *supp;
|
|
size_t num_pref, num_supp, i;
|
|
int k;
|
|
|
|
/* Can't do anything on client side */
|
|
if (s->server == 0)
|
|
return 0;
|
|
if (nmatch == -2) {
|
|
if (tls1_suiteb(s)) {
|
|
/*
|
|
* For Suite B ciphersuite determines curve: we already know
|
|
* these are acceptable due to previous checks.
|
|
*/
|
|
unsigned long cid = s->s3.tmp.new_cipher->id;
|
|
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
|
return TLSEXT_curve_P_256;
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
|
return TLSEXT_curve_P_384;
|
|
/* Should never happen */
|
|
return 0;
|
|
}
|
|
/* If not Suite B just return first preference shared curve */
|
|
nmatch = 0;
|
|
}
|
|
/*
|
|
* If server preference set, our groups are the preference order
|
|
* otherwise peer decides.
|
|
*/
|
|
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
|
|
tls1_get_supported_groups(s, &pref, &num_pref);
|
|
tls1_get_peer_groups(s, &supp, &num_supp);
|
|
} else {
|
|
tls1_get_peer_groups(s, &pref, &num_pref);
|
|
tls1_get_supported_groups(s, &supp, &num_supp);
|
|
}
|
|
|
|
for (k = 0, i = 0; i < num_pref; i++) {
|
|
uint16_t id = pref[i];
|
|
|
|
if (!tls1_in_list(id, supp, num_supp)
|
|
|| !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
|
|
continue;
|
|
if (nmatch == k)
|
|
return id;
|
|
k++;
|
|
}
|
|
if (nmatch == -1)
|
|
return k;
|
|
/* Out of range (nmatch > k). */
|
|
return 0;
|
|
}
|
|
|
|
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
|
|
int *groups, size_t ngroups)
|
|
{
|
|
uint16_t *glist;
|
|
size_t i;
|
|
/*
|
|
* Bitmap of groups included to detect duplicates: two variables are added
|
|
* to detect duplicates as some values are more than 32.
|
|
*/
|
|
unsigned long *dup_list = NULL;
|
|
unsigned long dup_list_egrp = 0;
|
|
unsigned long dup_list_dhgrp = 0;
|
|
|
|
if (ngroups == 0) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
|
|
return 0;
|
|
}
|
|
if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < ngroups; i++) {
|
|
unsigned long idmask;
|
|
uint16_t id;
|
|
id = tls1_nid2group_id(groups[i]);
|
|
if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
|
|
goto err;
|
|
idmask = 1L << (id & 0x00FF);
|
|
dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
|
|
if (!id || ((*dup_list) & idmask))
|
|
goto err;
|
|
*dup_list |= idmask;
|
|
glist[i] = id;
|
|
}
|
|
OPENSSL_free(*pext);
|
|
*pext = glist;
|
|
*pextlen = ngroups;
|
|
return 1;
|
|
err:
|
|
OPENSSL_free(glist);
|
|
return 0;
|
|
}
|
|
|
|
# define GROUPLIST_INCREMENT 40
|
|
# define GROUP_NAME_BUFFER_LENGTH 64
|
|
typedef struct {
|
|
SSL_CTX *ctx;
|
|
size_t gidcnt;
|
|
size_t gidmax;
|
|
uint16_t *gid_arr;
|
|
} gid_cb_st;
|
|
|
|
static int gid_cb(const char *elem, int len, void *arg)
|
|
{
|
|
gid_cb_st *garg = arg;
|
|
size_t i;
|
|
uint16_t gid = 0;
|
|
char etmp[GROUP_NAME_BUFFER_LENGTH];
|
|
|
|
if (elem == NULL)
|
|
return 0;
|
|
if (garg->gidcnt == garg->gidmax) {
|
|
uint16_t *tmp =
|
|
OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
|
|
if (tmp == NULL)
|
|
return 0;
|
|
garg->gidmax += GROUPLIST_INCREMENT;
|
|
garg->gid_arr = tmp;
|
|
}
|
|
if (len > (int)(sizeof(etmp) - 1))
|
|
return 0;
|
|
memcpy(etmp, elem, len);
|
|
etmp[len] = 0;
|
|
|
|
gid = tls1_group_name2id(garg->ctx, etmp);
|
|
if (gid == 0)
|
|
return 0;
|
|
for (i = 0; i < garg->gidcnt; i++)
|
|
if (garg->gid_arr[i] == gid)
|
|
return 0;
|
|
garg->gid_arr[garg->gidcnt++] = gid;
|
|
return 1;
|
|
}
|
|
|
|
/* Set groups based on a colon separated list */
|
|
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
|
|
const char *str)
|
|
{
|
|
gid_cb_st gcb;
|
|
uint16_t *tmparr;
|
|
int ret = 0;
|
|
|
|
gcb.gidcnt = 0;
|
|
gcb.gidmax = GROUPLIST_INCREMENT;
|
|
gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
|
|
if (gcb.gid_arr == NULL)
|
|
return 0;
|
|
gcb.ctx = ctx;
|
|
if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
|
|
goto end;
|
|
if (pext == NULL) {
|
|
ret = 1;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* gid_cb ensurse there are no duplicates so we can just go ahead and set
|
|
* the result
|
|
*/
|
|
tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
|
|
if (tmparr == NULL)
|
|
goto end;
|
|
*pext = tmparr;
|
|
*pextlen = gcb.gidcnt;
|
|
ret = 1;
|
|
end:
|
|
OPENSSL_free(gcb.gid_arr);
|
|
return ret;
|
|
}
|
|
|
|
/* Check a group id matches preferences */
|
|
int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
|
|
{
|
|
const uint16_t *groups;
|
|
size_t groups_len;
|
|
|
|
if (group_id == 0)
|
|
return 0;
|
|
|
|
/* Check for Suite B compliance */
|
|
if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
|
|
unsigned long cid = s->s3.tmp.new_cipher->id;
|
|
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
|
|
if (group_id != TLSEXT_curve_P_256)
|
|
return 0;
|
|
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
|
|
if (group_id != TLSEXT_curve_P_384)
|
|
return 0;
|
|
} else {
|
|
/* Should never happen */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (check_own_groups) {
|
|
/* Check group is one of our preferences */
|
|
tls1_get_supported_groups(s, &groups, &groups_len);
|
|
if (!tls1_in_list(group_id, groups, groups_len))
|
|
return 0;
|
|
}
|
|
|
|
if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
|
|
return 0;
|
|
|
|
/* For clients, nothing more to check */
|
|
if (!s->server)
|
|
return 1;
|
|
|
|
/* Check group is one of peers preferences */
|
|
tls1_get_peer_groups(s, &groups, &groups_len);
|
|
|
|
/*
|
|
* RFC 4492 does not require the supported elliptic curves extension
|
|
* so if it is not sent we can just choose any curve.
|
|
* It is invalid to send an empty list in the supported groups
|
|
* extension, so groups_len == 0 always means no extension.
|
|
*/
|
|
if (groups_len == 0)
|
|
return 1;
|
|
return tls1_in_list(group_id, groups, groups_len);
|
|
}
|
|
|
|
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
|
|
size_t *num_formats)
|
|
{
|
|
/*
|
|
* If we have a custom point format list use it otherwise use default
|
|
*/
|
|
if (s->ext.ecpointformats) {
|
|
*pformats = s->ext.ecpointformats;
|
|
*num_formats = s->ext.ecpointformats_len;
|
|
} else {
|
|
*pformats = ecformats_default;
|
|
/* For Suite B we don't support char2 fields */
|
|
if (tls1_suiteb(s))
|
|
*num_formats = sizeof(ecformats_default) - 1;
|
|
else
|
|
*num_formats = sizeof(ecformats_default);
|
|
}
|
|
}
|
|
|
|
/* Check a key is compatible with compression extension */
|
|
static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
|
|
{
|
|
unsigned char comp_id;
|
|
size_t i;
|
|
int point_conv;
|
|
|
|
/* If not an EC key nothing to check */
|
|
if (!EVP_PKEY_is_a(pkey, "EC"))
|
|
return 1;
|
|
|
|
|
|
/* Get required compression id */
|
|
point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
|
|
if (point_conv == 0)
|
|
return 0;
|
|
if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
|
|
comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
|
|
} else if (SSL_IS_TLS13(s)) {
|
|
/*
|
|
* ec_point_formats extension is not used in TLSv1.3 so we ignore
|
|
* this check.
|
|
*/
|
|
return 1;
|
|
} else {
|
|
int field_type = EVP_PKEY_get_field_type(pkey);
|
|
|
|
if (field_type == NID_X9_62_prime_field)
|
|
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
|
|
else if (field_type == NID_X9_62_characteristic_two_field)
|
|
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
|
|
else
|
|
return 0;
|
|
}
|
|
/*
|
|
* If point formats extension present check it, otherwise everything is
|
|
* supported (see RFC4492).
|
|
*/
|
|
if (s->ext.peer_ecpointformats == NULL)
|
|
return 1;
|
|
|
|
for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
|
|
if (s->ext.peer_ecpointformats[i] == comp_id)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Return group id of a key */
|
|
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
|
|
{
|
|
int curve_nid = ssl_get_EC_curve_nid(pkey);
|
|
|
|
if (curve_nid == NID_undef)
|
|
return 0;
|
|
return tls1_nid2group_id(curve_nid);
|
|
}
|
|
|
|
/*
|
|
* Check cert parameters compatible with extensions: currently just checks EC
|
|
* certificates have compatible curves and compression.
|
|
*/
|
|
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
|
|
{
|
|
uint16_t group_id;
|
|
EVP_PKEY *pkey;
|
|
pkey = X509_get0_pubkey(x);
|
|
if (pkey == NULL)
|
|
return 0;
|
|
/* If not EC nothing to do */
|
|
if (!EVP_PKEY_is_a(pkey, "EC"))
|
|
return 1;
|
|
/* Check compression */
|
|
if (!tls1_check_pkey_comp(s, pkey))
|
|
return 0;
|
|
group_id = tls1_get_group_id(pkey);
|
|
/*
|
|
* For a server we allow the certificate to not be in our list of supported
|
|
* groups.
|
|
*/
|
|
if (!tls1_check_group_id(s, group_id, !s->server))
|
|
return 0;
|
|
/*
|
|
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
|
|
* SHA384+P-384.
|
|
*/
|
|
if (check_ee_md && tls1_suiteb(s)) {
|
|
int check_md;
|
|
size_t i;
|
|
|
|
/* Check to see we have necessary signing algorithm */
|
|
if (group_id == TLSEXT_curve_P_256)
|
|
check_md = NID_ecdsa_with_SHA256;
|
|
else if (group_id == TLSEXT_curve_P_384)
|
|
check_md = NID_ecdsa_with_SHA384;
|
|
else
|
|
return 0; /* Should never happen */
|
|
for (i = 0; i < s->shared_sigalgslen; i++) {
|
|
if (check_md == s->shared_sigalgs[i]->sigandhash)
|
|
return 1;;
|
|
}
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* tls1_check_ec_tmp_key - Check EC temporary key compatibility
|
|
* @s: SSL connection
|
|
* @cid: Cipher ID we're considering using
|
|
*
|
|
* Checks that the kECDHE cipher suite we're considering using
|
|
* is compatible with the client extensions.
|
|
*
|
|
* Returns 0 when the cipher can't be used or 1 when it can.
|
|
*/
|
|
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
|
|
{
|
|
/* If not Suite B just need a shared group */
|
|
if (!tls1_suiteb(s))
|
|
return tls1_shared_group(s, 0) != 0;
|
|
/*
|
|
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
|
|
* curves permitted.
|
|
*/
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
|
return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
|
return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Default sigalg schemes */
|
|
static const uint16_t tls12_sigalgs[] = {
|
|
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
|
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
|
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
|
TLSEXT_SIGALG_ed25519,
|
|
TLSEXT_SIGALG_ed448,
|
|
|
|
TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
|
TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
|
TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
|
TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
|
TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
|
TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
|
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
|
|
|
TLSEXT_SIGALG_ecdsa_sha224,
|
|
TLSEXT_SIGALG_ecdsa_sha1,
|
|
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
|
|
|
TLSEXT_SIGALG_dsa_sha224,
|
|
TLSEXT_SIGALG_dsa_sha1,
|
|
|
|
TLSEXT_SIGALG_dsa_sha256,
|
|
TLSEXT_SIGALG_dsa_sha384,
|
|
TLSEXT_SIGALG_dsa_sha512,
|
|
|
|
#ifndef OPENSSL_NO_GOST
|
|
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
|
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
|
TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
|
TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
|
TLSEXT_SIGALG_gostr34102001_gostr3411,
|
|
#endif
|
|
};
|
|
|
|
|
|
static const uint16_t suiteb_sigalgs[] = {
|
|
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
|
TLSEXT_SIGALG_ecdsa_secp384r1_sha384
|
|
};
|
|
|
|
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
|
|
{"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
|
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
|
NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
|
|
{"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
|
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
|
NID_ecdsa_with_SHA384, NID_secp384r1, 1},
|
|
{"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
|
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
|
NID_ecdsa_with_SHA512, NID_secp521r1, 1},
|
|
{"ed25519", TLSEXT_SIGALG_ed25519,
|
|
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
|
|
NID_undef, NID_undef, 1},
|
|
{"ed448", TLSEXT_SIGALG_ed448,
|
|
NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_ecdsa_sha224,
|
|
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
|
NID_ecdsa_with_SHA224, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_ecdsa_sha1,
|
|
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
|
NID_ecdsa_with_SHA1, NID_undef, 1},
|
|
{"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
|
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
|
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
|
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
|
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
|
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
|
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
|
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_sha256WithRSAEncryption, NID_undef, 1},
|
|
{"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
|
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_sha384WithRSAEncryption, NID_undef, 1},
|
|
{"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
|
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_sha512WithRSAEncryption, NID_undef, 1},
|
|
{"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
|
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_sha224WithRSAEncryption, NID_undef, 1},
|
|
{"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
|
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_sha1WithRSAEncryption, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_dsa_sha256,
|
|
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
|
NID_dsa_with_SHA256, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_dsa_sha384,
|
|
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_dsa_sha512,
|
|
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_dsa_sha224,
|
|
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_dsa_sha1,
|
|
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
|
NID_dsaWithSHA1, NID_undef, 1},
|
|
#ifndef OPENSSL_NO_GOST
|
|
{NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
|
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
|
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
|
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
|
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
|
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
|
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
|
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
|
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
|
NID_undef, NID_undef, 1},
|
|
{NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
|
|
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
|
|
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
|
|
NID_undef, NID_undef, 1}
|
|
#endif
|
|
};
|
|
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
|
|
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
|
|
"rsa_pkcs1_md5_sha1", 0,
|
|
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
|
|
EVP_PKEY_RSA, SSL_PKEY_RSA,
|
|
NID_undef, NID_undef, 1
|
|
};
|
|
|
|
/*
|
|
* Default signature algorithm values used if signature algorithms not present.
|
|
* From RFC5246. Note: order must match certificate index order.
|
|
*/
|
|
static const uint16_t tls_default_sigalg[] = {
|
|
TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
|
|
0, /* SSL_PKEY_RSA_PSS_SIGN */
|
|
TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
|
|
TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
|
|
TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
|
|
TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
|
|
TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
|
|
0, /* SSL_PKEY_ED25519 */
|
|
0, /* SSL_PKEY_ED448 */
|
|
};
|
|
|
|
int ssl_setup_sig_algs(SSL_CTX *ctx)
|
|
{
|
|
size_t i;
|
|
const SIGALG_LOOKUP *lu;
|
|
SIGALG_LOOKUP *cache
|
|
= OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
|
|
EVP_PKEY *tmpkey = EVP_PKEY_new();
|
|
int ret = 0;
|
|
|
|
if (cache == NULL || tmpkey == NULL)
|
|
goto err;
|
|
|
|
ERR_set_mark();
|
|
for (i = 0, lu = sigalg_lookup_tbl;
|
|
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
|
|
EVP_PKEY_CTX *pctx;
|
|
|
|
cache[i] = *lu;
|
|
|
|
/*
|
|
* Check hash is available.
|
|
* This test is not perfect. A provider could have support
|
|
* for a signature scheme, but not a particular hash. However the hash
|
|
* could be available from some other loaded provider. In that case it
|
|
* could be that the signature is available, and the hash is available
|
|
* independently - but not as a combination. We ignore this for now.
|
|
*/
|
|
if (lu->hash != NID_undef
|
|
&& ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
|
|
cache[i].enabled = 0;
|
|
continue;
|
|
}
|
|
|
|
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
|
|
cache[i].enabled = 0;
|
|
continue;
|
|
}
|
|
pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
|
|
/* If unable to create pctx we assume the sig algorithm is unavailable */
|
|
if (pctx == NULL)
|
|
cache[i].enabled = 0;
|
|
EVP_PKEY_CTX_free(pctx);
|
|
}
|
|
ERR_pop_to_mark();
|
|
ctx->sigalg_lookup_cache = cache;
|
|
cache = NULL;
|
|
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_free(cache);
|
|
EVP_PKEY_free(tmpkey);
|
|
return ret;
|
|
}
|
|
|
|
/* Lookup TLS signature algorithm */
|
|
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
|
|
{
|
|
size_t i;
|
|
const SIGALG_LOOKUP *lu;
|
|
|
|
for (i = 0, lu = s->ctx->sigalg_lookup_cache;
|
|
/* cache should have the same number of elements as sigalg_lookup_tbl */
|
|
i < OSSL_NELEM(sigalg_lookup_tbl);
|
|
lu++, i++) {
|
|
if (lu->sigalg == sigalg) {
|
|
if (!lu->enabled)
|
|
return NULL;
|
|
return lu;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
/* Lookup hash: return 0 if invalid or not enabled */
|
|
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
|
|
{
|
|
const EVP_MD *md;
|
|
if (lu == NULL)
|
|
return 0;
|
|
/* lu->hash == NID_undef means no associated digest */
|
|
if (lu->hash == NID_undef) {
|
|
md = NULL;
|
|
} else {
|
|
md = ssl_md(ctx, lu->hash_idx);
|
|
if (md == NULL)
|
|
return 0;
|
|
}
|
|
if (pmd)
|
|
*pmd = md;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check if key is large enough to generate RSA-PSS signature.
|
|
*
|
|
* The key must greater than or equal to 2 * hash length + 2.
|
|
* SHA512 has a hash length of 64 bytes, which is incompatible
|
|
* with a 128 byte (1024 bit) key.
|
|
*/
|
|
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
|
|
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
|
|
const SIGALG_LOOKUP *lu)
|
|
{
|
|
const EVP_MD *md;
|
|
|
|
if (pkey == NULL)
|
|
return 0;
|
|
if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
|
|
return 0;
|
|
if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Returns a signature algorithm when the peer did not send a list of supported
|
|
* signature algorithms. The signature algorithm is fixed for the certificate
|
|
* type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
|
|
* certificate type from |s| will be used.
|
|
* Returns the signature algorithm to use, or NULL on error.
|
|
*/
|
|
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
|
|
{
|
|
if (idx == -1) {
|
|
if (s->server) {
|
|
size_t i;
|
|
|
|
/* Work out index corresponding to ciphersuite */
|
|
for (i = 0; i < SSL_PKEY_NUM; i++) {
|
|
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
|
|
|
|
if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some GOST ciphersuites allow more than one signature algorithms
|
|
* */
|
|
if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
|
|
int real_idx;
|
|
|
|
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
|
|
real_idx--) {
|
|
if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
|
idx = real_idx;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
|
|
* with new (aGOST12-only) ciphersuites, we should find out which one is available really.
|
|
*/
|
|
else if (idx == SSL_PKEY_GOST12_256) {
|
|
int real_idx;
|
|
|
|
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
|
|
real_idx--) {
|
|
if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
|
idx = real_idx;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
idx = s->cert->key - s->cert->pkeys;
|
|
}
|
|
}
|
|
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
|
|
return NULL;
|
|
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
|
|
|
|
if (lu == NULL)
|
|
return NULL;
|
|
if (!tls1_lookup_md(s->ctx, lu, NULL))
|
|
return NULL;
|
|
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
|
return NULL;
|
|
return lu;
|
|
}
|
|
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
|
|
return NULL;
|
|
return &legacy_rsa_sigalg;
|
|
}
|
|
/* Set peer sigalg based key type */
|
|
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
|
|
{
|
|
size_t idx;
|
|
const SIGALG_LOOKUP *lu;
|
|
|
|
if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
|
|
return 0;
|
|
lu = tls1_get_legacy_sigalg(s, idx);
|
|
if (lu == NULL)
|
|
return 0;
|
|
s->s3.tmp.peer_sigalg = lu;
|
|
return 1;
|
|
}
|
|
|
|
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
|
|
{
|
|
/*
|
|
* If Suite B mode use Suite B sigalgs only, ignore any other
|
|
* preferences.
|
|
*/
|
|
switch (tls1_suiteb(s)) {
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS:
|
|
*psigs = suiteb_sigalgs;
|
|
return OSSL_NELEM(suiteb_sigalgs);
|
|
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
|
*psigs = suiteb_sigalgs;
|
|
return 1;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_192_LOS:
|
|
*psigs = suiteb_sigalgs + 1;
|
|
return 1;
|
|
}
|
|
/*
|
|
* We use client_sigalgs (if not NULL) if we're a server
|
|
* and sending a certificate request or if we're a client and
|
|
* determining which shared algorithm to use.
|
|
*/
|
|
if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
|
|
*psigs = s->cert->client_sigalgs;
|
|
return s->cert->client_sigalgslen;
|
|
} else if (s->cert->conf_sigalgs) {
|
|
*psigs = s->cert->conf_sigalgs;
|
|
return s->cert->conf_sigalgslen;
|
|
} else {
|
|
*psigs = tls12_sigalgs;
|
|
return OSSL_NELEM(tls12_sigalgs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called by servers only. Checks that we have a sig alg that supports the
|
|
* specified EC curve.
|
|
*/
|
|
int tls_check_sigalg_curve(const SSL *s, int curve)
|
|
{
|
|
const uint16_t *sigs;
|
|
size_t siglen, i;
|
|
|
|
if (s->cert->conf_sigalgs) {
|
|
sigs = s->cert->conf_sigalgs;
|
|
siglen = s->cert->conf_sigalgslen;
|
|
} else {
|
|
sigs = tls12_sigalgs;
|
|
siglen = OSSL_NELEM(tls12_sigalgs);
|
|
}
|
|
|
|
for (i = 0; i < siglen; i++) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
|
|
|
|
if (lu == NULL)
|
|
continue;
|
|
if (lu->sig == EVP_PKEY_EC
|
|
&& lu->curve != NID_undef
|
|
&& curve == lu->curve)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the number of security bits for the signature algorithm, or 0 on
|
|
* error.
|
|
*/
|
|
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
|
|
{
|
|
const EVP_MD *md = NULL;
|
|
int secbits = 0;
|
|
|
|
if (!tls1_lookup_md(ctx, lu, &md))
|
|
return 0;
|
|
if (md != NULL)
|
|
{
|
|
int md_type = EVP_MD_get_type(md);
|
|
|
|
/* Security bits: half digest bits */
|
|
secbits = EVP_MD_get_size(md) * 4;
|
|
/*
|
|
* SHA1 and MD5 are known to be broken. Reduce security bits so that
|
|
* they're no longer accepted at security level 1. The real values don't
|
|
* really matter as long as they're lower than 80, which is our
|
|
* security level 1.
|
|
* https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
|
|
* SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
|
|
* https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
|
|
* puts a chosen-prefix attack for MD5 at 2^39.
|
|
*/
|
|
if (md_type == NID_sha1)
|
|
secbits = 64;
|
|
else if (md_type == NID_md5_sha1)
|
|
secbits = 67;
|
|
else if (md_type == NID_md5)
|
|
secbits = 39;
|
|
} else {
|
|
/* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
|
|
if (lu->sigalg == TLSEXT_SIGALG_ed25519)
|
|
secbits = 128;
|
|
else if (lu->sigalg == TLSEXT_SIGALG_ed448)
|
|
secbits = 224;
|
|
}
|
|
return secbits;
|
|
}
|
|
|
|
/*
|
|
* Check signature algorithm is consistent with sent supported signature
|
|
* algorithms and if so set relevant digest and signature scheme in
|
|
* s.
|
|
*/
|
|
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
|
|
{
|
|
const uint16_t *sent_sigs;
|
|
const EVP_MD *md = NULL;
|
|
char sigalgstr[2];
|
|
size_t sent_sigslen, i, cidx;
|
|
int pkeyid = -1;
|
|
const SIGALG_LOOKUP *lu;
|
|
int secbits = 0;
|
|
|
|
pkeyid = EVP_PKEY_get_id(pkey);
|
|
/* Should never happen */
|
|
if (pkeyid == -1)
|
|
return -1;
|
|
if (SSL_IS_TLS13(s)) {
|
|
/* Disallow DSA for TLS 1.3 */
|
|
if (pkeyid == EVP_PKEY_DSA) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
/* Only allow PSS for TLS 1.3 */
|
|
if (pkeyid == EVP_PKEY_RSA)
|
|
pkeyid = EVP_PKEY_RSA_PSS;
|
|
}
|
|
lu = tls1_lookup_sigalg(s, sig);
|
|
/*
|
|
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
|
|
* is consistent with signature: RSA keys can be used for RSA-PSS
|
|
*/
|
|
if (lu == NULL
|
|
|| (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|
|
|| (pkeyid != lu->sig
|
|
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
/* Check the sigalg is consistent with the key OID */
|
|
if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
|
|
|| lu->sig_idx != (int)cidx) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
if (pkeyid == EVP_PKEY_EC) {
|
|
|
|
/* Check point compression is permitted */
|
|
if (!tls1_check_pkey_comp(s, pkey)) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
|
|
SSL_R_ILLEGAL_POINT_COMPRESSION);
|
|
return 0;
|
|
}
|
|
|
|
/* For TLS 1.3 or Suite B check curve matches signature algorithm */
|
|
if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
|
|
int curve = ssl_get_EC_curve_nid(pkey);
|
|
|
|
if (lu->curve != NID_undef && curve != lu->curve) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
|
return 0;
|
|
}
|
|
}
|
|
if (!SSL_IS_TLS13(s)) {
|
|
/* Check curve matches extensions */
|
|
if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
|
return 0;
|
|
}
|
|
if (tls1_suiteb(s)) {
|
|
/* Check sigalg matches a permissible Suite B value */
|
|
if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
|
|
&& sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
} else if (tls1_suiteb(s)) {
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
/* Check signature matches a type we sent */
|
|
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
|
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
|
if (sig == *sent_sigs)
|
|
break;
|
|
}
|
|
/* Allow fallback to SHA1 if not strict mode */
|
|
if (i == sent_sigslen && (lu->hash != NID_sha1
|
|
|| s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
if (!tls1_lookup_md(s->ctx, lu, &md)) {
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Make sure security callback allows algorithm. For historical
|
|
* reasons we have to pass the sigalg as a two byte char array.
|
|
*/
|
|
sigalgstr[0] = (sig >> 8) & 0xff;
|
|
sigalgstr[1] = sig & 0xff;
|
|
secbits = sigalg_security_bits(s->ctx, lu);
|
|
if (secbits == 0 ||
|
|
!ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
|
|
md != NULL ? EVP_MD_get_type(md) : NID_undef,
|
|
(void *)sigalgstr)) {
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
/* Store the sigalg the peer uses */
|
|
s->s3.tmp.peer_sigalg = lu;
|
|
return 1;
|
|
}
|
|
|
|
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
|
|
{
|
|
if (s->s3.tmp.peer_sigalg == NULL)
|
|
return 0;
|
|
*pnid = s->s3.tmp.peer_sigalg->sig;
|
|
return 1;
|
|
}
|
|
|
|
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
|
|
{
|
|
if (s->s3.tmp.sigalg == NULL)
|
|
return 0;
|
|
*pnid = s->s3.tmp.sigalg->sig;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set a mask of disabled algorithms: an algorithm is disabled if it isn't
|
|
* supported, doesn't appear in supported signature algorithms, isn't supported
|
|
* by the enabled protocol versions or by the security level.
|
|
*
|
|
* This function should only be used for checking which ciphers are supported
|
|
* by the client.
|
|
*
|
|
* Call ssl_cipher_disabled() to check that it's enabled or not.
|
|
*/
|
|
int ssl_set_client_disabled(SSL *s)
|
|
{
|
|
s->s3.tmp.mask_a = 0;
|
|
s->s3.tmp.mask_k = 0;
|
|
ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
|
|
if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
|
|
&s->s3.tmp.max_ver, NULL) != 0)
|
|
return 0;
|
|
#ifndef OPENSSL_NO_PSK
|
|
/* with PSK there must be client callback set */
|
|
if (!s->psk_client_callback) {
|
|
s->s3.tmp.mask_a |= SSL_aPSK;
|
|
s->s3.tmp.mask_k |= SSL_PSK;
|
|
}
|
|
#endif /* OPENSSL_NO_PSK */
|
|
#ifndef OPENSSL_NO_SRP
|
|
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
|
|
s->s3.tmp.mask_a |= SSL_aSRP;
|
|
s->s3.tmp.mask_k |= SSL_kSRP;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* ssl_cipher_disabled - check that a cipher is disabled or not
|
|
* @s: SSL connection that you want to use the cipher on
|
|
* @c: cipher to check
|
|
* @op: Security check that you want to do
|
|
* @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
|
|
*
|
|
* Returns 1 when it's disabled, 0 when enabled.
|
|
*/
|
|
int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
|
|
{
|
|
if (c->algorithm_mkey & s->s3.tmp.mask_k
|
|
|| c->algorithm_auth & s->s3.tmp.mask_a)
|
|
return 1;
|
|
if (s->s3.tmp.max_ver == 0)
|
|
return 1;
|
|
if (!SSL_IS_DTLS(s)) {
|
|
int min_tls = c->min_tls;
|
|
|
|
/*
|
|
* For historical reasons we will allow ECHDE to be selected by a server
|
|
* in SSLv3 if we are a client
|
|
*/
|
|
if (min_tls == TLS1_VERSION && ecdhe
|
|
&& (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
|
|
min_tls = SSL3_VERSION;
|
|
|
|
if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
|
|
return 1;
|
|
}
|
|
if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
|
|
|| DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
|
|
return 1;
|
|
|
|
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
|
|
}
|
|
|
|
int tls_use_ticket(SSL *s)
|
|
{
|
|
if ((s->options & SSL_OP_NO_TICKET))
|
|
return 0;
|
|
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
|
|
}
|
|
|
|
int tls1_set_server_sigalgs(SSL *s)
|
|
{
|
|
size_t i;
|
|
|
|
/* Clear any shared signature algorithms */
|
|
OPENSSL_free(s->shared_sigalgs);
|
|
s->shared_sigalgs = NULL;
|
|
s->shared_sigalgslen = 0;
|
|
/* Clear certificate validity flags */
|
|
for (i = 0; i < SSL_PKEY_NUM; i++)
|
|
s->s3.tmp.valid_flags[i] = 0;
|
|
/*
|
|
* If peer sent no signature algorithms check to see if we support
|
|
* the default algorithm for each certificate type
|
|
*/
|
|
if (s->s3.tmp.peer_cert_sigalgs == NULL
|
|
&& s->s3.tmp.peer_sigalgs == NULL) {
|
|
const uint16_t *sent_sigs;
|
|
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
|
|
|
for (i = 0; i < SSL_PKEY_NUM; i++) {
|
|
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
|
|
size_t j;
|
|
|
|
if (lu == NULL)
|
|
continue;
|
|
/* Check default matches a type we sent */
|
|
for (j = 0; j < sent_sigslen; j++) {
|
|
if (lu->sigalg == sent_sigs[j]) {
|
|
s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (!tls1_process_sigalgs(s)) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
if (s->shared_sigalgs != NULL)
|
|
return 1;
|
|
|
|
/* Fatal error if no shared signature algorithms */
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* Gets the ticket information supplied by the client if any.
|
|
*
|
|
* hello: The parsed ClientHello data
|
|
* ret: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*/
|
|
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
|
|
SSL_SESSION **ret)
|
|
{
|
|
size_t size;
|
|
RAW_EXTENSION *ticketext;
|
|
|
|
*ret = NULL;
|
|
s->ext.ticket_expected = 0;
|
|
|
|
/*
|
|
* If tickets disabled or not supported by the protocol version
|
|
* (e.g. TLSv1.3) behave as if no ticket present to permit stateful
|
|
* resumption.
|
|
*/
|
|
if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
|
|
return SSL_TICKET_NONE;
|
|
|
|
ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
|
|
if (!ticketext->present)
|
|
return SSL_TICKET_NONE;
|
|
|
|
size = PACKET_remaining(&ticketext->data);
|
|
|
|
return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
|
|
hello->session_id, hello->session_id_len, ret);
|
|
}
|
|
|
|
/*-
|
|
* tls_decrypt_ticket attempts to decrypt a session ticket.
|
|
*
|
|
* If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
|
|
* expecting a pre-shared key ciphersuite, in which case we have no use for
|
|
* session tickets and one will never be decrypted, nor will
|
|
* s->ext.ticket_expected be set to 1.
|
|
*
|
|
* Side effects:
|
|
* Sets s->ext.ticket_expected to 1 if the server will have to issue
|
|
* a new session ticket to the client because the client indicated support
|
|
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
|
|
* a session ticket or we couldn't use the one it gave us, or if
|
|
* s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
|
|
* Otherwise, s->ext.ticket_expected is set to 0.
|
|
*
|
|
* etick: points to the body of the session ticket extension.
|
|
* eticklen: the length of the session tickets extension.
|
|
* sess_id: points at the session ID.
|
|
* sesslen: the length of the session ID.
|
|
* psess: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*/
|
|
SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
|
|
size_t eticklen, const unsigned char *sess_id,
|
|
size_t sesslen, SSL_SESSION **psess)
|
|
{
|
|
SSL_SESSION *sess = NULL;
|
|
unsigned char *sdec;
|
|
const unsigned char *p;
|
|
int slen, renew_ticket = 0, declen;
|
|
SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
size_t mlen;
|
|
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
|
|
SSL_HMAC *hctx = NULL;
|
|
EVP_CIPHER_CTX *ctx = NULL;
|
|
SSL_CTX *tctx = s->session_ctx;
|
|
|
|
if (eticklen == 0) {
|
|
/*
|
|
* The client will accept a ticket but doesn't currently have
|
|
* one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
|
|
*/
|
|
ret = SSL_TICKET_EMPTY;
|
|
goto end;
|
|
}
|
|
if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
|
|
/*
|
|
* Indicate that the ticket couldn't be decrypted rather than
|
|
* generating the session from ticket now, trigger
|
|
* abbreviated handshake based on external mechanism to
|
|
* calculate the master secret later.
|
|
*/
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
|
|
/* Need at least keyname + iv */
|
|
if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize session ticket encryption and HMAC contexts */
|
|
hctx = ssl_hmac_new(tctx);
|
|
if (hctx == NULL) {
|
|
ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
|
goto end;
|
|
}
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (ctx == NULL) {
|
|
ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
|
goto end;
|
|
}
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
|
|
#else
|
|
if (tctx->ext.ticket_key_evp_cb != NULL)
|
|
#endif
|
|
{
|
|
unsigned char *nctick = (unsigned char *)etick;
|
|
int rv = 0;
|
|
|
|
if (tctx->ext.ticket_key_evp_cb != NULL)
|
|
rv = tctx->ext.ticket_key_evp_cb(s, nctick,
|
|
nctick + TLSEXT_KEYNAME_LENGTH,
|
|
ctx,
|
|
ssl_hmac_get0_EVP_MAC_CTX(hctx),
|
|
0);
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
else if (tctx->ext.ticket_key_cb != NULL)
|
|
/* if 0 is returned, write an empty ticket */
|
|
rv = tctx->ext.ticket_key_cb(s, nctick,
|
|
nctick + TLSEXT_KEYNAME_LENGTH,
|
|
ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
|
|
#endif
|
|
if (rv < 0) {
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
goto end;
|
|
}
|
|
if (rv == 0) {
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
if (rv == 2)
|
|
renew_ticket = 1;
|
|
} else {
|
|
EVP_CIPHER *aes256cbc = NULL;
|
|
|
|
/* Check key name matches */
|
|
if (memcmp(etick, tctx->ext.tick_key_name,
|
|
TLSEXT_KEYNAME_LENGTH) != 0) {
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
|
|
aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
|
|
s->ctx->propq);
|
|
if (aes256cbc == NULL
|
|
|| ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
|
|
sizeof(tctx->ext.secure->tick_hmac_key),
|
|
"SHA256") <= 0
|
|
|| EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
|
|
tctx->ext.secure->tick_aes_key,
|
|
etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
|
|
EVP_CIPHER_free(aes256cbc);
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
goto end;
|
|
}
|
|
EVP_CIPHER_free(aes256cbc);
|
|
if (SSL_IS_TLS13(s))
|
|
renew_ticket = 1;
|
|
}
|
|
/*
|
|
* Attempt to process session ticket, first conduct sanity and integrity
|
|
* checks on ticket.
|
|
*/
|
|
mlen = ssl_hmac_size(hctx);
|
|
if (mlen == 0) {
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
goto end;
|
|
}
|
|
|
|
/* Sanity check ticket length: must exceed keyname + IV + HMAC */
|
|
if (eticklen <=
|
|
TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx) + mlen) {
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
eticklen -= mlen;
|
|
/* Check HMAC of encrypted ticket */
|
|
if (ssl_hmac_update(hctx, etick, eticklen) <= 0
|
|
|| ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
goto end;
|
|
}
|
|
|
|
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
/* Attempt to decrypt session data */
|
|
/* Move p after IV to start of encrypted ticket, update length */
|
|
p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
|
|
eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
|
|
sdec = OPENSSL_malloc(eticklen);
|
|
if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
|
|
(int)eticklen) <= 0) {
|
|
OPENSSL_free(sdec);
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
goto end;
|
|
}
|
|
if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
|
|
OPENSSL_free(sdec);
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
slen += declen;
|
|
p = sdec;
|
|
|
|
sess = d2i_SSL_SESSION(NULL, &p, slen);
|
|
slen -= p - sdec;
|
|
OPENSSL_free(sdec);
|
|
if (sess) {
|
|
/* Some additional consistency checks */
|
|
if (slen != 0) {
|
|
SSL_SESSION_free(sess);
|
|
sess = NULL;
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
goto end;
|
|
}
|
|
/*
|
|
* The session ID, if non-empty, is used by some clients to detect
|
|
* that the ticket has been accepted. So we copy it to the session
|
|
* structure. If it is empty set length to zero as required by
|
|
* standard.
|
|
*/
|
|
if (sesslen) {
|
|
memcpy(sess->session_id, sess_id, sesslen);
|
|
sess->session_id_length = sesslen;
|
|
}
|
|
if (renew_ticket)
|
|
ret = SSL_TICKET_SUCCESS_RENEW;
|
|
else
|
|
ret = SSL_TICKET_SUCCESS;
|
|
goto end;
|
|
}
|
|
ERR_clear_error();
|
|
/*
|
|
* For session parse failure, indicate that we need to send a new ticket.
|
|
*/
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
|
|
end:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
ssl_hmac_free(hctx);
|
|
|
|
/*
|
|
* If set, the decrypt_ticket_cb() is called unless a fatal error was
|
|
* detected above. The callback is responsible for checking |ret| before it
|
|
* performs any action
|
|
*/
|
|
if (s->session_ctx->decrypt_ticket_cb != NULL
|
|
&& (ret == SSL_TICKET_EMPTY
|
|
|| ret == SSL_TICKET_NO_DECRYPT
|
|
|| ret == SSL_TICKET_SUCCESS
|
|
|| ret == SSL_TICKET_SUCCESS_RENEW)) {
|
|
size_t keyname_len = eticklen;
|
|
int retcb;
|
|
|
|
if (keyname_len > TLSEXT_KEYNAME_LENGTH)
|
|
keyname_len = TLSEXT_KEYNAME_LENGTH;
|
|
retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
|
|
ret,
|
|
s->session_ctx->ticket_cb_data);
|
|
switch (retcb) {
|
|
case SSL_TICKET_RETURN_ABORT:
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
break;
|
|
|
|
case SSL_TICKET_RETURN_IGNORE:
|
|
ret = SSL_TICKET_NONE;
|
|
SSL_SESSION_free(sess);
|
|
sess = NULL;
|
|
break;
|
|
|
|
case SSL_TICKET_RETURN_IGNORE_RENEW:
|
|
if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
|
|
ret = SSL_TICKET_NO_DECRYPT;
|
|
/* else the value of |ret| will already do the right thing */
|
|
SSL_SESSION_free(sess);
|
|
sess = NULL;
|
|
break;
|
|
|
|
case SSL_TICKET_RETURN_USE:
|
|
case SSL_TICKET_RETURN_USE_RENEW:
|
|
if (ret != SSL_TICKET_SUCCESS
|
|
&& ret != SSL_TICKET_SUCCESS_RENEW)
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
else if (retcb == SSL_TICKET_RETURN_USE)
|
|
ret = SSL_TICKET_SUCCESS;
|
|
else
|
|
ret = SSL_TICKET_SUCCESS_RENEW;
|
|
break;
|
|
|
|
default:
|
|
ret = SSL_TICKET_FATAL_ERR_OTHER;
|
|
}
|
|
}
|
|
|
|
if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
|
|
switch (ret) {
|
|
case SSL_TICKET_NO_DECRYPT:
|
|
case SSL_TICKET_SUCCESS_RENEW:
|
|
case SSL_TICKET_EMPTY:
|
|
s->ext.ticket_expected = 1;
|
|
}
|
|
}
|
|
|
|
*psess = sess;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Check to see if a signature algorithm is allowed */
|
|
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
|
|
{
|
|
unsigned char sigalgstr[2];
|
|
int secbits;
|
|
|
|
if (lu == NULL || !lu->enabled)
|
|
return 0;
|
|
/* DSA is not allowed in TLS 1.3 */
|
|
if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
|
|
return 0;
|
|
/*
|
|
* At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
|
|
* spec
|
|
*/
|
|
if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
|
|
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|
|
|| lu->hash_idx == SSL_MD_MD5_IDX
|
|
|| lu->hash_idx == SSL_MD_SHA224_IDX))
|
|
return 0;
|
|
|
|
/* See if public key algorithm allowed */
|
|
if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
|
|
return 0;
|
|
|
|
if (lu->sig == NID_id_GostR3410_2012_256
|
|
|| lu->sig == NID_id_GostR3410_2012_512
|
|
|| lu->sig == NID_id_GostR3410_2001) {
|
|
/* We never allow GOST sig algs on the server with TLSv1.3 */
|
|
if (s->server && SSL_IS_TLS13(s))
|
|
return 0;
|
|
if (!s->server
|
|
&& s->method->version == TLS_ANY_VERSION
|
|
&& s->s3.tmp.max_ver >= TLS1_3_VERSION) {
|
|
int i, num;
|
|
STACK_OF(SSL_CIPHER) *sk;
|
|
|
|
/*
|
|
* We're a client that could negotiate TLSv1.3. We only allow GOST
|
|
* sig algs if we could negotiate TLSv1.2 or below and we have GOST
|
|
* ciphersuites enabled.
|
|
*/
|
|
|
|
if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
|
|
return 0;
|
|
|
|
sk = SSL_get_ciphers(s);
|
|
num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
|
|
for (i = 0; i < num; i++) {
|
|
const SSL_CIPHER *c;
|
|
|
|
c = sk_SSL_CIPHER_value(sk, i);
|
|
/* Skip disabled ciphers */
|
|
if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
|
|
continue;
|
|
|
|
if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
|
|
break;
|
|
}
|
|
if (i == num)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Finally see if security callback allows it */
|
|
secbits = sigalg_security_bits(s->ctx, lu);
|
|
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
|
|
sigalgstr[1] = lu->sigalg & 0xff;
|
|
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
|
|
}
|
|
|
|
/*
|
|
* Get a mask of disabled public key algorithms based on supported signature
|
|
* algorithms. For example if no signature algorithm supports RSA then RSA is
|
|
* disabled.
|
|
*/
|
|
|
|
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
|
|
{
|
|
const uint16_t *sigalgs;
|
|
size_t i, sigalgslen;
|
|
uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
|
|
/*
|
|
* Go through all signature algorithms seeing if we support any
|
|
* in disabled_mask.
|
|
*/
|
|
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
|
|
for (i = 0; i < sigalgslen; i++, sigalgs++) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
|
|
const SSL_CERT_LOOKUP *clu;
|
|
|
|
if (lu == NULL)
|
|
continue;
|
|
|
|
clu = ssl_cert_lookup_by_idx(lu->sig_idx);
|
|
if (clu == NULL)
|
|
continue;
|
|
|
|
/* If algorithm is disabled see if we can enable it */
|
|
if ((clu->amask & disabled_mask) != 0
|
|
&& tls12_sigalg_allowed(s, op, lu))
|
|
disabled_mask &= ~clu->amask;
|
|
}
|
|
*pmask_a |= disabled_mask;
|
|
}
|
|
|
|
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
|
|
const uint16_t *psig, size_t psiglen)
|
|
{
|
|
size_t i;
|
|
int rv = 0;
|
|
|
|
for (i = 0; i < psiglen; i++, psig++) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
|
|
|
|
if (lu == NULL
|
|
|| !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
|
continue;
|
|
if (!WPACKET_put_bytes_u16(pkt, *psig))
|
|
return 0;
|
|
/*
|
|
* If TLS 1.3 must have at least one valid TLS 1.3 message
|
|
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
|
|
*/
|
|
if (rv == 0 && (!SSL_IS_TLS13(s)
|
|
|| (lu->sig != EVP_PKEY_RSA
|
|
&& lu->hash != NID_sha1
|
|
&& lu->hash != NID_sha224)))
|
|
rv = 1;
|
|
}
|
|
if (rv == 0)
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return rv;
|
|
}
|
|
|
|
/* Given preference and allowed sigalgs set shared sigalgs */
|
|
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
|
|
const uint16_t *pref, size_t preflen,
|
|
const uint16_t *allow, size_t allowlen)
|
|
{
|
|
const uint16_t *ptmp, *atmp;
|
|
size_t i, j, nmatch = 0;
|
|
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
|
|
|
|
/* Skip disabled hashes or signature algorithms */
|
|
if (lu == NULL
|
|
|| !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
|
|
continue;
|
|
for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
|
|
if (*ptmp == *atmp) {
|
|
nmatch++;
|
|
if (shsig)
|
|
*shsig++ = lu;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return nmatch;
|
|
}
|
|
|
|
/* Set shared signature algorithms for SSL structures */
|
|
static int tls1_set_shared_sigalgs(SSL *s)
|
|
{
|
|
const uint16_t *pref, *allow, *conf;
|
|
size_t preflen, allowlen, conflen;
|
|
size_t nmatch;
|
|
const SIGALG_LOOKUP **salgs = NULL;
|
|
CERT *c = s->cert;
|
|
unsigned int is_suiteb = tls1_suiteb(s);
|
|
|
|
OPENSSL_free(s->shared_sigalgs);
|
|
s->shared_sigalgs = NULL;
|
|
s->shared_sigalgslen = 0;
|
|
/* If client use client signature algorithms if not NULL */
|
|
if (!s->server && c->client_sigalgs && !is_suiteb) {
|
|
conf = c->client_sigalgs;
|
|
conflen = c->client_sigalgslen;
|
|
} else if (c->conf_sigalgs && !is_suiteb) {
|
|
conf = c->conf_sigalgs;
|
|
conflen = c->conf_sigalgslen;
|
|
} else
|
|
conflen = tls12_get_psigalgs(s, 0, &conf);
|
|
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
|
|
pref = conf;
|
|
preflen = conflen;
|
|
allow = s->s3.tmp.peer_sigalgs;
|
|
allowlen = s->s3.tmp.peer_sigalgslen;
|
|
} else {
|
|
allow = conf;
|
|
allowlen = conflen;
|
|
pref = s->s3.tmp.peer_sigalgs;
|
|
preflen = s->s3.tmp.peer_sigalgslen;
|
|
}
|
|
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
|
|
if (nmatch) {
|
|
if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
|
|
} else {
|
|
salgs = NULL;
|
|
}
|
|
s->shared_sigalgs = salgs;
|
|
s->shared_sigalgslen = nmatch;
|
|
return 1;
|
|
}
|
|
|
|
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
|
|
{
|
|
unsigned int stmp;
|
|
size_t size, i;
|
|
uint16_t *buf;
|
|
|
|
size = PACKET_remaining(pkt);
|
|
|
|
/* Invalid data length */
|
|
if (size == 0 || (size & 1) != 0)
|
|
return 0;
|
|
|
|
size >>= 1;
|
|
|
|
if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
|
|
buf[i] = stmp;
|
|
|
|
if (i != size) {
|
|
OPENSSL_free(buf);
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_free(*pdest);
|
|
*pdest = buf;
|
|
*pdestlen = size;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
|
|
{
|
|
/* Extension ignored for inappropriate versions */
|
|
if (!SSL_USE_SIGALGS(s))
|
|
return 1;
|
|
/* Should never happen */
|
|
if (s->cert == NULL)
|
|
return 0;
|
|
|
|
if (cert)
|
|
return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
|
|
&s->s3.tmp.peer_cert_sigalgslen);
|
|
else
|
|
return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
|
|
&s->s3.tmp.peer_sigalgslen);
|
|
|
|
}
|
|
|
|
/* Set preferred digest for each key type */
|
|
|
|
int tls1_process_sigalgs(SSL *s)
|
|
{
|
|
size_t i;
|
|
uint32_t *pvalid = s->s3.tmp.valid_flags;
|
|
|
|
if (!tls1_set_shared_sigalgs(s))
|
|
return 0;
|
|
|
|
for (i = 0; i < SSL_PKEY_NUM; i++)
|
|
pvalid[i] = 0;
|
|
|
|
for (i = 0; i < s->shared_sigalgslen; i++) {
|
|
const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
|
|
int idx = sigptr->sig_idx;
|
|
|
|
/* Ignore PKCS1 based sig algs in TLSv1.3 */
|
|
if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
|
|
continue;
|
|
/* If not disabled indicate we can explicitly sign */
|
|
if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
|
|
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int SSL_get_sigalgs(SSL *s, int idx,
|
|
int *psign, int *phash, int *psignhash,
|
|
unsigned char *rsig, unsigned char *rhash)
|
|
{
|
|
uint16_t *psig = s->s3.tmp.peer_sigalgs;
|
|
size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
|
|
if (psig == NULL || numsigalgs > INT_MAX)
|
|
return 0;
|
|
if (idx >= 0) {
|
|
const SIGALG_LOOKUP *lu;
|
|
|
|
if (idx >= (int)numsigalgs)
|
|
return 0;
|
|
psig += idx;
|
|
if (rhash != NULL)
|
|
*rhash = (unsigned char)((*psig >> 8) & 0xff);
|
|
if (rsig != NULL)
|
|
*rsig = (unsigned char)(*psig & 0xff);
|
|
lu = tls1_lookup_sigalg(s, *psig);
|
|
if (psign != NULL)
|
|
*psign = lu != NULL ? lu->sig : NID_undef;
|
|
if (phash != NULL)
|
|
*phash = lu != NULL ? lu->hash : NID_undef;
|
|
if (psignhash != NULL)
|
|
*psignhash = lu != NULL ? lu->sigandhash : NID_undef;
|
|
}
|
|
return (int)numsigalgs;
|
|
}
|
|
|
|
int SSL_get_shared_sigalgs(SSL *s, int idx,
|
|
int *psign, int *phash, int *psignhash,
|
|
unsigned char *rsig, unsigned char *rhash)
|
|
{
|
|
const SIGALG_LOOKUP *shsigalgs;
|
|
if (s->shared_sigalgs == NULL
|
|
|| idx < 0
|
|
|| idx >= (int)s->shared_sigalgslen
|
|
|| s->shared_sigalgslen > INT_MAX)
|
|
return 0;
|
|
shsigalgs = s->shared_sigalgs[idx];
|
|
if (phash != NULL)
|
|
*phash = shsigalgs->hash;
|
|
if (psign != NULL)
|
|
*psign = shsigalgs->sig;
|
|
if (psignhash != NULL)
|
|
*psignhash = shsigalgs->sigandhash;
|
|
if (rsig != NULL)
|
|
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
|
|
if (rhash != NULL)
|
|
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
|
|
return (int)s->shared_sigalgslen;
|
|
}
|
|
|
|
/* Maximum possible number of unique entries in sigalgs array */
|
|
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
|
|
|
|
typedef struct {
|
|
size_t sigalgcnt;
|
|
/* TLSEXT_SIGALG_XXX values */
|
|
uint16_t sigalgs[TLS_MAX_SIGALGCNT];
|
|
} sig_cb_st;
|
|
|
|
static void get_sigorhash(int *psig, int *phash, const char *str)
|
|
{
|
|
if (strcmp(str, "RSA") == 0) {
|
|
*psig = EVP_PKEY_RSA;
|
|
} else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
|
|
*psig = EVP_PKEY_RSA_PSS;
|
|
} else if (strcmp(str, "DSA") == 0) {
|
|
*psig = EVP_PKEY_DSA;
|
|
} else if (strcmp(str, "ECDSA") == 0) {
|
|
*psig = EVP_PKEY_EC;
|
|
} else {
|
|
*phash = OBJ_sn2nid(str);
|
|
if (*phash == NID_undef)
|
|
*phash = OBJ_ln2nid(str);
|
|
}
|
|
}
|
|
/* Maximum length of a signature algorithm string component */
|
|
#define TLS_MAX_SIGSTRING_LEN 40
|
|
|
|
static int sig_cb(const char *elem, int len, void *arg)
|
|
{
|
|
sig_cb_st *sarg = arg;
|
|
size_t i;
|
|
const SIGALG_LOOKUP *s;
|
|
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
|
|
int sig_alg = NID_undef, hash_alg = NID_undef;
|
|
if (elem == NULL)
|
|
return 0;
|
|
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
|
|
return 0;
|
|
if (len > (int)(sizeof(etmp) - 1))
|
|
return 0;
|
|
memcpy(etmp, elem, len);
|
|
etmp[len] = 0;
|
|
p = strchr(etmp, '+');
|
|
/*
|
|
* We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
|
|
* if there's no '+' in the provided name, look for the new-style combined
|
|
* name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
|
|
* Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
|
|
* rsa_pss_rsae_* that differ only by public key OID; in such cases
|
|
* we will pick the _rsae_ variant, by virtue of them appearing earlier
|
|
* in the table.
|
|
*/
|
|
if (p == NULL) {
|
|
for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
|
|
i++, s++) {
|
|
if (s->name != NULL && strcmp(etmp, s->name) == 0) {
|
|
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
|
break;
|
|
}
|
|
}
|
|
if (i == OSSL_NELEM(sigalg_lookup_tbl))
|
|
return 0;
|
|
} else {
|
|
*p = 0;
|
|
p++;
|
|
if (*p == 0)
|
|
return 0;
|
|
get_sigorhash(&sig_alg, &hash_alg, etmp);
|
|
get_sigorhash(&sig_alg, &hash_alg, p);
|
|
if (sig_alg == NID_undef || hash_alg == NID_undef)
|
|
return 0;
|
|
for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
|
|
i++, s++) {
|
|
if (s->hash == hash_alg && s->sig == sig_alg) {
|
|
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
|
break;
|
|
}
|
|
}
|
|
if (i == OSSL_NELEM(sigalg_lookup_tbl))
|
|
return 0;
|
|
}
|
|
|
|
/* Reject duplicates */
|
|
for (i = 0; i < sarg->sigalgcnt - 1; i++) {
|
|
if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
|
|
sarg->sigalgcnt--;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set supported signature algorithms based on a colon separated list of the
|
|
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
|
|
*/
|
|
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
|
|
{
|
|
sig_cb_st sig;
|
|
sig.sigalgcnt = 0;
|
|
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
|
|
return 0;
|
|
if (c == NULL)
|
|
return 1;
|
|
return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
|
|
}
|
|
|
|
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
|
|
int client)
|
|
{
|
|
uint16_t *sigalgs;
|
|
|
|
if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
|
|
|
|
if (client) {
|
|
OPENSSL_free(c->client_sigalgs);
|
|
c->client_sigalgs = sigalgs;
|
|
c->client_sigalgslen = salglen;
|
|
} else {
|
|
OPENSSL_free(c->conf_sigalgs);
|
|
c->conf_sigalgs = sigalgs;
|
|
c->conf_sigalgslen = salglen;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
|
|
{
|
|
uint16_t *sigalgs, *sptr;
|
|
size_t i;
|
|
|
|
if (salglen & 1)
|
|
return 0;
|
|
if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
|
|
size_t j;
|
|
const SIGALG_LOOKUP *curr;
|
|
int md_id = *psig_nids++;
|
|
int sig_id = *psig_nids++;
|
|
|
|
for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
|
|
j++, curr++) {
|
|
if (curr->hash == md_id && curr->sig == sig_id) {
|
|
*sptr++ = curr->sigalg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == OSSL_NELEM(sigalg_lookup_tbl))
|
|
goto err;
|
|
}
|
|
|
|
if (client) {
|
|
OPENSSL_free(c->client_sigalgs);
|
|
c->client_sigalgs = sigalgs;
|
|
c->client_sigalgslen = salglen / 2;
|
|
} else {
|
|
OPENSSL_free(c->conf_sigalgs);
|
|
c->conf_sigalgs = sigalgs;
|
|
c->conf_sigalgslen = salglen / 2;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_free(sigalgs);
|
|
return 0;
|
|
}
|
|
|
|
static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
|
|
{
|
|
int sig_nid, use_pc_sigalgs = 0;
|
|
size_t i;
|
|
const SIGALG_LOOKUP *sigalg;
|
|
size_t sigalgslen;
|
|
if (default_nid == -1)
|
|
return 1;
|
|
sig_nid = X509_get_signature_nid(x);
|
|
if (default_nid)
|
|
return sig_nid == default_nid ? 1 : 0;
|
|
|
|
if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
|
|
/*
|
|
* If we're in TLSv1.3 then we only get here if we're checking the
|
|
* chain. If the peer has specified peer_cert_sigalgs then we use them
|
|
* otherwise we default to normal sigalgs.
|
|
*/
|
|
sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
|
|
use_pc_sigalgs = 1;
|
|
} else {
|
|
sigalgslen = s->shared_sigalgslen;
|
|
}
|
|
for (i = 0; i < sigalgslen; i++) {
|
|
sigalg = use_pc_sigalgs
|
|
? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
|
|
: s->shared_sigalgs[i];
|
|
if (sigalg != NULL && sig_nid == sigalg->sigandhash)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if a certificate issuer name matches list of CA names */
|
|
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
|
|
{
|
|
const X509_NAME *nm;
|
|
int i;
|
|
nm = X509_get_issuer_name(x);
|
|
for (i = 0; i < sk_X509_NAME_num(names); i++) {
|
|
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check certificate chain is consistent with TLS extensions and is usable by
|
|
* server. This servers two purposes: it allows users to check chains before
|
|
* passing them to the server and it allows the server to check chains before
|
|
* attempting to use them.
|
|
*/
|
|
|
|
/* Flags which need to be set for a certificate when strict mode not set */
|
|
|
|
#define CERT_PKEY_VALID_FLAGS \
|
|
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
|
|
/* Strict mode flags */
|
|
#define CERT_PKEY_STRICT_FLAGS \
|
|
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
|
|
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
|
|
|
|
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
|
|
int idx)
|
|
{
|
|
int i;
|
|
int rv = 0;
|
|
int check_flags = 0, strict_mode;
|
|
CERT_PKEY *cpk = NULL;
|
|
CERT *c = s->cert;
|
|
uint32_t *pvalid;
|
|
unsigned int suiteb_flags = tls1_suiteb(s);
|
|
/* idx == -1 means checking server chains */
|
|
if (idx != -1) {
|
|
/* idx == -2 means checking client certificate chains */
|
|
if (idx == -2) {
|
|
cpk = c->key;
|
|
idx = (int)(cpk - c->pkeys);
|
|
} else
|
|
cpk = c->pkeys + idx;
|
|
pvalid = s->s3.tmp.valid_flags + idx;
|
|
x = cpk->x509;
|
|
pk = cpk->privatekey;
|
|
chain = cpk->chain;
|
|
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
|
|
/* If no cert or key, forget it */
|
|
if (!x || !pk)
|
|
goto end;
|
|
} else {
|
|
size_t certidx;
|
|
|
|
if (!x || !pk)
|
|
return 0;
|
|
|
|
if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
|
|
return 0;
|
|
idx = certidx;
|
|
pvalid = s->s3.tmp.valid_flags + idx;
|
|
|
|
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
|
|
check_flags = CERT_PKEY_STRICT_FLAGS;
|
|
else
|
|
check_flags = CERT_PKEY_VALID_FLAGS;
|
|
strict_mode = 1;
|
|
}
|
|
|
|
if (suiteb_flags) {
|
|
int ok;
|
|
if (check_flags)
|
|
check_flags |= CERT_PKEY_SUITEB;
|
|
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
|
|
if (ok == X509_V_OK)
|
|
rv |= CERT_PKEY_SUITEB;
|
|
else if (!check_flags)
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Check all signature algorithms are consistent with signature
|
|
* algorithms extension if TLS 1.2 or later and strict mode.
|
|
*/
|
|
if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
|
|
int default_nid;
|
|
int rsign = 0;
|
|
if (s->s3.tmp.peer_cert_sigalgs != NULL
|
|
|| s->s3.tmp.peer_sigalgs != NULL) {
|
|
default_nid = 0;
|
|
/* If no sigalgs extension use defaults from RFC5246 */
|
|
} else {
|
|
switch (idx) {
|
|
case SSL_PKEY_RSA:
|
|
rsign = EVP_PKEY_RSA;
|
|
default_nid = NID_sha1WithRSAEncryption;
|
|
break;
|
|
|
|
case SSL_PKEY_DSA_SIGN:
|
|
rsign = EVP_PKEY_DSA;
|
|
default_nid = NID_dsaWithSHA1;
|
|
break;
|
|
|
|
case SSL_PKEY_ECC:
|
|
rsign = EVP_PKEY_EC;
|
|
default_nid = NID_ecdsa_with_SHA1;
|
|
break;
|
|
|
|
case SSL_PKEY_GOST01:
|
|
rsign = NID_id_GostR3410_2001;
|
|
default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
|
|
break;
|
|
|
|
case SSL_PKEY_GOST12_256:
|
|
rsign = NID_id_GostR3410_2012_256;
|
|
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
|
|
break;
|
|
|
|
case SSL_PKEY_GOST12_512:
|
|
rsign = NID_id_GostR3410_2012_512;
|
|
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
|
|
break;
|
|
|
|
default:
|
|
default_nid = -1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If peer sent no signature algorithms extension and we have set
|
|
* preferred signature algorithms check we support sha1.
|
|
*/
|
|
if (default_nid > 0 && c->conf_sigalgs) {
|
|
size_t j;
|
|
const uint16_t *p = c->conf_sigalgs;
|
|
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
|
|
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
|
|
|
|
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
|
|
break;
|
|
}
|
|
if (j == c->conf_sigalgslen) {
|
|
if (check_flags)
|
|
goto skip_sigs;
|
|
else
|
|
goto end;
|
|
}
|
|
}
|
|
/* Check signature algorithm of each cert in chain */
|
|
if (SSL_IS_TLS13(s)) {
|
|
/*
|
|
* We only get here if the application has called SSL_check_chain(),
|
|
* so check_flags is always set.
|
|
*/
|
|
if (find_sig_alg(s, x, pk) != NULL)
|
|
rv |= CERT_PKEY_EE_SIGNATURE;
|
|
} else if (!tls1_check_sig_alg(s, x, default_nid)) {
|
|
if (!check_flags)
|
|
goto end;
|
|
} else
|
|
rv |= CERT_PKEY_EE_SIGNATURE;
|
|
rv |= CERT_PKEY_CA_SIGNATURE;
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
|
|
if (check_flags) {
|
|
rv &= ~CERT_PKEY_CA_SIGNATURE;
|
|
break;
|
|
} else
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
|
|
else if (check_flags)
|
|
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
|
|
skip_sigs:
|
|
/* Check cert parameters are consistent */
|
|
if (tls1_check_cert_param(s, x, 1))
|
|
rv |= CERT_PKEY_EE_PARAM;
|
|
else if (!check_flags)
|
|
goto end;
|
|
if (!s->server)
|
|
rv |= CERT_PKEY_CA_PARAM;
|
|
/* In strict mode check rest of chain too */
|
|
else if (strict_mode) {
|
|
rv |= CERT_PKEY_CA_PARAM;
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
X509 *ca = sk_X509_value(chain, i);
|
|
if (!tls1_check_cert_param(s, ca, 0)) {
|
|
if (check_flags) {
|
|
rv &= ~CERT_PKEY_CA_PARAM;
|
|
break;
|
|
} else
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
if (!s->server && strict_mode) {
|
|
STACK_OF(X509_NAME) *ca_dn;
|
|
int check_type = 0;
|
|
|
|
if (EVP_PKEY_is_a(pk, "RSA"))
|
|
check_type = TLS_CT_RSA_SIGN;
|
|
else if (EVP_PKEY_is_a(pk, "DSA"))
|
|
check_type = TLS_CT_DSS_SIGN;
|
|
else if (EVP_PKEY_is_a(pk, "EC"))
|
|
check_type = TLS_CT_ECDSA_SIGN;
|
|
|
|
if (check_type) {
|
|
const uint8_t *ctypes = s->s3.tmp.ctype;
|
|
size_t j;
|
|
|
|
for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
|
|
if (*ctypes == check_type) {
|
|
rv |= CERT_PKEY_CERT_TYPE;
|
|
break;
|
|
}
|
|
}
|
|
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
|
|
goto end;
|
|
} else {
|
|
rv |= CERT_PKEY_CERT_TYPE;
|
|
}
|
|
|
|
ca_dn = s->s3.tmp.peer_ca_names;
|
|
|
|
if (!sk_X509_NAME_num(ca_dn))
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
|
|
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
|
|
if (ssl_check_ca_name(ca_dn, x))
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
}
|
|
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
X509 *xtmp = sk_X509_value(chain, i);
|
|
if (ssl_check_ca_name(ca_dn, xtmp)) {
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
|
|
goto end;
|
|
} else
|
|
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
|
|
|
|
if (!check_flags || (rv & check_flags) == check_flags)
|
|
rv |= CERT_PKEY_VALID;
|
|
|
|
end:
|
|
|
|
if (TLS1_get_version(s) >= TLS1_2_VERSION)
|
|
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
|
|
else
|
|
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
|
|
|
|
/*
|
|
* When checking a CERT_PKEY structure all flags are irrelevant if the
|
|
* chain is invalid.
|
|
*/
|
|
if (!check_flags) {
|
|
if (rv & CERT_PKEY_VALID) {
|
|
*pvalid = rv;
|
|
} else {
|
|
/* Preserve sign and explicit sign flag, clear rest */
|
|
*pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
|
return 0;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Set validity of certificates in an SSL structure */
|
|
void tls1_set_cert_validity(SSL *s)
|
|
{
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
|
|
}
|
|
|
|
/* User level utility function to check a chain is suitable */
|
|
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
|
|
{
|
|
return tls1_check_chain(s, x, pk, chain, -1);
|
|
}
|
|
|
|
EVP_PKEY *ssl_get_auto_dh(SSL *s)
|
|
{
|
|
EVP_PKEY *dhp = NULL;
|
|
BIGNUM *p;
|
|
int dh_secbits = 80, sec_level_bits;
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
OSSL_PARAM_BLD *tmpl = NULL;
|
|
OSSL_PARAM *params = NULL;
|
|
|
|
if (s->cert->dh_tmp_auto != 2) {
|
|
if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
|
|
if (s->s3.tmp.new_cipher->strength_bits == 256)
|
|
dh_secbits = 128;
|
|
else
|
|
dh_secbits = 80;
|
|
} else {
|
|
if (s->s3.tmp.cert == NULL)
|
|
return NULL;
|
|
dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
|
|
}
|
|
}
|
|
|
|
/* Do not pick a prime that is too weak for the current security level */
|
|
sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
|
|
if (dh_secbits < sec_level_bits)
|
|
dh_secbits = sec_level_bits;
|
|
|
|
if (dh_secbits >= 192)
|
|
p = BN_get_rfc3526_prime_8192(NULL);
|
|
else if (dh_secbits >= 152)
|
|
p = BN_get_rfc3526_prime_4096(NULL);
|
|
else if (dh_secbits >= 128)
|
|
p = BN_get_rfc3526_prime_3072(NULL);
|
|
else if (dh_secbits >= 112)
|
|
p = BN_get_rfc3526_prime_2048(NULL);
|
|
else
|
|
p = BN_get_rfc2409_prime_1024(NULL);
|
|
if (p == NULL)
|
|
goto err;
|
|
|
|
pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
|
|
if (pctx == NULL
|
|
|| EVP_PKEY_fromdata_init(pctx) != 1)
|
|
goto err;
|
|
|
|
tmpl = OSSL_PARAM_BLD_new();
|
|
if (tmpl == NULL
|
|
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
|
|
|| !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
|
|
goto err;
|
|
|
|
params = OSSL_PARAM_BLD_to_param(tmpl);
|
|
if (params == NULL
|
|
|| EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
|
|
goto err;
|
|
|
|
err:
|
|
OSSL_PARAM_free(params);
|
|
OSSL_PARAM_BLD_free(tmpl);
|
|
EVP_PKEY_CTX_free(pctx);
|
|
BN_free(p);
|
|
return dhp;
|
|
}
|
|
|
|
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
|
{
|
|
int secbits = -1;
|
|
EVP_PKEY *pkey = X509_get0_pubkey(x);
|
|
if (pkey) {
|
|
/*
|
|
* If no parameters this will return -1 and fail using the default
|
|
* security callback for any non-zero security level. This will
|
|
* reject keys which omit parameters but this only affects DSA and
|
|
* omission of parameters is never (?) done in practice.
|
|
*/
|
|
secbits = EVP_PKEY_get_security_bits(pkey);
|
|
}
|
|
if (s)
|
|
return ssl_security(s, op, secbits, 0, x);
|
|
else
|
|
return ssl_ctx_security(ctx, op, secbits, 0, x);
|
|
}
|
|
|
|
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
|
{
|
|
/* Lookup signature algorithm digest */
|
|
int secbits, nid, pknid;
|
|
/* Don't check signature if self signed */
|
|
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
|
|
return 1;
|
|
if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
|
|
secbits = -1;
|
|
/* If digest NID not defined use signature NID */
|
|
if (nid == NID_undef)
|
|
nid = pknid;
|
|
if (s)
|
|
return ssl_security(s, op, secbits, nid, x);
|
|
else
|
|
return ssl_ctx_security(ctx, op, secbits, nid, x);
|
|
}
|
|
|
|
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
|
|
{
|
|
if (vfy)
|
|
vfy = SSL_SECOP_PEER;
|
|
if (is_ee) {
|
|
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
|
|
return SSL_R_EE_KEY_TOO_SMALL;
|
|
} else {
|
|
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
|
|
return SSL_R_CA_KEY_TOO_SMALL;
|
|
}
|
|
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
|
|
return SSL_R_CA_MD_TOO_WEAK;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check security of a chain, if |sk| includes the end entity certificate then
|
|
* |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
|
|
* one to the peer. Return values: 1 if ok otherwise error code to use
|
|
*/
|
|
|
|
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
|
|
{
|
|
int rv, start_idx, i;
|
|
if (x == NULL) {
|
|
x = sk_X509_value(sk, 0);
|
|
start_idx = 1;
|
|
} else
|
|
start_idx = 0;
|
|
|
|
rv = ssl_security_cert(s, NULL, x, vfy, 1);
|
|
if (rv != 1)
|
|
return rv;
|
|
|
|
for (i = start_idx; i < sk_X509_num(sk); i++) {
|
|
x = sk_X509_value(sk, i);
|
|
rv = ssl_security_cert(s, NULL, x, vfy, 0);
|
|
if (rv != 1)
|
|
return rv;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* For TLS 1.2 servers check if we have a certificate which can be used
|
|
* with the signature algorithm "lu" and return index of certificate.
|
|
*/
|
|
|
|
static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
|
|
{
|
|
int sig_idx = lu->sig_idx;
|
|
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
|
|
|
|
/* If not recognised or not supported by cipher mask it is not suitable */
|
|
if (clu == NULL
|
|
|| (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
|
|
|| (clu->nid == EVP_PKEY_RSA_PSS
|
|
&& (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
|
|
return -1;
|
|
|
|
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
|
|
}
|
|
|
|
/*
|
|
* Checks the given cert against signature_algorithm_cert restrictions sent by
|
|
* the peer (if any) as well as whether the hash from the sigalg is usable with
|
|
* the key.
|
|
* Returns true if the cert is usable and false otherwise.
|
|
*/
|
|
static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
|
|
EVP_PKEY *pkey)
|
|
{
|
|
const SIGALG_LOOKUP *lu;
|
|
int mdnid, pknid, supported;
|
|
size_t i;
|
|
const char *mdname = NULL;
|
|
|
|
/*
|
|
* If the given EVP_PKEY cannot support signing with this digest,
|
|
* the answer is simply 'no'.
|
|
*/
|
|
if (sig->hash != NID_undef)
|
|
mdname = OBJ_nid2sn(sig->hash);
|
|
supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
|
|
mdname,
|
|
s->ctx->propq);
|
|
if (supported <= 0)
|
|
return 0;
|
|
|
|
/*
|
|
* The TLS 1.3 signature_algorithms_cert extension places restrictions
|
|
* on the sigalg with which the certificate was signed (by its issuer).
|
|
*/
|
|
if (s->s3.tmp.peer_cert_sigalgs != NULL) {
|
|
if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
|
|
return 0;
|
|
for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
|
|
lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
|
|
if (lu == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* This does not differentiate between the
|
|
* rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
|
|
* have a chain here that lets us look at the key OID in the
|
|
* signing certificate.
|
|
*/
|
|
if (mdnid == lu->hash && pknid == lu->sig)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Without signat_algorithms_cert, any certificate for which we have
|
|
* a viable public key is permitted.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Returns true if |s| has a usable certificate configured for use
|
|
* with signature scheme |sig|.
|
|
* "Usable" includes a check for presence as well as applying
|
|
* the signature_algorithm_cert restrictions sent by the peer (if any).
|
|
* Returns false if no usable certificate is found.
|
|
*/
|
|
static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
|
|
{
|
|
/* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
|
|
if (idx == -1)
|
|
idx = sig->sig_idx;
|
|
if (!ssl_has_cert(s, idx))
|
|
return 0;
|
|
|
|
return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
|
|
s->cert->pkeys[idx].privatekey);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the supplied cert |x| and key |pkey| is usable with the
|
|
* specified signature scheme |sig|, or false otherwise.
|
|
*/
|
|
static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
|
|
EVP_PKEY *pkey)
|
|
{
|
|
size_t idx;
|
|
|
|
if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
|
|
return 0;
|
|
|
|
/* Check the key is consistent with the sig alg */
|
|
if ((int)idx != sig->sig_idx)
|
|
return 0;
|
|
|
|
return check_cert_usable(s, sig, x, pkey);
|
|
}
|
|
|
|
/*
|
|
* Find a signature scheme that works with the supplied certificate |x| and key
|
|
* |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
|
|
* available certs/keys to find one that works.
|
|
*/
|
|
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
|
|
{
|
|
const SIGALG_LOOKUP *lu = NULL;
|
|
size_t i;
|
|
int curve = -1;
|
|
EVP_PKEY *tmppkey;
|
|
|
|
/* Look for a shared sigalgs matching possible certificates */
|
|
for (i = 0; i < s->shared_sigalgslen; i++) {
|
|
lu = s->shared_sigalgs[i];
|
|
|
|
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
|
|
if (lu->hash == NID_sha1
|
|
|| lu->hash == NID_sha224
|
|
|| lu->sig == EVP_PKEY_DSA
|
|
|| lu->sig == EVP_PKEY_RSA)
|
|
continue;
|
|
/* Check that we have a cert, and signature_algorithms_cert */
|
|
if (!tls1_lookup_md(s->ctx, lu, NULL))
|
|
continue;
|
|
if ((pkey == NULL && !has_usable_cert(s, lu, -1))
|
|
|| (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
|
|
continue;
|
|
|
|
tmppkey = (pkey != NULL) ? pkey
|
|
: s->cert->pkeys[lu->sig_idx].privatekey;
|
|
|
|
if (lu->sig == EVP_PKEY_EC) {
|
|
if (curve == -1)
|
|
curve = ssl_get_EC_curve_nid(tmppkey);
|
|
if (lu->curve != NID_undef && curve != lu->curve)
|
|
continue;
|
|
} else if (lu->sig == EVP_PKEY_RSA_PSS) {
|
|
/* validate that key is large enough for the signature algorithm */
|
|
if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (i == s->shared_sigalgslen)
|
|
return NULL;
|
|
|
|
return lu;
|
|
}
|
|
|
|
/*
|
|
* Choose an appropriate signature algorithm based on available certificates
|
|
* Sets chosen certificate and signature algorithm.
|
|
*
|
|
* For servers if we fail to find a required certificate it is a fatal error,
|
|
* an appropriate error code is set and a TLS alert is sent.
|
|
*
|
|
* For clients fatalerrs is set to 0. If a certificate is not suitable it is not
|
|
* a fatal error: we will either try another certificate or not present one
|
|
* to the server. In this case no error is set.
|
|
*/
|
|
int tls_choose_sigalg(SSL *s, int fatalerrs)
|
|
{
|
|
const SIGALG_LOOKUP *lu = NULL;
|
|
int sig_idx = -1;
|
|
|
|
s->s3.tmp.cert = NULL;
|
|
s->s3.tmp.sigalg = NULL;
|
|
|
|
if (SSL_IS_TLS13(s)) {
|
|
lu = find_sig_alg(s, NULL, NULL);
|
|
if (lu == NULL) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return 0;
|
|
}
|
|
} else {
|
|
/* If ciphersuite doesn't require a cert nothing to do */
|
|
if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
|
|
return 1;
|
|
if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
|
|
return 1;
|
|
|
|
if (SSL_USE_SIGALGS(s)) {
|
|
size_t i;
|
|
if (s->s3.tmp.peer_sigalgs != NULL) {
|
|
int curve = -1;
|
|
|
|
/* For Suite B need to match signature algorithm to curve */
|
|
if (tls1_suiteb(s))
|
|
curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
|
|
.privatekey);
|
|
|
|
/*
|
|
* Find highest preference signature algorithm matching
|
|
* cert type
|
|
*/
|
|
for (i = 0; i < s->shared_sigalgslen; i++) {
|
|
lu = s->shared_sigalgs[i];
|
|
|
|
if (s->server) {
|
|
if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
|
|
continue;
|
|
} else {
|
|
int cc_idx = s->cert->key - s->cert->pkeys;
|
|
|
|
sig_idx = lu->sig_idx;
|
|
if (cc_idx != sig_idx)
|
|
continue;
|
|
}
|
|
/* Check that we have a cert, and sig_algs_cert */
|
|
if (!has_usable_cert(s, lu, sig_idx))
|
|
continue;
|
|
if (lu->sig == EVP_PKEY_RSA_PSS) {
|
|
/* validate that key is large enough for the signature algorithm */
|
|
EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
|
|
|
|
if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
|
|
continue;
|
|
}
|
|
if (curve == -1 || lu->curve == curve)
|
|
break;
|
|
}
|
|
#ifndef OPENSSL_NO_GOST
|
|
/*
|
|
* Some Windows-based implementations do not send GOST algorithms indication
|
|
* in supported_algorithms extension, so when we have GOST-based ciphersuite,
|
|
* we have to assume GOST support.
|
|
*/
|
|
if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
|
|
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return 0;
|
|
} else {
|
|
i = 0;
|
|
sig_idx = lu->sig_idx;
|
|
}
|
|
}
|
|
#endif
|
|
if (i == s->shared_sigalgslen) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we have no sigalg use defaults
|
|
*/
|
|
const uint16_t *sent_sigs;
|
|
size_t sent_sigslen;
|
|
|
|
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return 0;
|
|
}
|
|
|
|
/* Check signature matches a type we sent */
|
|
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
|
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
|
if (lu->sigalg == *sent_sigs
|
|
&& has_usable_cert(s, lu, lu->sig_idx))
|
|
break;
|
|
}
|
|
if (i == sent_sigslen) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
|
SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
}
|
|
} else {
|
|
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
|
if (!fatalerrs)
|
|
return 1;
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
|
|
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
if (sig_idx == -1)
|
|
sig_idx = lu->sig_idx;
|
|
s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
|
|
s->cert->key = s->s3.tmp.cert;
|
|
s->s3.tmp.sigalg = lu;
|
|
return 1;
|
|
}
|
|
|
|
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
|
|
{
|
|
if (mode != TLSEXT_max_fragment_length_DISABLED
|
|
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
ctx->ext.max_fragment_len_mode = mode;
|
|
return 1;
|
|
}
|
|
|
|
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
|
|
{
|
|
if (mode != TLSEXT_max_fragment_length_DISABLED
|
|
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
ssl->ext.max_fragment_len_mode = mode;
|
|
return 1;
|
|
}
|
|
|
|
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
|
|
{
|
|
return session->ext.max_fragment_len_mode;
|
|
}
|
|
|
|
/*
|
|
* Helper functions for HMAC access with legacy support included.
|
|
*/
|
|
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
|
|
{
|
|
SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
|
|
EVP_MAC *mac = NULL;
|
|
|
|
if (ret == NULL)
|
|
return NULL;
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (ctx->ext.ticket_key_evp_cb == NULL
|
|
&& ctx->ext.ticket_key_cb != NULL) {
|
|
if (!ssl_hmac_old_new(ret))
|
|
goto err;
|
|
return ret;
|
|
}
|
|
#endif
|
|
mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
|
|
if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
|
|
goto err;
|
|
EVP_MAC_free(mac);
|
|
return ret;
|
|
err:
|
|
EVP_MAC_CTX_free(ret->ctx);
|
|
EVP_MAC_free(mac);
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
void ssl_hmac_free(SSL_HMAC *ctx)
|
|
{
|
|
if (ctx != NULL) {
|
|
EVP_MAC_CTX_free(ctx->ctx);
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
ssl_hmac_old_free(ctx);
|
|
#endif
|
|
OPENSSL_free(ctx);
|
|
}
|
|
}
|
|
|
|
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
|
|
{
|
|
return ctx->ctx;
|
|
}
|
|
|
|
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
|
|
{
|
|
OSSL_PARAM params[2], *p = params;
|
|
|
|
if (ctx->ctx != NULL) {
|
|
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
|
|
*p = OSSL_PARAM_construct_end();
|
|
if (EVP_MAC_init(ctx->ctx, key, len, params))
|
|
return 1;
|
|
}
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (ctx->old_ctx != NULL)
|
|
return ssl_hmac_old_init(ctx, key, len, md);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
|
|
{
|
|
if (ctx->ctx != NULL)
|
|
return EVP_MAC_update(ctx->ctx, data, len);
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (ctx->old_ctx != NULL)
|
|
return ssl_hmac_old_update(ctx, data, len);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
|
|
size_t max_size)
|
|
{
|
|
if (ctx->ctx != NULL)
|
|
return EVP_MAC_final(ctx->ctx, md, len, max_size);
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (ctx->old_ctx != NULL)
|
|
return ssl_hmac_old_final(ctx, md, len);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
size_t ssl_hmac_size(const SSL_HMAC *ctx)
|
|
{
|
|
if (ctx->ctx != NULL)
|
|
return EVP_MAC_CTX_get_mac_size(ctx->ctx);
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (ctx->old_ctx != NULL)
|
|
return ssl_hmac_old_size(ctx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
|
|
{
|
|
char gname[OSSL_MAX_NAME_SIZE];
|
|
|
|
if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
|
|
return OBJ_txt2nid(gname);
|
|
|
|
return NID_undef;
|
|
}
|