mirror of
https://github.com/openssl/openssl.git
synced 2024-12-03 05:41:46 +08:00
0848e01b1d
To reduce duplicate code Signed-off-by: Paul Yang <paulyang.inf@gmail.com> Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/3656)
3200 lines
101 KiB
C
3200 lines
101 KiB
C
/*
|
|
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The ECDH and ECDSA speed test software is originally written by
|
|
* Sumit Gupta of Sun Microsystems Laboratories.
|
|
*
|
|
*/
|
|
|
|
#undef SECONDS
|
|
#define SECONDS 3
|
|
#define PRIME_SECONDS 10
|
|
#define RSA_SECONDS 10
|
|
#define DSA_SECONDS 10
|
|
#define ECDSA_SECONDS 10
|
|
#define ECDH_SECONDS 10
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "apps.h"
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/async.h>
|
|
#if !defined(OPENSSL_SYS_MSDOS)
|
|
# include OPENSSL_UNISTD
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#include <openssl/bn.h>
|
|
#ifndef OPENSSL_NO_DES
|
|
# include <openssl/des.h>
|
|
#endif
|
|
#include <openssl/aes.h>
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
# include <openssl/camellia.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD2
|
|
# include <openssl/md2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
# include <openssl/mdc2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
# include <openssl/md4.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
# include <openssl/md5.h>
|
|
#endif
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/sha.h>
|
|
#ifndef OPENSSL_NO_RMD160
|
|
# include <openssl/ripemd.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
# include <openssl/whrlpool.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
# include <openssl/rc4.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
# include <openssl/rc5.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
# include <openssl/rc2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
# include <openssl/idea.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
# include <openssl/seed.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
# include <openssl/blowfish.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
# include <openssl/cast.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RSA
|
|
# include <openssl/rsa.h>
|
|
# include "./testrsa.h"
|
|
#endif
|
|
#include <openssl/x509.h>
|
|
#ifndef OPENSSL_NO_DSA
|
|
# include <openssl/dsa.h>
|
|
# include "./testdsa.h"
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
# include <openssl/ec.h>
|
|
#endif
|
|
#include <openssl/modes.h>
|
|
|
|
#ifndef HAVE_FORK
|
|
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
|
|
# define HAVE_FORK 0
|
|
# else
|
|
# define HAVE_FORK 1
|
|
# endif
|
|
#endif
|
|
|
|
#if HAVE_FORK
|
|
# undef NO_FORK
|
|
#else
|
|
# define NO_FORK
|
|
#endif
|
|
|
|
#undef BUFSIZE
|
|
#define BUFSIZE (1024*16+1)
|
|
#define MAX_MISALIGNMENT 63
|
|
|
|
#define ALGOR_NUM 30
|
|
#define SIZE_NUM 6
|
|
#define PRIME_NUM 3
|
|
#define RSA_NUM 7
|
|
#define DSA_NUM 3
|
|
|
|
#define EC_NUM 17
|
|
#define MAX_ECDH_SIZE 256
|
|
#define MISALIGN 64
|
|
|
|
static volatile int run = 0;
|
|
|
|
static int mr = 0;
|
|
static int usertime = 1;
|
|
|
|
typedef struct loopargs_st {
|
|
ASYNC_JOB *inprogress_job;
|
|
ASYNC_WAIT_CTX *wait_ctx;
|
|
unsigned char *buf;
|
|
unsigned char *buf2;
|
|
unsigned char *buf_malloc;
|
|
unsigned char *buf2_malloc;
|
|
unsigned int siglen;
|
|
#ifndef OPENSSL_NO_RSA
|
|
RSA *rsa_key[RSA_NUM];
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
DSA *dsa_key[DSA_NUM];
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
EC_KEY *ecdsa[EC_NUM];
|
|
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
|
|
unsigned char *secret_a;
|
|
unsigned char *secret_b;
|
|
size_t outlen[EC_NUM];
|
|
#endif
|
|
EVP_CIPHER_CTX *ctx;
|
|
HMAC_CTX *hctx;
|
|
GCM128_CONTEXT *gcm_ctx;
|
|
} loopargs_t;
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
static int EVP_Digest_MD2_loop(void *args);
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MDC2
|
|
static int EVP_Digest_MDC2_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
static int EVP_Digest_MD4_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
static int MD5_loop(void *args);
|
|
static int HMAC_loop(void *args);
|
|
#endif
|
|
static int SHA1_loop(void *args);
|
|
static int SHA256_loop(void *args);
|
|
static int SHA512_loop(void *args);
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
static int WHIRLPOOL_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RMD160
|
|
static int EVP_Digest_RMD160_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
static int RC4_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
static int DES_ncbc_encrypt_loop(void *args);
|
|
static int DES_ede3_cbc_encrypt_loop(void *args);
|
|
#endif
|
|
static int AES_cbc_128_encrypt_loop(void *args);
|
|
static int AES_cbc_192_encrypt_loop(void *args);
|
|
static int AES_ige_128_encrypt_loop(void *args);
|
|
static int AES_cbc_256_encrypt_loop(void *args);
|
|
static int AES_ige_192_encrypt_loop(void *args);
|
|
static int AES_ige_256_encrypt_loop(void *args);
|
|
static int CRYPTO_gcm128_aad_loop(void *args);
|
|
static int EVP_Update_loop(void *args);
|
|
static int EVP_Digest_loop(void *args);
|
|
#ifndef OPENSSL_NO_RSA
|
|
static int RSA_sign_loop(void *args);
|
|
static int RSA_verify_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static int DSA_sign_loop(void *args);
|
|
static int DSA_verify_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
static int ECDSA_sign_loop(void *args);
|
|
static int ECDSA_verify_loop(void *args);
|
|
#endif
|
|
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
|
|
loopargs_t * loopargs);
|
|
|
|
static double Time_F(int s);
|
|
static void print_message(const char *s, long num, int length);
|
|
static void pkey_print_message(const char *str, const char *str2,
|
|
long num, int bits, int sec);
|
|
static void print_result(int alg, int run_no, int count, double time_used);
|
|
#ifndef NO_FORK
|
|
static int do_multi(int multi);
|
|
#endif
|
|
|
|
static const char *names[ALGOR_NUM] = {
|
|
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
|
|
"des cbc", "des ede3", "idea cbc", "seed cbc",
|
|
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
|
|
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
|
|
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
|
|
"evp", "sha256", "sha512", "whirlpool",
|
|
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
|
|
};
|
|
|
|
static double results[ALGOR_NUM][SIZE_NUM];
|
|
|
|
static const int lengths[SIZE_NUM] = {
|
|
16, 64, 256, 1024, 8 * 1024, 16 * 1024
|
|
};
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
static double rsa_results[RSA_NUM][2];
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static double dsa_results[DSA_NUM][2];
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
static double ecdsa_results[EC_NUM][2];
|
|
static double ecdh_results[EC_NUM][1];
|
|
#endif
|
|
|
|
#if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC)
|
|
static const char rnd_seed[] =
|
|
"string to make the random number generator think it has entropy";
|
|
#endif
|
|
|
|
#ifdef SIGALRM
|
|
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
|
|
# define SIGRETTYPE void
|
|
# else
|
|
# define SIGRETTYPE int
|
|
# endif
|
|
|
|
static SIGRETTYPE sig_done(int sig);
|
|
static SIGRETTYPE sig_done(int sig)
|
|
{
|
|
signal(SIGALRM, sig_done);
|
|
run = 0;
|
|
}
|
|
#endif
|
|
|
|
#define START 0
|
|
#define STOP 1
|
|
|
|
#if defined(_WIN32)
|
|
|
|
# if !defined(SIGALRM)
|
|
# define SIGALRM
|
|
# endif
|
|
static unsigned int lapse, schlock;
|
|
static void alarm_win32(unsigned int secs)
|
|
{
|
|
lapse = secs * 1000;
|
|
}
|
|
|
|
# define alarm alarm_win32
|
|
|
|
static DWORD WINAPI sleepy(VOID * arg)
|
|
{
|
|
schlock = 1;
|
|
Sleep(lapse);
|
|
run = 0;
|
|
return 0;
|
|
}
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret;
|
|
static HANDLE thr;
|
|
|
|
if (s == START) {
|
|
schlock = 0;
|
|
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
|
|
if (thr == NULL) {
|
|
DWORD err = GetLastError();
|
|
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
|
|
ExitProcess(err);
|
|
}
|
|
while (!schlock)
|
|
Sleep(0); /* scheduler spinlock */
|
|
ret = app_tminterval(s, usertime);
|
|
} else {
|
|
ret = app_tminterval(s, usertime);
|
|
if (run)
|
|
TerminateThread(thr, 0);
|
|
CloseHandle(thr);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret = app_tminterval(s, usertime);
|
|
if (s == STOP)
|
|
alarm(0);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
|
|
|
|
static int found(const char *name, const OPT_PAIR *pairs, int *result)
|
|
{
|
|
for (; pairs->name; pairs++)
|
|
if (strcmp(name, pairs->name) == 0) {
|
|
*result = pairs->retval;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef enum OPTION_choice {
|
|
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
|
|
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
|
|
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
|
|
} OPTION_CHOICE;
|
|
|
|
const OPTIONS speed_options[] = {
|
|
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
|
|
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
|
|
{"help", OPT_HELP, '-', "Display this summary"},
|
|
{"evp", OPT_EVP, 's', "Use specified EVP cipher"},
|
|
{"decrypt", OPT_DECRYPT, '-',
|
|
"Time decryption instead of encryption (only EVP)"},
|
|
{"mr", OPT_MR, '-', "Produce machine readable output"},
|
|
{"mb", OPT_MB, '-',
|
|
"Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"},
|
|
{"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
|
|
{"elapsed", OPT_ELAPSED, '-',
|
|
"Measure time in real time instead of CPU user time"},
|
|
#ifndef NO_FORK
|
|
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
|
|
#endif
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
{"async_jobs", OPT_ASYNCJOBS, 'p',
|
|
"Enable async mode and start pnum jobs"},
|
|
#endif
|
|
#ifndef OPENSSL_NO_ENGINE
|
|
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
|
|
#endif
|
|
{NULL},
|
|
};
|
|
|
|
#define D_MD2 0
|
|
#define D_MDC2 1
|
|
#define D_MD4 2
|
|
#define D_MD5 3
|
|
#define D_HMAC 4
|
|
#define D_SHA1 5
|
|
#define D_RMD160 6
|
|
#define D_RC4 7
|
|
#define D_CBC_DES 8
|
|
#define D_EDE3_DES 9
|
|
#define D_CBC_IDEA 10
|
|
#define D_CBC_SEED 11
|
|
#define D_CBC_RC2 12
|
|
#define D_CBC_RC5 13
|
|
#define D_CBC_BF 14
|
|
#define D_CBC_CAST 15
|
|
#define D_CBC_128_AES 16
|
|
#define D_CBC_192_AES 17
|
|
#define D_CBC_256_AES 18
|
|
#define D_CBC_128_CML 19
|
|
#define D_CBC_192_CML 20
|
|
#define D_CBC_256_CML 21
|
|
#define D_EVP 22
|
|
#define D_SHA256 23
|
|
#define D_SHA512 24
|
|
#define D_WHIRLPOOL 25
|
|
#define D_IGE_128_AES 26
|
|
#define D_IGE_192_AES 27
|
|
#define D_IGE_256_AES 28
|
|
#define D_GHASH 29
|
|
static OPT_PAIR doit_choices[] = {
|
|
#ifndef OPENSSL_NO_MD2
|
|
{"md2", D_MD2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
{"mdc2", D_MDC2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
{"md4", D_MD4},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
{"md5", D_MD5},
|
|
{"hmac", D_HMAC},
|
|
#endif
|
|
{"sha1", D_SHA1},
|
|
{"sha256", D_SHA256},
|
|
{"sha512", D_SHA512},
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
{"whirlpool", D_WHIRLPOOL},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RMD160
|
|
{"ripemd", D_RMD160},
|
|
{"rmd160", D_RMD160},
|
|
{"ripemd160", D_RMD160},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
{"rc4", D_RC4},
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
{"des-cbc", D_CBC_DES},
|
|
{"des-ede3", D_EDE3_DES},
|
|
#endif
|
|
{"aes-128-cbc", D_CBC_128_AES},
|
|
{"aes-192-cbc", D_CBC_192_AES},
|
|
{"aes-256-cbc", D_CBC_256_AES},
|
|
{"aes-128-ige", D_IGE_128_AES},
|
|
{"aes-192-ige", D_IGE_192_AES},
|
|
{"aes-256-ige", D_IGE_256_AES},
|
|
#ifndef OPENSSL_NO_RC2
|
|
{"rc2-cbc", D_CBC_RC2},
|
|
{"rc2", D_CBC_RC2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
{"rc5-cbc", D_CBC_RC5},
|
|
{"rc5", D_CBC_RC5},
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
{"idea-cbc", D_CBC_IDEA},
|
|
{"idea", D_CBC_IDEA},
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
{"seed-cbc", D_CBC_SEED},
|
|
{"seed", D_CBC_SEED},
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
{"bf-cbc", D_CBC_BF},
|
|
{"blowfish", D_CBC_BF},
|
|
{"bf", D_CBC_BF},
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
{"cast-cbc", D_CBC_CAST},
|
|
{"cast", D_CBC_CAST},
|
|
{"cast5", D_CBC_CAST},
|
|
#endif
|
|
{"ghash", D_GHASH},
|
|
{NULL}
|
|
};
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
# define R_DSA_512 0
|
|
# define R_DSA_1024 1
|
|
# define R_DSA_2048 2
|
|
static OPT_PAIR dsa_choices[] = {
|
|
{"dsa512", R_DSA_512},
|
|
{"dsa1024", R_DSA_1024},
|
|
{"dsa2048", R_DSA_2048},
|
|
{NULL},
|
|
};
|
|
#endif
|
|
|
|
#define R_RSA_512 0
|
|
#define R_RSA_1024 1
|
|
#define R_RSA_2048 2
|
|
#define R_RSA_3072 3
|
|
#define R_RSA_4096 4
|
|
#define R_RSA_7680 5
|
|
#define R_RSA_15360 6
|
|
static OPT_PAIR rsa_choices[] = {
|
|
{"rsa512", R_RSA_512},
|
|
{"rsa1024", R_RSA_1024},
|
|
{"rsa2048", R_RSA_2048},
|
|
{"rsa3072", R_RSA_3072},
|
|
{"rsa4096", R_RSA_4096},
|
|
{"rsa7680", R_RSA_7680},
|
|
{"rsa15360", R_RSA_15360},
|
|
{NULL}
|
|
};
|
|
|
|
#define R_EC_P160 0
|
|
#define R_EC_P192 1
|
|
#define R_EC_P224 2
|
|
#define R_EC_P256 3
|
|
#define R_EC_P384 4
|
|
#define R_EC_P521 5
|
|
#define R_EC_K163 6
|
|
#define R_EC_K233 7
|
|
#define R_EC_K283 8
|
|
#define R_EC_K409 9
|
|
#define R_EC_K571 10
|
|
#define R_EC_B163 11
|
|
#define R_EC_B233 12
|
|
#define R_EC_B283 13
|
|
#define R_EC_B409 14
|
|
#define R_EC_B571 15
|
|
#define R_EC_X25519 16
|
|
#ifndef OPENSSL_NO_EC
|
|
static OPT_PAIR ecdsa_choices[] = {
|
|
{"ecdsap160", R_EC_P160},
|
|
{"ecdsap192", R_EC_P192},
|
|
{"ecdsap224", R_EC_P224},
|
|
{"ecdsap256", R_EC_P256},
|
|
{"ecdsap384", R_EC_P384},
|
|
{"ecdsap521", R_EC_P521},
|
|
{"ecdsak163", R_EC_K163},
|
|
{"ecdsak233", R_EC_K233},
|
|
{"ecdsak283", R_EC_K283},
|
|
{"ecdsak409", R_EC_K409},
|
|
{"ecdsak571", R_EC_K571},
|
|
{"ecdsab163", R_EC_B163},
|
|
{"ecdsab233", R_EC_B233},
|
|
{"ecdsab283", R_EC_B283},
|
|
{"ecdsab409", R_EC_B409},
|
|
{"ecdsab571", R_EC_B571},
|
|
{NULL}
|
|
};
|
|
|
|
static OPT_PAIR ecdh_choices[] = {
|
|
{"ecdhp160", R_EC_P160},
|
|
{"ecdhp192", R_EC_P192},
|
|
{"ecdhp224", R_EC_P224},
|
|
{"ecdhp256", R_EC_P256},
|
|
{"ecdhp384", R_EC_P384},
|
|
{"ecdhp521", R_EC_P521},
|
|
{"ecdhk163", R_EC_K163},
|
|
{"ecdhk233", R_EC_K233},
|
|
{"ecdhk283", R_EC_K283},
|
|
{"ecdhk409", R_EC_K409},
|
|
{"ecdhk571", R_EC_K571},
|
|
{"ecdhb163", R_EC_B163},
|
|
{"ecdhb233", R_EC_B233},
|
|
{"ecdhb283", R_EC_B283},
|
|
{"ecdhb409", R_EC_B409},
|
|
{"ecdhb571", R_EC_B571},
|
|
{"ecdhx25519", R_EC_X25519},
|
|
{NULL}
|
|
};
|
|
#endif
|
|
|
|
#ifndef SIGALRM
|
|
# define COND(d) (count < (d))
|
|
# define COUNT(d) (d)
|
|
#else
|
|
# define COND(unused_cond) (run && count<0x7fffffff)
|
|
# define COUNT(d) (count)
|
|
#endif /* SIGALRM */
|
|
|
|
static int testnum;
|
|
|
|
/* Nb of iterations to do per algorithm and key-size */
|
|
static long c[ALGOR_NUM][SIZE_NUM];
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
static int EVP_Digest_MD2_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md2[MD2_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MD2][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MDC2
|
|
static int EVP_Digest_MDC2_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char mdc2[MDC2_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MDC2][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD4
|
|
static int EVP_Digest_MD4_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md4[MD4_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MD4][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD5
|
|
static int MD5_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md5[MD5_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_MD5][testnum]); count++)
|
|
MD5(buf, lengths[testnum], md5);
|
|
return count;
|
|
}
|
|
|
|
static int HMAC_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
HMAC_CTX *hctx = tempargs->hctx;
|
|
unsigned char hmac[MD5_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_HMAC][testnum]); count++) {
|
|
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
|
|
HMAC_Update(hctx, buf, lengths[testnum]);
|
|
HMAC_Final(hctx, hmac, NULL);
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
static int SHA1_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha[SHA_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA1][testnum]); count++)
|
|
SHA1(buf, lengths[testnum], sha);
|
|
return count;
|
|
}
|
|
|
|
static int SHA256_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha256[SHA256_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA256][testnum]); count++)
|
|
SHA256(buf, lengths[testnum], sha256);
|
|
return count;
|
|
}
|
|
|
|
static int SHA512_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha512[SHA512_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA512][testnum]); count++)
|
|
SHA512(buf, lengths[testnum], sha512);
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
static int WHIRLPOOL_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
|
|
WHIRLPOOL(buf, lengths[testnum], whirlpool);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RMD160
|
|
static int EVP_Digest_RMD160_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_RMD160][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
|
|
NULL, EVP_ripemd160(), NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RC4
|
|
static RC4_KEY rc4_ks;
|
|
static int RC4_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_RC4][testnum]); count++)
|
|
RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DES
|
|
static unsigned char DES_iv[8];
|
|
static DES_key_schedule sch;
|
|
static DES_key_schedule sch2;
|
|
static DES_key_schedule sch3;
|
|
static int DES_ncbc_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
|
|
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
|
|
&DES_iv, DES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int DES_ede3_cbc_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
|
|
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
|
|
&sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#define MAX_BLOCK_SIZE 128
|
|
|
|
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
|
|
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
|
|
static int AES_cbc_128_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_cbc_192_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_cbc_256_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_128_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_192_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_256_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_aad_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
|
|
int count;
|
|
for (count = 0; COND(c[D_GHASH][testnum]); count++)
|
|
CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
|
|
return count;
|
|
}
|
|
|
|
static long save_count = 0;
|
|
static int decrypt = 0;
|
|
static int EVP_Update_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count;
|
|
#ifndef SIGALRM
|
|
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
|
|
#endif
|
|
if (decrypt)
|
|
for (count = 0; COND(nb_iter); count++)
|
|
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
else
|
|
for (count = 0; COND(nb_iter); count++)
|
|
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
if (decrypt)
|
|
EVP_DecryptFinal_ex(ctx, buf, &outl);
|
|
else
|
|
EVP_EncryptFinal_ex(ctx, buf, &outl);
|
|
return count;
|
|
}
|
|
|
|
static const EVP_MD *evp_md = NULL;
|
|
static int EVP_Digest_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md[EVP_MAX_MD_SIZE];
|
|
int count;
|
|
#ifndef SIGALRM
|
|
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
|
|
#endif
|
|
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
|
|
|
|
static int RSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
unsigned int *rsa_num = &tempargs->siglen;
|
|
RSA **rsa_key = tempargs->rsa_key;
|
|
int ret, count;
|
|
for (count = 0; COND(rsa_c[testnum][0]); count++) {
|
|
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "RSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int RSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
unsigned int rsa_num = tempargs->siglen;
|
|
RSA **rsa_key = tempargs->rsa_key;
|
|
int ret, count;
|
|
for (count = 0; COND(rsa_c[testnum][1]); count++) {
|
|
ret =
|
|
RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
static long dsa_c[DSA_NUM][2];
|
|
static int DSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
DSA **dsa_key = tempargs->dsa_key;
|
|
unsigned int *siglen = &tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(dsa_c[testnum][0]); count++) {
|
|
ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "DSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int DSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
DSA **dsa_key = tempargs->dsa_key;
|
|
unsigned int siglen = tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(dsa_c[testnum][1]); count++) {
|
|
ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "DSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
static long ecdsa_c[EC_NUM][2];
|
|
static int ECDSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EC_KEY **ecdsa = tempargs->ecdsa;
|
|
unsigned char *ecdsasig = tempargs->buf2;
|
|
unsigned int *ecdsasiglen = &tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
|
|
ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "ECDSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int ECDSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EC_KEY **ecdsa = tempargs->ecdsa;
|
|
unsigned char *ecdsasig = tempargs->buf2;
|
|
unsigned int ecdsasiglen = tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
|
|
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
|
|
if (ret != 1) {
|
|
BIO_printf(bio_err, "ECDSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* ******************************************************************** */
|
|
static long ecdh_c[EC_NUM][1];
|
|
|
|
static int ECDH_EVP_derive_key_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
|
|
unsigned char *derived_secret = tempargs->secret_a;
|
|
int count;
|
|
size_t *outlen = &(tempargs->outlen[testnum]);
|
|
|
|
for (count = 0; COND(ecdh_c[testnum][0]); count++)
|
|
EVP_PKEY_derive(ctx, derived_secret, outlen);
|
|
|
|
return count;
|
|
}
|
|
|
|
#endif /* OPENSSL_NO_EC */
|
|
|
|
static int run_benchmark(int async_jobs,
|
|
int (*loop_function) (void *), loopargs_t * loopargs)
|
|
{
|
|
int job_op_count = 0;
|
|
int total_op_count = 0;
|
|
int num_inprogress = 0;
|
|
int error = 0, i = 0, ret = 0;
|
|
OSSL_ASYNC_FD job_fd = 0;
|
|
size_t num_job_fds = 0;
|
|
|
|
run = 1;
|
|
|
|
if (async_jobs == 0) {
|
|
return loop_function((void *)&loopargs);
|
|
}
|
|
|
|
for (i = 0; i < async_jobs && !error; i++) {
|
|
loopargs_t *looparg_item = loopargs + i;
|
|
|
|
/* Copy pointer content (looparg_t item address) into async context */
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
|
|
&job_op_count, loop_function,
|
|
(void *)&looparg_item, sizeof(looparg_item));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
++num_inprogress;
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
while (num_inprogress > 0) {
|
|
#if defined(OPENSSL_SYS_WINDOWS)
|
|
DWORD avail = 0;
|
|
#elif defined(OPENSSL_SYS_UNIX)
|
|
int select_result = 0;
|
|
OSSL_ASYNC_FD max_fd = 0;
|
|
fd_set waitfdset;
|
|
|
|
FD_ZERO(&waitfdset);
|
|
|
|
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
FD_SET(job_fd, &waitfdset);
|
|
if (job_fd > max_fd)
|
|
max_fd = job_fd;
|
|
}
|
|
|
|
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
|
|
BIO_printf(bio_err,
|
|
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
|
|
"Decrease the value of async_jobs\n",
|
|
max_fd, FD_SETSIZE);
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
|
|
if (select_result == -1 && errno == EINTR)
|
|
continue;
|
|
|
|
if (select_result == -1) {
|
|
BIO_printf(bio_err, "Failure in the select\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
if (select_result == 0)
|
|
continue;
|
|
#endif
|
|
|
|
for (i = 0; i < async_jobs; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
|
|
#if defined(OPENSSL_SYS_UNIX)
|
|
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
|
|
continue;
|
|
#elif defined(OPENSSL_SYS_WINDOWS)
|
|
if (num_job_fds == 1
|
|
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
|
|
&& avail > 0)
|
|
continue;
|
|
#endif
|
|
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
|
|
loopargs[i].wait_ctx, &job_op_count,
|
|
loop_function, (void *)(loopargs + i),
|
|
sizeof(loopargs_t));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error ? -1 : total_op_count;
|
|
}
|
|
|
|
int speed_main(int argc, char **argv)
|
|
{
|
|
ENGINE *e = NULL;
|
|
loopargs_t *loopargs = NULL;
|
|
int async_init = 0;
|
|
int loopargs_len = 0;
|
|
char *prog;
|
|
const char *engine_id = NULL;
|
|
const EVP_CIPHER *evp_cipher = NULL;
|
|
double d = 0.0;
|
|
OPTION_CHOICE o;
|
|
int multiblock = 0, pr_header = 0;
|
|
int doit[ALGOR_NUM] = { 0 };
|
|
int ret = 1, i, k, misalign = 0;
|
|
long count = 0;
|
|
#ifndef NO_FORK
|
|
int multi = 0;
|
|
#endif
|
|
unsigned int async_jobs = 0;
|
|
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
|
|
|| !defined(OPENSSL_NO_EC)
|
|
long rsa_count = 1;
|
|
#endif
|
|
|
|
/* What follows are the buffers and key material. */
|
|
#ifndef OPENSSL_NO_RC5
|
|
RC5_32_KEY rc5_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
RC2_KEY rc2_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
IDEA_KEY_SCHEDULE idea_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
SEED_KEY_SCHEDULE seed_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
BF_KEY bf_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
CAST_KEY cast_ks;
|
|
#endif
|
|
static const unsigned char key16[16] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
|
|
};
|
|
static const unsigned char key24[24] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
static const unsigned char key32[32] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
|
};
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
static const unsigned char ckey24[24] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
static const unsigned char ckey32[32] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
|
};
|
|
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
static DES_cblock key = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
|
|
};
|
|
static DES_cblock key2 = {
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
|
|
};
|
|
static DES_cblock key3 = {
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
#endif
|
|
#ifndef OPENSSL_NO_RSA
|
|
static const unsigned int rsa_bits[RSA_NUM] = {
|
|
512, 1024, 2048, 3072, 4096, 7680, 15360
|
|
};
|
|
static const unsigned char *rsa_data[RSA_NUM] = {
|
|
test512, test1024, test2048, test3072, test4096, test7680, test15360
|
|
};
|
|
static const int rsa_data_length[RSA_NUM] = {
|
|
sizeof(test512), sizeof(test1024),
|
|
sizeof(test2048), sizeof(test3072),
|
|
sizeof(test4096), sizeof(test7680),
|
|
sizeof(test15360)
|
|
};
|
|
int rsa_doit[RSA_NUM] = { 0 };
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
|
|
int dsa_doit[DSA_NUM] = { 0 };
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
/*
|
|
* We only test over the following curves as they are representative, To
|
|
* add tests over more curves, simply add the curve NID and curve name to
|
|
* the following arrays and increase the EC_NUM value accordingly.
|
|
*/
|
|
static const unsigned int test_curves[EC_NUM] = {
|
|
/* Prime Curves */
|
|
NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
|
|
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
|
|
/* Binary Curves */
|
|
NID_sect163k1, NID_sect233k1, NID_sect283k1,
|
|
NID_sect409k1, NID_sect571k1, NID_sect163r2,
|
|
NID_sect233r1, NID_sect283r1, NID_sect409r1,
|
|
NID_sect571r1,
|
|
/* Other */
|
|
NID_X25519
|
|
};
|
|
static const char *test_curves_names[EC_NUM] = {
|
|
/* Prime Curves */
|
|
"secp160r1", "nistp192", "nistp224",
|
|
"nistp256", "nistp384", "nistp521",
|
|
/* Binary Curves */
|
|
"nistk163", "nistk233", "nistk283",
|
|
"nistk409", "nistk571", "nistb163",
|
|
"nistb233", "nistb283", "nistb409",
|
|
"nistb571",
|
|
/* Other */
|
|
"X25519"
|
|
};
|
|
static const int test_curves_bits[EC_NUM] = {
|
|
160, 192, 224,
|
|
256, 384, 521,
|
|
163, 233, 283,
|
|
409, 571, 163,
|
|
233, 283, 409,
|
|
571, 253 /* X25519 */
|
|
};
|
|
|
|
int ecdsa_doit[EC_NUM] = { 0 };
|
|
int ecdh_doit[EC_NUM] = { 0 };
|
|
#endif /* ndef OPENSSL_NO_EC */
|
|
|
|
prog = opt_init(argc, argv, speed_options);
|
|
while ((o = opt_next()) != OPT_EOF) {
|
|
switch (o) {
|
|
case OPT_EOF:
|
|
case OPT_ERR:
|
|
opterr:
|
|
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
|
|
goto end;
|
|
case OPT_HELP:
|
|
opt_help(speed_options);
|
|
ret = 0;
|
|
goto end;
|
|
case OPT_ELAPSED:
|
|
usertime = 0;
|
|
break;
|
|
case OPT_EVP:
|
|
evp_md = NULL;
|
|
evp_cipher = EVP_get_cipherbyname(opt_arg());
|
|
if (evp_cipher == NULL)
|
|
evp_md = EVP_get_digestbyname(opt_arg());
|
|
if (evp_cipher == NULL && evp_md == NULL) {
|
|
BIO_printf(bio_err,
|
|
"%s: %s is an unknown cipher or digest\n",
|
|
prog, opt_arg());
|
|
goto end;
|
|
}
|
|
doit[D_EVP] = 1;
|
|
break;
|
|
case OPT_DECRYPT:
|
|
decrypt = 1;
|
|
break;
|
|
case OPT_ENGINE:
|
|
/*
|
|
* In a forked execution, an engine might need to be
|
|
* initialised by each child process, not by the parent.
|
|
* So store the name here and run setup_engine() later on.
|
|
*/
|
|
engine_id = opt_arg();
|
|
break;
|
|
case OPT_MULTI:
|
|
#ifndef NO_FORK
|
|
multi = atoi(opt_arg());
|
|
#endif
|
|
break;
|
|
case OPT_ASYNCJOBS:
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
async_jobs = atoi(opt_arg());
|
|
if (!ASYNC_is_capable()) {
|
|
BIO_printf(bio_err,
|
|
"%s: async_jobs specified but async not supported\n",
|
|
prog);
|
|
goto opterr;
|
|
}
|
|
if (async_jobs > 99999) {
|
|
BIO_printf(bio_err,
|
|
"%s: too many async_jobs\n",
|
|
prog);
|
|
goto opterr;
|
|
}
|
|
#endif
|
|
break;
|
|
case OPT_MISALIGN:
|
|
if (!opt_int(opt_arg(), &misalign))
|
|
goto end;
|
|
if (misalign > MISALIGN) {
|
|
BIO_printf(bio_err,
|
|
"%s: Maximum offset is %d\n", prog, MISALIGN);
|
|
goto opterr;
|
|
}
|
|
break;
|
|
case OPT_MR:
|
|
mr = 1;
|
|
break;
|
|
case OPT_MB:
|
|
multiblock = 1;
|
|
#ifdef OPENSSL_NO_MULTIBLOCK
|
|
BIO_printf(bio_err,
|
|
"%s: -mb specified but multi-block support is disabled\n",
|
|
prog);
|
|
goto end;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
argc = opt_num_rest();
|
|
argv = opt_rest();
|
|
|
|
/* Remaining arguments are algorithms. */
|
|
for (; *argv; argv++) {
|
|
if (found(*argv, doit_choices, &i)) {
|
|
doit[i] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_DES
|
|
if (strcmp(*argv, "des") == 0) {
|
|
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
if (strcmp(*argv, "sha") == 0) {
|
|
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_RSA
|
|
if (strcmp(*argv, "openssl") == 0)
|
|
continue;
|
|
if (strcmp(*argv, "rsa") == 0) {
|
|
rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
|
|
rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
|
|
rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
|
|
rsa_doit[R_RSA_15360] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, rsa_choices, &i)) {
|
|
rsa_doit[i] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
if (strcmp(*argv, "dsa") == 0) {
|
|
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
|
|
dsa_doit[R_DSA_2048] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, dsa_choices, &i)) {
|
|
dsa_doit[i] = 2;
|
|
continue;
|
|
}
|
|
#endif
|
|
if (strcmp(*argv, "aes") == 0) {
|
|
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
if (strcmp(*argv, "camellia") == 0) {
|
|
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
if (strcmp(*argv, "ecdsa") == 0) {
|
|
for (i = 0; i < EC_NUM; i++)
|
|
ecdsa_doit[i] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, ecdsa_choices, &i)) {
|
|
ecdsa_doit[i] = 2;
|
|
continue;
|
|
}
|
|
if (strcmp(*argv, "ecdh") == 0) {
|
|
for (i = 0; i < EC_NUM; i++)
|
|
ecdh_doit[i] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, ecdh_choices, &i)) {
|
|
ecdh_doit[i] = 2;
|
|
continue;
|
|
}
|
|
#endif
|
|
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize the job pool if async mode is enabled */
|
|
if (async_jobs > 0) {
|
|
async_init = ASYNC_init_thread(async_jobs, async_jobs);
|
|
if (!async_init) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
|
|
loopargs =
|
|
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
|
|
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (async_jobs > 0) {
|
|
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
|
|
if (loopargs[i].wait_ctx == NULL) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
loopargs[i].buf_malloc =
|
|
app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
|
|
loopargs[i].buf2_malloc =
|
|
app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
|
|
/* Align the start of buffers on a 64 byte boundary */
|
|
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
|
|
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
|
|
#ifndef OPENSSL_NO_EC
|
|
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
|
|
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
|
|
#endif
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
if (multi && do_multi(multi))
|
|
goto show_res;
|
|
#endif
|
|
|
|
/* Initialize the engine after the fork */
|
|
e = setup_engine(engine_id, 0);
|
|
|
|
/* No parameters; turn on everything. */
|
|
if ((argc == 0) && !doit[D_EVP]) {
|
|
for (i = 0; i < ALGOR_NUM; i++)
|
|
if (i != D_EVP)
|
|
doit[i] = 1;
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (i = 0; i < RSA_NUM; i++)
|
|
rsa_doit[i] = 1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (i = 0; i < DSA_NUM; i++)
|
|
dsa_doit[i] = 1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
for (i = 0; i < EC_NUM; i++)
|
|
ecdsa_doit[i] = 1;
|
|
for (i = 0; i < EC_NUM; i++)
|
|
ecdh_doit[i] = 1;
|
|
#endif
|
|
}
|
|
for (i = 0; i < ALGOR_NUM; i++)
|
|
if (doit[i])
|
|
pr_header++;
|
|
|
|
if (usertime == 0 && !mr)
|
|
BIO_printf(bio_err,
|
|
"You have chosen to measure elapsed time "
|
|
"instead of user CPU time.\n");
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
const unsigned char *p;
|
|
|
|
p = rsa_data[k];
|
|
loopargs[i].rsa_key[k] =
|
|
d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
|
|
if (loopargs[i].rsa_key[k] == NULL) {
|
|
BIO_printf(bio_err,
|
|
"internal error loading RSA key number %d\n", k);
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].dsa_key[0] = get_dsa(512);
|
|
loopargs[i].dsa_key[1] = get_dsa(1024);
|
|
loopargs[i].dsa_key[2] = get_dsa(2048);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
DES_set_key_unchecked(&key, &sch);
|
|
DES_set_key_unchecked(&key2, &sch2);
|
|
DES_set_key_unchecked(&key3, &sch3);
|
|
#endif
|
|
AES_set_encrypt_key(key16, 128, &aes_ks1);
|
|
AES_set_encrypt_key(key24, 192, &aes_ks2);
|
|
AES_set_encrypt_key(key32, 256, &aes_ks3);
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
Camellia_set_key(key16, 128, &camellia_ks1);
|
|
Camellia_set_key(ckey24, 192, &camellia_ks2);
|
|
Camellia_set_key(ckey32, 256, &camellia_ks3);
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
IDEA_set_encrypt_key(key16, &idea_ks);
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
SEED_set_key(key16, &seed_ks);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
RC4_set_key(&rc4_ks, 16, key16);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
RC2_set_key(&rc2_ks, 16, key16, 128);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
RC5_32_set_key(&rc5_ks, 16, key16, 12);
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
BF_set_key(&bf_ks, 16, key16);
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
CAST_set_key(&cast_ks, 16, key16);
|
|
#endif
|
|
#ifndef SIGALRM
|
|
# ifndef OPENSSL_NO_DES
|
|
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
|
|
count = 10;
|
|
do {
|
|
long it;
|
|
count *= 2;
|
|
Time_F(START);
|
|
for (it = count; it; it--)
|
|
DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
|
|
(DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
} while (d < 3);
|
|
save_count = count;
|
|
c[D_MD2][0] = count / 10;
|
|
c[D_MDC2][0] = count / 10;
|
|
c[D_MD4][0] = count;
|
|
c[D_MD5][0] = count;
|
|
c[D_HMAC][0] = count;
|
|
c[D_SHA1][0] = count;
|
|
c[D_RMD160][0] = count;
|
|
c[D_RC4][0] = count * 5;
|
|
c[D_CBC_DES][0] = count;
|
|
c[D_EDE3_DES][0] = count / 3;
|
|
c[D_CBC_IDEA][0] = count;
|
|
c[D_CBC_SEED][0] = count;
|
|
c[D_CBC_RC2][0] = count;
|
|
c[D_CBC_RC5][0] = count;
|
|
c[D_CBC_BF][0] = count;
|
|
c[D_CBC_CAST][0] = count;
|
|
c[D_CBC_128_AES][0] = count;
|
|
c[D_CBC_192_AES][0] = count;
|
|
c[D_CBC_256_AES][0] = count;
|
|
c[D_CBC_128_CML][0] = count;
|
|
c[D_CBC_192_CML][0] = count;
|
|
c[D_CBC_256_CML][0] = count;
|
|
c[D_SHA256][0] = count;
|
|
c[D_SHA512][0] = count;
|
|
c[D_WHIRLPOOL][0] = count;
|
|
c[D_IGE_128_AES][0] = count;
|
|
c[D_IGE_192_AES][0] = count;
|
|
c[D_IGE_256_AES][0] = count;
|
|
c[D_GHASH][0] = count;
|
|
|
|
for (i = 1; i < SIZE_NUM; i++) {
|
|
long l0, l1;
|
|
|
|
l0 = (long)lengths[0];
|
|
l1 = (long)lengths[i];
|
|
|
|
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
|
|
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
|
|
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
|
|
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
|
|
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
|
|
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
|
|
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
|
|
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
|
|
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
|
|
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
|
|
c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
|
|
|
|
l0 = (long)lengths[i - 1];
|
|
|
|
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
|
|
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
|
|
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
|
|
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
|
|
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
|
|
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
|
|
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
|
|
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
|
|
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
|
|
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
|
|
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
|
|
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
|
|
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
|
|
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
|
|
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
rsa_c[R_RSA_512][0] = count / 2000;
|
|
rsa_c[R_RSA_512][1] = count / 400;
|
|
for (i = 1; i < RSA_NUM; i++) {
|
|
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
|
|
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
|
|
if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
|
|
rsa_doit[i] = 0;
|
|
else {
|
|
if (rsa_c[i][0] == 0) {
|
|
rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
|
|
rsa_c[i][1] = 20;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
dsa_c[R_DSA_512][0] = count / 1000;
|
|
dsa_c[R_DSA_512][1] = count / 1000 / 2;
|
|
for (i = 1; i < DSA_NUM; i++) {
|
|
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
|
|
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
|
|
if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
|
|
dsa_doit[i] = 0;
|
|
else {
|
|
if (dsa_c[i][0] == 0) {
|
|
dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
|
|
dsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
ecdsa_c[R_EC_P160][0] = count / 1000;
|
|
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
|
|
for (i = R_EC_P192; i <= R_EC_P521; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdsa_c[R_EC_K163][0] = count / 1000;
|
|
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
|
|
for (i = R_EC_K233; i <= R_EC_K571; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdsa_c[R_EC_B163][0] = count / 1000;
|
|
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
|
|
for (i = R_EC_B233; i <= R_EC_B571; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ecdh_c[R_EC_P160][0] = count / 1000;
|
|
for (i = R_EC_P192; i <= R_EC_P521; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdh_c[R_EC_K163][0] = count / 1000;
|
|
for (i = R_EC_K233; i <= R_EC_K571; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdh_c[R_EC_B163][0] = count / 1000;
|
|
for (i = R_EC_B233; i <= R_EC_B571; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# else
|
|
/* not worth fixing */
|
|
# error "You cannot disable DES on systems without SIGALRM."
|
|
# endif /* OPENSSL_NO_DES */
|
|
#else
|
|
# ifndef _WIN32
|
|
signal(SIGALRM, sig_done);
|
|
# endif
|
|
#endif /* SIGALRM */
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
if (doit[D_MD2]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
if (doit[D_MDC2]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MDC2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD4
|
|
if (doit[D_MD4]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD4, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD5
|
|
if (doit[D_MD5]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, MD5_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD5, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_HMAC]) {
|
|
static const char hmac_key[] = "This is a key...";
|
|
int len = strlen(hmac_key);
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].hctx = HMAC_CTX_new();
|
|
if (loopargs[i].hctx == NULL) {
|
|
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
|
|
exit(1);
|
|
}
|
|
|
|
HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_HMAC, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
HMAC_CTX_free(loopargs[i].hctx);
|
|
}
|
|
}
|
|
#endif
|
|
if (doit[D_SHA1]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA1, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_SHA256]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_SHA256], c[D_SHA256][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA256, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_SHA512]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_SHA512], c[D_SHA512][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA512, testnum, count, d);
|
|
}
|
|
}
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
if (doit[D_WHIRLPOOL]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_WHIRLPOOL, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RMD160
|
|
if (doit[D_RMD160]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_RMD160], c[D_RMD160][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RMD160, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
if (doit[D_RC4]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RC4_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RC4, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
if (doit[D_CBC_DES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_DES, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_EDE3_DES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_EDE3_DES, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (doit[D_CBC_128_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_128_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_192_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_192_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_256_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_256_AES, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_IGE_128_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_128_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_IGE_192_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_192_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_IGE_256_AES]) {
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_256_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_GHASH]) {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].gcm_ctx =
|
|
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
|
|
CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
|
|
(unsigned char *)"0123456789ab", 12);
|
|
}
|
|
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
print_message(names[D_GHASH], c[D_GHASH][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_GHASH, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
|
|
}
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
if (doit[D_CBC_128_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_128_CML]);
|
|
doit[D_CBC_128_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks1,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_128_CML, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_192_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_192_CML]);
|
|
doit[D_CBC_192_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
|
|
lengths[testnum]);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks2,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_192_CML, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_256_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_256_CML]);
|
|
doit[D_CBC_256_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks3,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_256_CML, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
if (doit[D_CBC_IDEA]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_IDEA]);
|
|
doit[D_CBC_IDEA] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
|
|
IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &idea_ks,
|
|
iv, IDEA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_IDEA, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
if (doit[D_CBC_SEED]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_SEED]);
|
|
doit[D_CBC_SEED] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
|
|
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &seed_ks, iv, 1);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_SEED, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
if (doit[D_CBC_RC2]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_RC2]);
|
|
doit[D_CBC_RC2] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
|
|
lengths[testnum]);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
|
|
RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &rc2_ks,
|
|
iv, RC2_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_RC2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
if (doit[D_CBC_RC5]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_RC5]);
|
|
doit[D_CBC_RC5] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
|
|
lengths[testnum]);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
|
|
RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &rc5_ks,
|
|
iv, RC5_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_RC5, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
if (doit[D_CBC_BF]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_BF]);
|
|
doit[D_CBC_BF] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
|
|
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &bf_ks,
|
|
iv, BF_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_BF, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
if (doit[D_CBC_CAST]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_CAST]);
|
|
doit[D_CBC_CAST] = 0;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
|
|
lengths[testnum]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
|
|
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &cast_ks,
|
|
iv, CAST_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_CAST, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (doit[D_EVP]) {
|
|
if (multiblock && evp_cipher) {
|
|
if (!
|
|
(EVP_CIPHER_flags(evp_cipher) &
|
|
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
|
BIO_printf(bio_err, "%s is not multi-block capable\n",
|
|
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
|
|
goto end;
|
|
}
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
multiblock_speed(evp_cipher);
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
if (evp_cipher) {
|
|
|
|
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
|
|
/*
|
|
* -O3 -fschedule-insns messes up an optimization here!
|
|
* names[D_EVP] somehow becomes NULL
|
|
*/
|
|
print_message(names[D_EVP], save_count, lengths[testnum]);
|
|
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
loopargs[k].ctx = EVP_CIPHER_CTX_new();
|
|
if (decrypt)
|
|
EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL,
|
|
key16, iv);
|
|
else
|
|
EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL,
|
|
key16, iv);
|
|
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
|
|
}
|
|
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
EVP_CIPHER_CTX_free(loopargs[k].ctx);
|
|
}
|
|
}
|
|
if (evp_md) {
|
|
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
|
|
print_message(names[D_EVP], save_count, lengths[testnum]);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
}
|
|
print_result(D_EVP, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
RAND_bytes(loopargs[i].buf, 36);
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (testnum = 0; testnum < RSA_NUM; testnum++) {
|
|
int st = 0;
|
|
if (!rsa_doit[testnum])
|
|
continue;
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
|
|
&loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"RSA sign failure. No RSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("private", "rsa",
|
|
rsa_c[testnum][0], rsa_bits[testnum],
|
|
RSA_SECONDS);
|
|
/* RSA_blinding_on(rsa_key[testnum],NULL); */
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R1:%ld:%d:%.2f\n"
|
|
: "%ld %d bit private RSA's in %.2fs\n",
|
|
count, rsa_bits[testnum], d);
|
|
rsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
|
|
loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
|
|
if (st <= 0)
|
|
break;
|
|
}
|
|
if (st <= 0) {
|
|
BIO_printf(bio_err,
|
|
"RSA verify failure. No RSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("public", "rsa",
|
|
rsa_c[testnum][1], rsa_bits[testnum],
|
|
RSA_SECONDS);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R2:%ld:%d:%.2f\n"
|
|
: "%ld %d bit public RSA's in %.2fs\n",
|
|
count, rsa_bits[testnum], d);
|
|
rsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < RSA_NUM; testnum++)
|
|
rsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_RSA */
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
RAND_bytes(loopargs[i].buf, 36);
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
if (RAND_status() != 1) {
|
|
RAND_seed(rnd_seed, sizeof rnd_seed);
|
|
}
|
|
for (testnum = 0; testnum < DSA_NUM; testnum++) {
|
|
int st = 0;
|
|
if (!dsa_doit[testnum])
|
|
continue;
|
|
|
|
/* DSA_generate_key(dsa_key[testnum]); */
|
|
/* DSA_sign_setup(dsa_key[testnum],NULL); */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
&loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"DSA sign failure. No DSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "dsa",
|
|
dsa_c[testnum][0], dsa_bits[testnum],
|
|
DSA_SECONDS);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R3:%ld:%d:%.2f\n"
|
|
: "%ld %d bit DSA signs in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
|
|
if (st <= 0)
|
|
break;
|
|
}
|
|
if (st <= 0) {
|
|
BIO_printf(bio_err,
|
|
"DSA verify failure. No DSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
dsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "dsa",
|
|
dsa_c[testnum][1], dsa_bits[testnum],
|
|
DSA_SECONDS);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R4:%ld:%d:%.2f\n"
|
|
: "%ld %d bit DSA verify in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < DSA_NUM; testnum++)
|
|
dsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
if (RAND_status() != 1) {
|
|
RAND_seed(rnd_seed, sizeof rnd_seed);
|
|
}
|
|
for (testnum = 0; testnum < EC_NUM; testnum++) {
|
|
int st = 1;
|
|
|
|
if (!ecdsa_doit[testnum])
|
|
continue; /* Ignore Curve */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].ecdsa[testnum] =
|
|
EC_KEY_new_by_curve_name(test_curves[testnum]);
|
|
if (loopargs[i].ecdsa[testnum] == NULL) {
|
|
st = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err, "ECDSA failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
|
|
/* Perform ECDSA signature test */
|
|
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
|
|
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
&loopargs[i].siglen,
|
|
loopargs[i].ecdsa[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA sign failure. No ECDSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "ecdsa",
|
|
ecdsa_c[testnum][0],
|
|
test_curves_bits[testnum], ECDSA_SECONDS);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
|
|
BIO_printf(bio_err,
|
|
mr ? "+R5:%ld:%d:%.2f\n" :
|
|
"%ld %d bit ECDSA signs in %.2fs \n",
|
|
count, test_curves_bits[testnum], d);
|
|
ecdsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
/* Perform ECDSA verification test */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
loopargs[i].siglen,
|
|
loopargs[i].ecdsa[testnum]);
|
|
if (st != 1)
|
|
break;
|
|
}
|
|
if (st != 1) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA verify failure. No ECDSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
ecdsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "ecdsa",
|
|
ecdsa_c[testnum][1],
|
|
test_curves_bits[testnum], ECDSA_SECONDS);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R6:%ld:%d:%.2f\n"
|
|
: "%ld %d bit ECDSA verify in %.2fs\n",
|
|
count, test_curves_bits[testnum], d);
|
|
ecdsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < EC_NUM; testnum++)
|
|
ecdsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RAND_status() != 1) {
|
|
RAND_seed(rnd_seed, sizeof rnd_seed);
|
|
}
|
|
for (testnum = 0; testnum < EC_NUM; testnum++) {
|
|
int ecdh_checks = 1;
|
|
|
|
if (!ecdh_doit[testnum])
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY_CTX *kctx = NULL;
|
|
EVP_PKEY_CTX *test_ctx = NULL;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
EVP_PKEY *key_A = NULL;
|
|
EVP_PKEY *key_B = NULL;
|
|
size_t outlen;
|
|
size_t test_outlen;
|
|
|
|
/* Ensure that the error queue is empty */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
ERR_print_errors(bio_err);
|
|
}
|
|
|
|
/* Let's try to create a ctx directly from the NID: this works for
|
|
* curves like Curve25519 that are not implemented through the low
|
|
* level EC interface.
|
|
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
|
|
* then we set the curve by NID before deriving the actual keygen
|
|
* ctx for that specific curve. */
|
|
kctx = EVP_PKEY_CTX_new_id(test_curves[testnum], NULL); /* keygen ctx from NID */
|
|
if (!kctx) {
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
EVP_PKEY *params = NULL;
|
|
|
|
/* If we reach this code EVP_PKEY_CTX_new_id() failed and a
|
|
* "int_ctx_new:unsupported algorithm" error was added to the
|
|
* error queue.
|
|
* We remove it from the error queue as we are handling it. */
|
|
unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
|
|
if (error == ERR_peek_last_error() && /* oldest and latest errors match */
|
|
/* check that the error origin matches */
|
|
ERR_GET_LIB(error) == ERR_LIB_EVP &&
|
|
ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
|
|
ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
|
|
ERR_get_error(); /* pop error from queue */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"Unhandled error in the error queue during ECDH init.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
if ( /* Create the context for parameter generation */
|
|
!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
|
|
/* Initialise the parameter generation */
|
|
!EVP_PKEY_paramgen_init(pctx) ||
|
|
/* Set the curve by NID */
|
|
!EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
|
test_curves
|
|
[testnum]) ||
|
|
/* Create the parameter object params */
|
|
!EVP_PKEY_paramgen(pctx, ¶ms)) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH EC params init failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
/* Create the context for the key generation */
|
|
kctx = EVP_PKEY_CTX_new(params, NULL);
|
|
|
|
EVP_PKEY_free(params);
|
|
params = NULL;
|
|
EVP_PKEY_CTX_free(pctx);
|
|
pctx = NULL;
|
|
}
|
|
if (!kctx || /* keygen ctx is not null */
|
|
!EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH keygen failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
|
|
!EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
|
|
!(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
|
|
!EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
|
|
!EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
|
|
!EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
|
|
outlen == 0 || /* ensure outlen is a valid size */
|
|
outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH key generation failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
/* Here we perform a test run, comparing the output of a*B and b*A;
|
|
* we try this here and assume that further EVP_PKEY_derive calls
|
|
* never fail, so we can skip checks in the actually benchmarked
|
|
* code, for maximum performance. */
|
|
if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
|
|
!EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
|
|
!EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
|
|
!EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
|
|
!EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
|
|
!EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
|
|
test_outlen != outlen /* compare output length */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computation failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
|
|
if (CRYPTO_memcmp(loopargs[i].secret_a,
|
|
loopargs[i].secret_b, outlen)) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computations don't match.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
loopargs[i].ecdh_ctx[testnum] = ctx;
|
|
loopargs[i].outlen[testnum] = outlen;
|
|
|
|
EVP_PKEY_CTX_free(kctx);
|
|
kctx = NULL;
|
|
EVP_PKEY_CTX_free(test_ctx);
|
|
test_ctx = NULL;
|
|
}
|
|
if (ecdh_checks != 0) {
|
|
pkey_print_message("", "ecdh",
|
|
ecdh_c[testnum][0],
|
|
test_curves_bits[testnum], ECDH_SECONDS);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R7:%ld:%d:%.2f\n" :
|
|
"%ld %d-bit ECDH ops in %.2fs\n", count,
|
|
test_curves_bits[testnum], d);
|
|
ecdh_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < EC_NUM; testnum++)
|
|
ecdh_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_EC */
|
|
#ifndef NO_FORK
|
|
show_res:
|
|
#endif
|
|
if (!mr) {
|
|
printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
|
|
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
|
|
printf("options:");
|
|
printf("%s ", BN_options());
|
|
#ifndef OPENSSL_NO_MD2
|
|
printf("%s ", MD2_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
printf("%s ", RC4_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
printf("%s ", DES_options());
|
|
#endif
|
|
printf("%s ", AES_options());
|
|
#ifndef OPENSSL_NO_IDEA
|
|
printf("%s ", IDEA_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
printf("%s ", BF_options());
|
|
#endif
|
|
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
|
|
}
|
|
|
|
if (pr_header) {
|
|
if (mr)
|
|
printf("+H");
|
|
else {
|
|
printf
|
|
("The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
printf("type ");
|
|
}
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++)
|
|
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
|
|
printf("\n");
|
|
}
|
|
|
|
for (k = 0; k < ALGOR_NUM; k++) {
|
|
if (!doit[k])
|
|
continue;
|
|
if (mr)
|
|
printf("+F:%d:%s", k, names[k]);
|
|
else
|
|
printf("%-13s", names[k]);
|
|
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
|
|
if (results[k][testnum] > 10000 && !mr)
|
|
printf(" %11.2fk", results[k][testnum] / 1e3);
|
|
else
|
|
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#ifndef OPENSSL_NO_RSA
|
|
testnum = 1;
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
if (!rsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%18ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F2:%u:%u:%f:%f\n",
|
|
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
|
|
else
|
|
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
|
rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
|
|
rsa_results[k][0], rsa_results[k][1]);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
testnum = 1;
|
|
for (k = 0; k < DSA_NUM; k++) {
|
|
if (!dsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%18ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F3:%u:%u:%f:%f\n",
|
|
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
|
|
else
|
|
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
|
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
|
|
dsa_results[k][0], dsa_results[k][1]);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
testnum = 1;
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
if (!ecdsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F4:%u:%u:%f:%f\n",
|
|
k, test_curves_bits[k],
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
else
|
|
printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
|
test_curves_bits[k],
|
|
test_curves_names[k],
|
|
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
}
|
|
|
|
testnum = 1;
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
if (!ecdh_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30sop op/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F5:%u:%u:%f:%f\n",
|
|
k, test_curves_bits[k],
|
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
|
|
|
|
else
|
|
printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
|
|
test_curves_bits[k],
|
|
test_curves_names[k],
|
|
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
|
|
}
|
|
#endif
|
|
|
|
ret = 0;
|
|
|
|
end:
|
|
ERR_print_errors(bio_err);
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
OPENSSL_free(loopargs[i].buf_malloc);
|
|
OPENSSL_free(loopargs[i].buf2_malloc);
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (k = 0; k < RSA_NUM; k++)
|
|
RSA_free(loopargs[i].rsa_key[k]);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (k = 0; k < DSA_NUM; k++)
|
|
DSA_free(loopargs[i].dsa_key[k]);
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
EC_KEY_free(loopargs[i].ecdsa[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
|
|
}
|
|
OPENSSL_free(loopargs[i].secret_a);
|
|
OPENSSL_free(loopargs[i].secret_b);
|
|
#endif
|
|
}
|
|
|
|
if (async_jobs > 0) {
|
|
for (i = 0; i < loopargs_len; i++)
|
|
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
|
|
}
|
|
|
|
if (async_init) {
|
|
ASYNC_cleanup_thread();
|
|
}
|
|
OPENSSL_free(loopargs);
|
|
release_engine(e);
|
|
return (ret);
|
|
}
|
|
|
|
static void print_message(const char *s, long num, int length)
|
|
{
|
|
#ifdef SIGALRM
|
|
BIO_printf(bio_err,
|
|
mr ? "+DT:%s:%d:%d\n"
|
|
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
|
|
(void)BIO_flush(bio_err);
|
|
alarm(SECONDS);
|
|
#else
|
|
BIO_printf(bio_err,
|
|
mr ? "+DN:%s:%ld:%d\n"
|
|
: "Doing %s %ld times on %d size blocks: ", s, num, length);
|
|
(void)BIO_flush(bio_err);
|
|
#endif
|
|
}
|
|
|
|
static void pkey_print_message(const char *str, const char *str2, long num,
|
|
int bits, int tm)
|
|
{
|
|
#ifdef SIGALRM
|
|
BIO_printf(bio_err,
|
|
mr ? "+DTP:%d:%s:%s:%d\n"
|
|
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
|
|
(void)BIO_flush(bio_err);
|
|
alarm(tm);
|
|
#else
|
|
BIO_printf(bio_err,
|
|
mr ? "+DNP:%ld:%d:%s:%s\n"
|
|
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
|
|
(void)BIO_flush(bio_err);
|
|
#endif
|
|
}
|
|
|
|
static void print_result(int alg, int run_no, int count, double time_used)
|
|
{
|
|
if (count == -1) {
|
|
BIO_puts(bio_err, "EVP error!\n");
|
|
exit(1);
|
|
}
|
|
BIO_printf(bio_err,
|
|
mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s's in %.2fs\n", count, names[alg], time_used);
|
|
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
static char *sstrsep(char **string, const char *delim)
|
|
{
|
|
char isdelim[256];
|
|
char *token = *string;
|
|
|
|
if (**string == 0)
|
|
return NULL;
|
|
|
|
memset(isdelim, 0, sizeof isdelim);
|
|
isdelim[0] = 1;
|
|
|
|
while (*delim) {
|
|
isdelim[(unsigned char)(*delim)] = 1;
|
|
delim++;
|
|
}
|
|
|
|
while (!isdelim[(unsigned char)(**string)]) {
|
|
(*string)++;
|
|
}
|
|
|
|
if (**string) {
|
|
**string = 0;
|
|
(*string)++;
|
|
}
|
|
|
|
return token;
|
|
}
|
|
|
|
static int do_multi(int multi)
|
|
{
|
|
int n;
|
|
int fd[2];
|
|
int *fds;
|
|
static char sep[] = ":";
|
|
|
|
fds = malloc(sizeof(*fds) * multi);
|
|
for (n = 0; n < multi; ++n) {
|
|
if (pipe(fd) == -1) {
|
|
BIO_printf(bio_err, "pipe failure\n");
|
|
exit(1);
|
|
}
|
|
fflush(stdout);
|
|
(void)BIO_flush(bio_err);
|
|
if (fork()) {
|
|
close(fd[1]);
|
|
fds[n] = fd[0];
|
|
} else {
|
|
close(fd[0]);
|
|
close(1);
|
|
if (dup(fd[1]) == -1) {
|
|
BIO_printf(bio_err, "dup failed\n");
|
|
exit(1);
|
|
}
|
|
close(fd[1]);
|
|
mr = 1;
|
|
usertime = 0;
|
|
free(fds);
|
|
return 0;
|
|
}
|
|
printf("Forked child %d\n", n);
|
|
}
|
|
|
|
/* for now, assume the pipe is long enough to take all the output */
|
|
for (n = 0; n < multi; ++n) {
|
|
FILE *f;
|
|
char buf[1024];
|
|
char *p;
|
|
|
|
f = fdopen(fds[n], "r");
|
|
while (fgets(buf, sizeof buf, f)) {
|
|
p = strchr(buf, '\n');
|
|
if (p)
|
|
*p = '\0';
|
|
if (buf[0] != '+') {
|
|
BIO_printf(bio_err,
|
|
"Don't understand line '%s' from child %d\n", buf,
|
|
n);
|
|
continue;
|
|
}
|
|
printf("Got: %s from %d\n", buf, n);
|
|
if (strncmp(buf, "+F:", 3) == 0) {
|
|
int alg;
|
|
int j;
|
|
|
|
p = buf + 3;
|
|
alg = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
for (j = 0; j < SIZE_NUM; ++j)
|
|
results[alg][j] += atof(sstrsep(&p, sep));
|
|
} else if (strncmp(buf, "+F2:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][1] += d;
|
|
}
|
|
# ifndef OPENSSL_NO_DSA
|
|
else if (strncmp(buf, "+F3:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][1] += d;
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
else if (strncmp(buf, "+F4:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][1] += d;
|
|
} else if (strncmp(buf, "+F5:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdh_results[k][0] += d;
|
|
}
|
|
# endif
|
|
|
|
else if (strncmp(buf, "+H:", 3) == 0) {
|
|
;
|
|
} else
|
|
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
|
|
n);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
free(fds);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
|
|
{
|
|
static int mblengths[] =
|
|
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
|
|
int j, count, num = OSSL_NELEM(mblengths);
|
|
const char *alg_name;
|
|
unsigned char *inp, *out, no_key[32], no_iv[16];
|
|
EVP_CIPHER_CTX *ctx;
|
|
double d = 0.0;
|
|
|
|
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
|
|
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
|
|
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
|
|
|
|
for (j = 0; j < num; j++) {
|
|
print_message(alg_name, 0, mblengths[j]);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
|
|
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
|
|
size_t len = mblengths[j];
|
|
int packlen;
|
|
|
|
memset(aad, 0, 8); /* avoid uninitialized values */
|
|
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
|
|
aad[9] = 3; /* version */
|
|
aad[10] = 2;
|
|
aad[11] = 0; /* length */
|
|
aad[12] = 0;
|
|
mb_param.out = NULL;
|
|
mb_param.inp = aad;
|
|
mb_param.len = len;
|
|
mb_param.interleave = 8;
|
|
|
|
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
|
|
sizeof(mb_param), &mb_param);
|
|
|
|
if (packlen > 0) {
|
|
mb_param.out = out;
|
|
mb_param.inp = inp;
|
|
mb_param.len = len;
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
|
|
sizeof(mb_param), &mb_param);
|
|
} else {
|
|
int pad;
|
|
|
|
RAND_bytes(out, 16);
|
|
len += 16;
|
|
aad[11] = len >> 8;
|
|
aad[12] = len;
|
|
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN, aad);
|
|
EVP_Cipher(ctx, out, inp, len + pad);
|
|
}
|
|
}
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s's in %.2fs\n", count, "evp", d);
|
|
results[D_EVP][j] = ((double)count) / d * mblengths[j];
|
|
}
|
|
|
|
if (mr) {
|
|
fprintf(stdout, "+H");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%d", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%.2f", results[D_EVP][j]);
|
|
fprintf(stdout, "\n");
|
|
} else {
|
|
fprintf(stdout,
|
|
"The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
fprintf(stdout, "type ");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, "%7d bytes", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "%-24s", alg_name);
|
|
|
|
for (j = 0; j < num; j++) {
|
|
if (results[D_EVP][j] > 10000)
|
|
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
|
|
else
|
|
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
|
|
}
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
OPENSSL_free(inp);
|
|
OPENSSL_free(out);
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
}
|