mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
e077455e9e
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and at least handle the file name and line number they are called from, there's no need to report ERR_R_MALLOC_FAILURE where they are called directly, or when SSLfatal() and RLAYERfatal() is used, the reason `ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`. There were a number of places where `ERR_R_MALLOC_FAILURE` was reported even though it was a function from a different sub-system that was called. Those places are changed to report ERR_R_{lib}_LIB, where {lib} is the name of that sub-system. Some of them are tricky to get right, as we have a lot of functions that belong in the ASN1 sub-system, and all the `sk_` calls or from the CRYPTO sub-system. Some extra adaptation was necessary where there were custom OPENSSL_malloc() wrappers, and some bugs are fixed alongside these changes. Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Hugo Landau <hlandau@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19301)
267 lines
6.8 KiB
C
267 lines
6.8 KiB
C
/*
|
|
* Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* RSA low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include "crypto/rsa.h"
|
|
#include "rsa_local.h"
|
|
|
|
#ifndef FIPS_MODULE
|
|
static int rsa_validate_keypair_multiprime(const RSA *key, BN_GENCB *cb)
|
|
{
|
|
BIGNUM *i, *j, *k, *l, *m;
|
|
BN_CTX *ctx;
|
|
int ret = 1, ex_primes = 0, idx;
|
|
RSA_PRIME_INFO *pinfo;
|
|
|
|
if (key->p == NULL || key->q == NULL || key->n == NULL
|
|
|| key->e == NULL || key->d == NULL) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
/* multi-prime? */
|
|
if (key->version == RSA_ASN1_VERSION_MULTI) {
|
|
ex_primes = sk_RSA_PRIME_INFO_num(key->prime_infos);
|
|
if (ex_primes <= 0
|
|
|| (ex_primes + 2) > ossl_rsa_multip_cap(BN_num_bits(key->n))) {
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MULTI_PRIME_KEY);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
i = BN_new();
|
|
j = BN_new();
|
|
k = BN_new();
|
|
l = BN_new();
|
|
m = BN_new();
|
|
ctx = BN_CTX_new_ex(key->libctx);
|
|
if (i == NULL || j == NULL || k == NULL || l == NULL
|
|
|| m == NULL || ctx == NULL) {
|
|
ret = -1;
|
|
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_one(key->e)) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
|
}
|
|
if (!BN_is_odd(key->e)) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
|
}
|
|
|
|
/* p prime? */
|
|
if (BN_check_prime(key->p, ctx, cb) != 1) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_P_NOT_PRIME);
|
|
}
|
|
|
|
/* q prime? */
|
|
if (BN_check_prime(key->q, ctx, cb) != 1) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_Q_NOT_PRIME);
|
|
}
|
|
|
|
/* r_i prime? */
|
|
for (idx = 0; idx < ex_primes; idx++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
|
|
if (BN_check_prime(pinfo->r, ctx, cb) != 1) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_MP_R_NOT_PRIME);
|
|
}
|
|
}
|
|
|
|
/* n = p*q * r_3...r_i? */
|
|
if (!BN_mul(i, key->p, key->q, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
for (idx = 0; idx < ex_primes; idx++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
|
|
if (!BN_mul(i, i, pinfo->r, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
}
|
|
if (BN_cmp(i, key->n) != 0) {
|
|
ret = 0;
|
|
if (ex_primes)
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES);
|
|
else
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_N_DOES_NOT_EQUAL_P_Q);
|
|
}
|
|
|
|
/* d*e = 1 mod \lambda(n)? */
|
|
if (!BN_sub(i, key->p, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_sub(j, key->q, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
|
|
/* now compute k = \lambda(n) = LCM(i, j, r_3 - 1...) */
|
|
if (!BN_mul(l, i, j, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_gcd(m, i, j, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
for (idx = 0; idx < ex_primes; idx++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
|
|
if (!BN_sub(k, pinfo->r, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_mul(l, l, k, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_gcd(m, m, k, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
}
|
|
if (!BN_div(k, NULL, l, m, ctx)) { /* remainder is 0 */
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_mod_mul(i, key->d, key->e, k, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_is_one(i)) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
|
|
}
|
|
|
|
if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) {
|
|
/* dmp1 = d mod (p-1)? */
|
|
if (!BN_sub(i, key->p, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_mod(j, key->d, i, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (BN_cmp(j, key->dmp1) != 0) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_DMP1_NOT_CONGRUENT_TO_D);
|
|
}
|
|
|
|
/* dmq1 = d mod (q-1)? */
|
|
if (!BN_sub(i, key->q, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_mod(j, key->d, i, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (BN_cmp(j, key->dmq1) != 0) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
|
|
}
|
|
|
|
/* iqmp = q^-1 mod p? */
|
|
if (!BN_mod_inverse(i, key->q, key->p, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (BN_cmp(i, key->iqmp) != 0) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_IQMP_NOT_INVERSE_OF_Q);
|
|
}
|
|
}
|
|
|
|
for (idx = 0; idx < ex_primes; idx++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
|
|
/* d_i = d mod (r_i - 1)? */
|
|
if (!BN_sub(i, pinfo->r, BN_value_one())) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (!BN_mod(j, key->d, i, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (BN_cmp(j, pinfo->d) != 0) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D);
|
|
}
|
|
/* t_i = R_i ^ -1 mod r_i ? */
|
|
if (!BN_mod_inverse(i, pinfo->pp, pinfo->r, ctx)) {
|
|
ret = -1;
|
|
goto err;
|
|
}
|
|
if (BN_cmp(i, pinfo->t) != 0) {
|
|
ret = 0;
|
|
ERR_raise(ERR_LIB_RSA, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R);
|
|
}
|
|
}
|
|
|
|
err:
|
|
BN_free(i);
|
|
BN_free(j);
|
|
BN_free(k);
|
|
BN_free(l);
|
|
BN_free(m);
|
|
BN_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
#endif /* FIPS_MODULE */
|
|
|
|
int ossl_rsa_validate_public(const RSA *key)
|
|
{
|
|
return ossl_rsa_sp800_56b_check_public(key);
|
|
}
|
|
|
|
int ossl_rsa_validate_private(const RSA *key)
|
|
{
|
|
return ossl_rsa_sp800_56b_check_private(key);
|
|
}
|
|
|
|
int ossl_rsa_validate_pairwise(const RSA *key)
|
|
{
|
|
#ifdef FIPS_MODULE
|
|
return ossl_rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key));
|
|
#else
|
|
return rsa_validate_keypair_multiprime(key, NULL) > 0;
|
|
#endif
|
|
}
|
|
|
|
int RSA_check_key(const RSA *key)
|
|
{
|
|
return RSA_check_key_ex(key, NULL);
|
|
}
|
|
|
|
int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
|
|
{
|
|
#ifdef FIPS_MODULE
|
|
return ossl_rsa_validate_public(key)
|
|
&& ossl_rsa_validate_private(key)
|
|
&& ossl_rsa_validate_pairwise(key);
|
|
#else
|
|
return rsa_validate_keypair_multiprime(key, cb);
|
|
#endif /* FIPS_MODULE */
|
|
}
|