openssl/ssl/ssl_ciph.c
Richard Levitte e077455e9e Stop raising ERR_R_MALLOC_FAILURE in most places
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and
at least handle the file name and line number they are called from,
there's no need to report ERR_R_MALLOC_FAILURE where they are called
directly, or when SSLfatal() and RLAYERfatal() is used, the reason
`ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`.

There were a number of places where `ERR_R_MALLOC_FAILURE` was reported
even though it was a function from a different sub-system that was
called.  Those places are changed to report ERR_R_{lib}_LIB, where
{lib} is the name of that sub-system.
Some of them are tricky to get right, as we have a lot of functions
that belong in the ASN1 sub-system, and all the `sk_` calls or from
the CRYPTO sub-system.

Some extra adaptation was necessary where there were custom OPENSSL_malloc()
wrappers, and some bugs are fixed alongside these changes.

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19301)
2022-10-05 14:02:03 +02:00

2249 lines
70 KiB
C

/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <ctype.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include <openssl/engine.h>
#include <openssl/crypto.h>
#include <openssl/conf.h>
#include <openssl/trace.h>
#include "internal/nelem.h"
#include "ssl_local.h"
#include "internal/thread_once.h"
#include "internal/cryptlib.h"
/* NB: make sure indices in these tables match values above */
typedef struct {
uint32_t mask;
int nid;
} ssl_cipher_table;
/* Table of NIDs for each cipher */
static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
{SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
{SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
{SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
{SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
{SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
{SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
{SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
{SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
{SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
{SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
{SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
{SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
{SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
{SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
{SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
{SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
{SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
{SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
{SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
{SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
{SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
{SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
{SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
{SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#ifndef OPENSSL_NO_COMP
static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
#endif
/* NB: make sure indices in this table matches values above */
static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
{SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
{SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
{SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
{SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
{SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
{SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
{SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
{SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
{SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
{0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
{0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
{0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
{SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
{SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
};
/* *INDENT-OFF* */
static const ssl_cipher_table ssl_cipher_table_kx[] = {
{SSL_kRSA, NID_kx_rsa},
{SSL_kECDHE, NID_kx_ecdhe},
{SSL_kDHE, NID_kx_dhe},
{SSL_kECDHEPSK, NID_kx_ecdhe_psk},
{SSL_kDHEPSK, NID_kx_dhe_psk},
{SSL_kRSAPSK, NID_kx_rsa_psk},
{SSL_kPSK, NID_kx_psk},
{SSL_kSRP, NID_kx_srp},
{SSL_kGOST, NID_kx_gost},
{SSL_kGOST18, NID_kx_gost18},
{SSL_kANY, NID_kx_any}
};
static const ssl_cipher_table ssl_cipher_table_auth[] = {
{SSL_aRSA, NID_auth_rsa},
{SSL_aECDSA, NID_auth_ecdsa},
{SSL_aPSK, NID_auth_psk},
{SSL_aDSS, NID_auth_dss},
{SSL_aGOST01, NID_auth_gost01},
{SSL_aGOST12, NID_auth_gost12},
{SSL_aSRP, NID_auth_srp},
{SSL_aNULL, NID_auth_null},
{SSL_aANY, NID_auth_any}
};
/* *INDENT-ON* */
/* Utility function for table lookup */
static int ssl_cipher_info_find(const ssl_cipher_table * table,
size_t table_cnt, uint32_t mask)
{
size_t i;
for (i = 0; i < table_cnt; i++, table++) {
if (table->mask == mask)
return (int)i;
}
return -1;
}
#define ssl_cipher_info_lookup(table, x) \
ssl_cipher_info_find(table, OSSL_NELEM(table), x)
/*
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
* found
*/
static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
/* MD5, SHA, GOST94, MAC89 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* SHA256, SHA384, GOST2012_256, MAC89-12 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* GOST2012_512 */
EVP_PKEY_HMAC,
/* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
/*
* Bump the ciphers to the top of the list.
* This rule isn't currently supported by the public cipherstring API.
*/
#define CIPHER_BUMP 6
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
/* "COMPLEMENTOFALL" */
{0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
/*
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
* ALL!)
*/
{0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
/*
* key exchange aliases (some of those using only a single bit here
* combine multiple key exchange algs according to the RFCs, e.g. kDHE
* combines DHE_DSS and DHE_RSA)
*/
{0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
{0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
{0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
{0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
{0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
{0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
{0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
{0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
{0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
/* server authentication aliases */
{0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
{0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
{0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
{0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
{0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
{0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
{0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
/* aliases combining key exchange and server authentication */
{0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
{0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
{0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
{0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
{0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
/* symmetric encryption aliases */
{0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
{0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
{0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
{0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
{0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
{0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_GOST, NULL, 0, 0, 0,
SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
{0, SSL_TXT_AES128, NULL, 0, 0, 0,
SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
{0, SSL_TXT_AES256, NULL, 0, 0, 0,
SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
{0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
{0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
{0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
{0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
{0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
{0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
{0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
{0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
{0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
{0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
{0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
{0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
/* MAC aliases */
{0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
{0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
{0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
{0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
{0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
{0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
/* protocol version aliases */
{0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
{0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
/* strength classes */
{0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
{0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
{0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
/* FIPS 140-2 approved ciphersuite */
{0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
/* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
{0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
{0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
};
/*
* Search for public key algorithm with given name and return its pkey_id if
* it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) > 0)
return pkey_id;
return 0;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
if (ameth) {
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) <= 0)
pkey_id = 0;
}
tls_engine_finish(tmpeng);
return pkey_id;
}
#endif
int ssl_load_ciphers(SSL_CTX *ctx)
{
size_t i;
const ssl_cipher_table *t;
EVP_KEYEXCH *kex = NULL;
EVP_SIGNATURE *sig = NULL;
ctx->disabled_enc_mask = 0;
for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
if (t->nid != NID_undef) {
const EVP_CIPHER *cipher
= ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
ctx->ssl_cipher_methods[i] = cipher;
if (cipher == NULL)
ctx->disabled_enc_mask |= t->mask;
}
}
ctx->disabled_mac_mask = 0;
for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
const EVP_MD *md
= ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
ctx->ssl_digest_methods[i] = md;
if (md == NULL) {
ctx->disabled_mac_mask |= t->mask;
} else {
int tmpsize = EVP_MD_get_size(md);
if (!ossl_assert(tmpsize >= 0))
return 0;
ctx->ssl_mac_secret_size[i] = tmpsize;
}
}
ctx->disabled_mkey_mask = 0;
ctx->disabled_auth_mask = 0;
/*
* We ignore any errors from the fetches below. They are expected to fail
* if theose algorithms are not available.
*/
ERR_set_mark();
sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
if (sig == NULL)
ctx->disabled_auth_mask |= SSL_aDSS;
else
EVP_SIGNATURE_free(sig);
kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
if (kex == NULL)
ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
else
EVP_KEYEXCH_free(kex);
kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
if (kex == NULL)
ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
else
EVP_KEYEXCH_free(kex);
sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
if (sig == NULL)
ctx->disabled_auth_mask |= SSL_aECDSA;
else
EVP_SIGNATURE_free(sig);
ERR_pop_to_mark();
#ifdef OPENSSL_NO_PSK
ctx->disabled_mkey_mask |= SSL_PSK;
ctx->disabled_auth_mask |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
ctx->disabled_mkey_mask |= SSL_kSRP;
#endif
/*
* Check for presence of GOST 34.10 algorithms, and if they are not
* present, disable appropriate auth and key exchange
*/
memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
sizeof(ctx->ssl_mac_pkey_id));
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
get_optional_pkey_id(SN_id_Gost28147_89_MAC);
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_GOST89MAC;
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
get_optional_pkey_id(SN_gost_mac_12);
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_GOST89MAC12;
ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
get_optional_pkey_id(SN_magma_mac);
if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
get_optional_pkey_id(SN_kuznyechik_mac);
if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
if (!get_optional_pkey_id(SN_id_GostR3410_2001))
ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
ctx->disabled_auth_mask |= SSL_aGOST12;
if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
ctx->disabled_auth_mask |= SSL_aGOST12;
/*
* Disable GOST key exchange if no GOST signature algs are available *
*/
if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
(SSL_aGOST01 | SSL_aGOST12))
ctx->disabled_mkey_mask |= SSL_kGOST;
if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
ctx->disabled_mkey_mask |= SSL_kGOST18;
return 1;
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
{
SSL_COMP *comp = NULL;
COMP_METHOD *method = COMP_zlib();
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
comp = OPENSSL_malloc(sizeof(*comp));
if (comp != NULL) {
comp->method = method;
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = COMP_get_name(method);
sk_SSL_COMP_push(ssl_comp_methods, comp);
sk_SSL_COMP_sort(ssl_comp_methods);
}
}
return 1;
}
static int load_builtin_compressions(void)
{
return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
}
#endif
int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
const EVP_CIPHER **enc)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
if (i == -1) {
*enc = NULL;
} else {
if (i == SSL_ENC_NULL_IDX) {
/*
* We assume we don't care about this coming from an ENGINE so
* just do a normal EVP_CIPHER_fetch instead of
* ssl_evp_cipher_fetch()
*/
*enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
if (*enc == NULL)
return 0;
} else {
const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
if (cipher == NULL
|| !ssl_evp_cipher_up_ref(cipher))
return 0;
*enc = ctx->ssl_cipher_methods[i];
}
}
return 1;
}
int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
const EVP_CIPHER **enc, const EVP_MD **md,
int *mac_pkey_type, size_t *mac_secret_size,
SSL_COMP **comp, int use_etm)
{
int i;
const SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return 0;
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
if (!load_builtin_compressions()) {
/*
* Currently don't care, since a failure only means that
* ssl_comp_methods is NULL, which is perfectly OK
*/
}
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
if (i >= 0)
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
}
/* If were only interested in comp then return success */
if ((enc == NULL) && (md == NULL))
return 1;
}
if ((enc == NULL) || (md == NULL))
return 0;
if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
return 0;
i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1) {
*md = NULL;
if (mac_pkey_type != NULL)
*mac_pkey_type = NID_undef;
if (mac_secret_size != NULL)
*mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
} else {
const EVP_MD *digest = ctx->ssl_digest_methods[i];
if (digest == NULL
|| !ssl_evp_md_up_ref(digest)) {
ssl_evp_cipher_free(*enc);
return 0;
}
*md = digest;
if (mac_pkey_type != NULL)
*mac_pkey_type = ctx->ssl_mac_pkey_id[i];
if (mac_secret_size != NULL)
*mac_secret_size = ctx->ssl_mac_secret_size[i];
}
if ((*enc != NULL)
&& (*md != NULL
|| (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
&& (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
const EVP_CIPHER *evp = NULL;
if (use_etm
|| s->ssl_version >> 8 != TLS1_VERSION_MAJOR
|| s->ssl_version < TLS1_VERSION)
return 1;
if (c->algorithm_enc == SSL_RC4
&& c->algorithm_mac == SSL_MD5)
evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
ctx->propq);
else if (c->algorithm_enc == SSL_AES128
&& c->algorithm_mac == SSL_SHA1)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_128_cbc_hmac_sha1,
ctx->propq);
else if (c->algorithm_enc == SSL_AES256
&& c->algorithm_mac == SSL_SHA1)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_256_cbc_hmac_sha1,
ctx->propq);
else if (c->algorithm_enc == SSL_AES128
&& c->algorithm_mac == SSL_SHA256)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_128_cbc_hmac_sha256,
ctx->propq);
else if (c->algorithm_enc == SSL_AES256
&& c->algorithm_mac == SSL_SHA256)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_256_cbc_hmac_sha256,
ctx->propq);
if (evp != NULL) {
ssl_evp_cipher_free(*enc);
ssl_evp_md_free(*md);
*enc = evp;
*md = NULL;
}
return 1;
}
return 0;
}
const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
{
idx &= SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return ctx->ssl_digest_methods[idx];
}
const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
{
return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
}
const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
{
return ssl_md(SSL_CONNECTION_GET_CTX(s),
ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL)
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head)
return;
if (curr == *tail)
*tail = curr->prev;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if (c == NULL || !c->valid)
continue;
if ((c->algorithm_mkey & disabled_mkey) ||
(c->algorithm_auth & disabled_auth) ||
(c->algorithm_enc & disabled_enc) ||
(c->algorithm_mac & disabled_mac))
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
c->min_tls == 0)
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
c->min_dtls == 0)
continue;
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
uint32_t mask_mkey = ~disabled_mkey;
uint32_t mask_auth = ~disabled_auth;
uint32_t mask_enc = ~disabled_enc;
uint32_t mask_mac = ~disabled_mac;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
uint32_t alg_auth, uint32_t alg_enc,
uint32_t alg_mac, int min_tls,
uint32_t algo_strength, int rule,
int32_t strength_bits, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
OSSL_TRACE_BEGIN(TLS_CIPHER) {
BIO_printf(trc_out,
"Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
algo_strength, strength_bits);
}
if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
reverse = 1; /* needed to maintain sorting between currently
* deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last)
break;
curr = next;
if (curr == NULL)
break;
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0) {
if (strength_bits != cp->strength_bits)
continue;
} else {
if (trc_out != NULL) {
BIO_printf(trc_out,
"\nName: %s:"
"\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
cp->name, cp->algorithm_mkey, cp->algorithm_auth,
cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
cp->algo_strength);
}
if (cipher_id != 0 && (cipher_id != cp->id))
continue;
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (min_tls && (min_tls != cp->min_tls))
continue;
if ((algo_strength & SSL_STRONG_MASK)
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_DEFAULT_MASK)
&& !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
continue;
}
if (trc_out != NULL)
BIO_printf(trc_out, "Action = %d\n", rule);
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/*
* most recently deleted ciphersuites get best positions for
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
* in reverse to maintain the order)
*/
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
} else if (rule == CIPHER_BUMP) {
if (curr->active)
ll_append_head(&head, curr, &tail);
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
OSSL_TRACE_END(TLS_CIPHER);
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int32_t max_strength_bits;
int i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
if (number_uses == NULL)
return 0;
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
tail_p);
OPENSSL_free(number_uses);
return 1;
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list, CERT *c)
{
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
int min_tls;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
uint32_t cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
min_tls = 0;
algo_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
#else
while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
|| (ch == '='))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else {
multi = 0;
}
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j]) {
if (strncmp(buf, ca_list[j]->name, buflen) == 0
&& (ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else if (ca_list[j]->stdname != NULL
&& strncmp(buf, ca_list[j]->stdname, buflen) == 0
&& ca_list[j]->stdname[buflen] == '\0') {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey) {
if (alg_mkey) {
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) {
found = 0;
break;
}
} else {
alg_mkey = ca_list[j]->algorithm_mkey;
}
}
if (ca_list[j]->algorithm_auth) {
if (alg_auth) {
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) {
found = 0;
break;
}
} else {
alg_auth = ca_list[j]->algorithm_auth;
}
}
if (ca_list[j]->algorithm_enc) {
if (alg_enc) {
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) {
found = 0;
break;
}
} else {
alg_enc = ca_list[j]->algorithm_enc;
}
}
if (ca_list[j]->algorithm_mac) {
if (alg_mac) {
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) {
found = 0;
break;
}
} else {
alg_mac = ca_list[j]->algorithm_mac;
}
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
if (algo_strength & SSL_STRONG_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) {
found = 0;
break;
}
} else {
algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
}
if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
if (algo_strength & SSL_DEFAULT_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
~SSL_DEFAULT_MASK;
if (!(algo_strength & SSL_DEFAULT_MASK)) {
found = 0;
break;
}
} else {
algo_strength |=
ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
}
}
if (ca_list[j]->valid) {
/*
* explicit ciphersuite found; its protocol version does not
* become part of the search pattern!
*/
cipher_id = ca_list[j]->id;
} else {
/*
* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern
*/
if (ca_list[j]->min_tls) {
if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
found = 0;
break;
} else {
min_tls = ca_list[j]->min_tls;
}
}
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
ok = ssl_cipher_strength_sort(head_p, tail_p);
} else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
int level = *buf - '0';
if (level < 0 || level > 5) {
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
} else {
c->sec_level = level;
ok = 1;
}
} else {
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
}
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac,
min_tls, algo_strength, rule, -1, head_p,
tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return retval;
}
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
const char **prule_str)
{
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
} else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
suiteb_comb2 = 1;
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
}
if (suiteb_flags) {
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
c->cert_flags |= suiteb_flags;
} else {
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
}
if (!suiteb_flags)
return 1;
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
return 0;
}
switch (suiteb_flags) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
if (suiteb_comb2)
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
else
*prule_str =
"ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
break;
}
return 1;
}
static int ciphersuite_cb(const char *elem, int len, void *arg)
{
STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
const SSL_CIPHER *cipher;
/* Arbitrary sized temp buffer for the cipher name. Should be big enough */
char name[80];
if (len > (int)(sizeof(name) - 1))
/* Anyway return 1 so we can parse rest of the list */
return 1;
memcpy(name, elem, len);
name[len] = '\0';
cipher = ssl3_get_cipher_by_std_name(name);
if (cipher == NULL)
/* Ciphersuite not found but return 1 to parse rest of the list */
return 1;
if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
{
STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
if (newciphers == NULL)
return 0;
/* Parse the list. We explicitly allow an empty list */
if (*str != '\0'
&& (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
|| sk_SSL_CIPHER_num(newciphers) == 0)) {
ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
sk_SSL_CIPHER_free(newciphers);
return 0;
}
sk_SSL_CIPHER_free(*currciphers);
*currciphers = newciphers;
return 1;
}
static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *cipherstack)
{
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
return 0;
}
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return 1;
}
static int update_cipher_list(SSL_CTX *ctx,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
{
int i;
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
if (tmp_cipher_list == NULL)
return 0;
/*
* Delete any existing TLSv1.3 ciphersuites. These are always first in the
* list.
*/
while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
&& sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
== TLS1_3_VERSION)
(void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
/* Insert the new TLSv1.3 ciphersuites */
for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
/* Don't include any TLSv1.3 ciphersuites that are disabled */
if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
&& (ssl_cipher_table_mac[sslc->algorithm2
& SSL_HANDSHAKE_MAC_MASK].mask
& ctx->disabled_mac_mask) == 0) {
sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
}
}
if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
sk_SSL_CIPHER_free(tmp_cipher_list);
return 0;
}
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = tmp_cipher_list;
return 1;
}
int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
{
int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
if (ret && ctx->cipher_list != NULL)
return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
ctx->tls13_ciphersuites);
return ret;
}
int SSL_set_ciphersuites(SSL *s, const char *str)
{
STACK_OF(SSL_CIPHER) *cipher_list;
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
int ret;
if (sc == NULL)
return 0;
ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
if (sc->cipher_list == NULL) {
if ((cipher_list = SSL_get_ciphers(s)) != NULL)
sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
}
if (ret && sc->cipher_list != NULL)
return update_cipher_list(s->ctx, &sc->cipher_list,
&sc->cipher_list_by_id,
sc->tls13_ciphersuites);
return ret;
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str,
CERT *c)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
STACK_OF(SSL_CIPHER) *cipherstack;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
const SSL_METHOD *ssl_method = ctx->method;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
disabled_mkey = ctx->disabled_mkey_mask;
disabled_auth = ctx->disabled_auth_mask;
disabled_enc = ctx->disabled_enc_mask;
disabled_mac = ctx->disabled_mac_mask;
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
if (co_list == NULL)
return NULL; /* Failure */
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, co_list, &head, &tail);
/* Now arrange all ciphers by preference. */
/*
* Everything else being equal, prefer ephemeral ECDH over other key
* exchange mechanisms.
* For consistency, prefer ECDSA over RSA (though this only matters if the
* server has both certificates, and is using the DEFAULT, or a client
* preference).
*/
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
&tail);
/* Within each strength group, we prefer GCM over CHACHA... */
ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
/*
* ...and generally, our preferred cipher is AES.
* Note that AEADs will be bumped to take preference after sorting by
* strength.
*/
ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Move anonymous ciphers to the end. Usually, these will remain
* disabled. (For applications that allow them, they aren't too bad, but
* we prefer authenticated ciphers.)
*/
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* RC4 is sort-of broken -- move to the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class
*/
if (!ssl_cipher_strength_sort(&head, &tail)) {
OPENSSL_free(co_list);
return NULL;
}
/*
* Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
*/
ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
&head, &tail);
/*
* Irrespective of strength, enforce the following order:
* (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
* Within each group, ciphers remain sorted by strength and previous
* preference, i.e.,
* 1) ECDHE > DHE
* 2) GCM > CHACHA
* 3) AES > rest
* 4) TLS 1.2 > legacy
*
* Because we now bump ciphers to the top of the list, we proceed in
* reverse order of preference.
*/
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
&head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = OSSL_NELEM(cipher_aliases);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
return NULL; /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (HAS_PREFIX(rule_str, "DEFAULT")) {
ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
&head, &tail, ca_list, c);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (rule_p[0] != '\0'))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return NULL;
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return NULL;
}
/* Add TLSv1.3 ciphers first - we always prefer those if possible */
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
/* Don't include any TLSv1.3 ciphers that are disabled */
if ((sslc->algorithm_enc & disabled_enc) != 0
|| (ssl_cipher_table_mac[sslc->algorithm2
& SSL_HANDSHAKE_MAC_MASK].mask
& ctx->disabled_mac_mask) != 0) {
sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
i--;
continue;
}
if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
OPENSSL_free(co_list);
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
}
OSSL_TRACE_BEGIN(TLS_CIPHER) {
BIO_printf(trc_out, "cipher selection:\n");
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
if (curr->active) {
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
OPENSSL_free(co_list);
sk_SSL_CIPHER_free(cipherstack);
OSSL_TRACE_CANCEL(TLS_CIPHER);
return NULL;
}
if (trc_out != NULL)
BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
}
}
OPENSSL_free(co_list); /* Not needed any longer */
OSSL_TRACE_END(TLS_CIPHER);
if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
return cipherstack;
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
const char *ver;
const char *kx, *au, *enc, *mac;
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
if (buf == NULL) {
len = 128;
if ((buf = OPENSSL_malloc(len)) == NULL)
return NULL;
} else if (len < 128) {
return NULL;
}
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
ver = ssl_protocol_to_string(cipher->min_tls);
switch (alg_mkey) {
case SSL_kRSA:
kx = "RSA";
break;
case SSL_kDHE:
kx = "DH";
break;
case SSL_kECDHE:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kRSAPSK:
kx = "RSAPSK";
break;
case SSL_kECDHEPSK:
kx = "ECDHEPSK";
break;
case SSL_kDHEPSK:
kx = "DHEPSK";
break;
case SSL_kSRP:
kx = "SRP";
break;
case SSL_kGOST:
kx = "GOST";
break;
case SSL_kGOST18:
kx = "GOST18";
break;
case SSL_kANY:
kx = "any";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aSRP:
au = "SRP";
break;
case SSL_aGOST01:
au = "GOST01";
break;
/* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
case (SSL_aGOST12 | SSL_aGOST01):
au = "GOST12";
break;
case SSL_aANY:
au = "any";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_DES:
enc = "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = "RC4(128)";
break;
case SSL_RC2:
enc = "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_AES128CCM:
enc = "AESCCM(128)";
break;
case SSL_AES256CCM:
enc = "AESCCM(256)";
break;
case SSL_AES128CCM8:
enc = "AESCCM8(128)";
break;
case SSL_AES256CCM8:
enc = "AESCCM8(256)";
break;
case SSL_CAMELLIA128:
enc = "Camellia(128)";
break;
case SSL_CAMELLIA256:
enc = "Camellia(256)";
break;
case SSL_ARIA128GCM:
enc = "ARIAGCM(128)";
break;
case SSL_ARIA256GCM:
enc = "ARIAGCM(256)";
break;
case SSL_SEED:
enc = "SEED(128)";
break;
case SSL_eGOST2814789CNT:
case SSL_eGOST2814789CNT12:
enc = "GOST89(256)";
break;
case SSL_MAGMA:
enc = "MAGMA";
break;
case SSL_KUZNYECHIK:
enc = "KUZNYECHIK";
break;
case SSL_CHACHA20POLY1305:
enc = "CHACHA20/POLY1305(256)";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
case SSL_GOST89MAC:
case SSL_GOST89MAC12:
mac = "GOST89";
break;
case SSL_GOST94:
mac = "GOST94";
break;
case SSL_GOST12_256:
case SSL_GOST12_512:
mac = "GOST2012";
break;
default:
mac = "unknown";
break;
}
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
return buf;
}
const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
if (c == NULL)
return "(NONE)";
/*
* Backwards-compatibility crutch. In almost all contexts we report TLS
* 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
*/
if (c->min_tls == TLS1_VERSION)
return "TLSv1.0";
return ssl_protocol_to_string(c->min_tls);
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->name;
return "(NONE)";
}
/* return the actual cipher being used in RFC standard name */
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->stdname;
return "(NONE)";
}
/* return the OpenSSL name based on given RFC standard name */
const char *OPENSSL_cipher_name(const char *stdname)
{
const SSL_CIPHER *c;
if (stdname == NULL)
return "(NONE)";
c = ssl3_get_cipher_by_std_name(stdname);
return SSL_CIPHER_get_name(c);
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = (int)c->alg_bits;
ret = (int)c->strength_bits;
}
return ret;
}
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
{
return c->id & 0xFFFF;
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return NULL;
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return ctmp;
}
return NULL;
}
#ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
return meths;
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
return 1;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return ssl_comp_methods;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = meths;
return old_meths;
}
static void cmeth_free(SSL_COMP *cm)
{
OPENSSL_free(cm);
}
void ssl_comp_free_compression_methods_int(void)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = NULL;
sk_SSL_COMP_pop_free(old_meths, cmeth_free);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || COMP_get_type(cm) == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 1;
}
comp = OPENSSL_malloc(sizeof(*comp));
if (comp == NULL)
return 1;
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
return 1;
}
if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
return 1;
}
return 0;
}
#endif
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
#ifndef OPENSSL_NO_COMP
return comp ? COMP_get_name(comp) : NULL;
#else
return NULL;
#endif
}
const char *SSL_COMP_get0_name(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->name;
#else
return NULL;
#endif
}
int SSL_COMP_get_id(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->id;
#else
return -1;
#endif
}
const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
const unsigned char *ptr,
int all)
{
const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
if (c == NULL || (!all && c->valid == 0))
return NULL;
return c;
}
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
{
return ssl->method->get_cipher_by_char(ptr);
}
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return NID_undef;
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
if (i == -1)
return NID_undef;
return ssl_cipher_table_cipher[i].nid;
}
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1)
return NID_undef;
return ssl_cipher_table_mac[i].nid;
}
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
if (i == -1)
return NID_undef;
return ssl_cipher_table_kx[i].nid;
}
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
if (i == -1)
return NID_undef;
return ssl_cipher_table_auth[i].nid;
}
const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
{
int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
}
int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
{
return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
}
int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
size_t *int_overhead, size_t *blocksize,
size_t *ext_overhead)
{
size_t mac = 0, in = 0, blk = 0, out = 0;
/* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
* because there are no handy #defines for those. */
if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
} else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
} else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
out = 16;
} else if (c->algorithm_mac & SSL_AEAD) {
/* We're supposed to have handled all the AEAD modes above */
return 0;
} else {
/* Non-AEAD modes. Calculate MAC/cipher overhead separately */
int digest_nid = SSL_CIPHER_get_digest_nid(c);
const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
if (e_md == NULL)
return 0;
mac = EVP_MD_get_size(e_md);
if (c->algorithm_enc != SSL_eNULL) {
int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
/* If it wasn't AEAD or SSL_eNULL, we expect it to be a
known CBC cipher. */
if (e_ciph == NULL ||
EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
return 0;
in = 1; /* padding length byte */
out = EVP_CIPHER_get_iv_length(e_ciph);
blk = EVP_CIPHER_get_block_size(e_ciph);
}
}
*mac_overhead = mac;
*int_overhead = in;
*blocksize = blk;
*ext_overhead = out;
return 1;
}
int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
{
const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
return 1;
return 0;
}
/*
* Default list of TLSv1.2 (and earlier) ciphers
* SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
* Update both macro and function simultaneously
*/
const char *OSSL_default_cipher_list(void)
{
return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
}
/*
* Default list of TLSv1.3 (and later) ciphers
* TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
* Update both macro and function simultaneously
*/
const char *OSSL_default_ciphersuites(void)
{
return "TLS_AES_256_GCM_SHA384:"
"TLS_CHACHA20_POLY1305_SHA256:"
"TLS_AES_128_GCM_SHA256";
}