mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
4333b89f50
Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/13999)
248 lines
5.8 KiB
C
248 lines
5.8 KiB
C
/*
|
|
* Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
#include <stdio.h>
|
|
#include <openssl/bn.h>
|
|
#include "bn_local.h"
|
|
|
|
/* X9.31 routines for prime derivation */
|
|
|
|
/*
|
|
* X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
|
|
* q1, q2) from a parameter Xpi by checking successive odd integers.
|
|
*/
|
|
|
|
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
|
|
BN_GENCB *cb)
|
|
{
|
|
int i = 0, is_prime;
|
|
if (!BN_copy(pi, Xpi))
|
|
return 0;
|
|
if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
|
|
return 0;
|
|
for (;;) {
|
|
i++;
|
|
BN_GENCB_call(cb, 0, i);
|
|
/* NB 27 MR is specified in X9.31 */
|
|
is_prime = BN_check_prime(pi, ctx, cb);
|
|
if (is_prime < 0)
|
|
return 0;
|
|
if (is_prime)
|
|
break;
|
|
if (!BN_add_word(pi, 2))
|
|
return 0;
|
|
}
|
|
BN_GENCB_call(cb, 2, i);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
|
|
* and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
|
|
* will be returned too: this is needed for testing.
|
|
*/
|
|
|
|
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
|
const BIGNUM *Xp, const BIGNUM *Xp1,
|
|
const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
|
|
BN_GENCB *cb)
|
|
{
|
|
int ret = 0;
|
|
|
|
BIGNUM *t, *p1p2, *pm1;
|
|
|
|
/* Only even e supported */
|
|
if (!BN_is_odd(e))
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if (p1 == NULL)
|
|
p1 = BN_CTX_get(ctx);
|
|
|
|
if (p2 == NULL)
|
|
p2 = BN_CTX_get(ctx);
|
|
|
|
t = BN_CTX_get(ctx);
|
|
|
|
p1p2 = BN_CTX_get(ctx);
|
|
|
|
pm1 = BN_CTX_get(ctx);
|
|
|
|
if (pm1 == NULL)
|
|
goto err;
|
|
|
|
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
|
|
goto err;
|
|
|
|
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
|
|
goto err;
|
|
|
|
if (!BN_mul(p1p2, p1, p2, ctx))
|
|
goto err;
|
|
|
|
/* First set p to value of Rp */
|
|
|
|
if (!BN_mod_inverse(p, p2, p1, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mul(p, p, p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mod_inverse(t, p1, p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mul(t, t, p1, ctx))
|
|
goto err;
|
|
|
|
if (!BN_sub(p, p, t))
|
|
goto err;
|
|
|
|
if (p->neg && !BN_add(p, p, p1p2))
|
|
goto err;
|
|
|
|
/* p now equals Rp */
|
|
|
|
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_add(p, p, Xp))
|
|
goto err;
|
|
|
|
/* p now equals Yp0 */
|
|
|
|
for (;;) {
|
|
int i = 1;
|
|
BN_GENCB_call(cb, 0, i++);
|
|
if (!BN_copy(pm1, p))
|
|
goto err;
|
|
if (!BN_sub_word(pm1, 1))
|
|
goto err;
|
|
if (!BN_gcd(t, pm1, e, ctx))
|
|
goto err;
|
|
if (BN_is_one(t)) {
|
|
/*
|
|
* X9.31 specifies 8 MR and 1 Lucas test or any prime test
|
|
* offering similar or better guarantees 50 MR is considerably
|
|
* better.
|
|
*/
|
|
int r = BN_check_prime(p, ctx, cb);
|
|
if (r < 0)
|
|
goto err;
|
|
if (r)
|
|
break;
|
|
}
|
|
if (!BN_add(p, p, p1p2))
|
|
goto err;
|
|
}
|
|
|
|
BN_GENCB_call(cb, 3, 0);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
|
|
* parameter is sum of number of bits in both.
|
|
*/
|
|
|
|
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t;
|
|
int i;
|
|
/*
|
|
* Number of bits for each prime is of the form 512+128s for s = 0, 1,
|
|
* ...
|
|
*/
|
|
if ((nbits < 1024) || (nbits & 0xff))
|
|
return 0;
|
|
nbits >>= 1;
|
|
/*
|
|
* The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
|
|
* - 1. By setting the top two bits we ensure that the lower bound is
|
|
* exceeded.
|
|
*/
|
|
if (!BN_priv_rand_ex(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, ctx))
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
t = BN_CTX_get(ctx);
|
|
if (t == NULL)
|
|
goto err;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
if (!BN_priv_rand_ex(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY,
|
|
ctx))
|
|
goto err;
|
|
|
|
/* Check that |Xp - Xq| > 2^(nbits - 100) */
|
|
if (!BN_sub(t, Xp, Xq))
|
|
goto err;
|
|
if (BN_num_bits(t) > (nbits - 100))
|
|
break;
|
|
}
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
if (i < 1000)
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
|
|
* Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
|
|
* relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
|
|
* 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
|
|
* previous function and supplied as input.
|
|
*/
|
|
|
|
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
|
BIGNUM *Xp1, BIGNUM *Xp2,
|
|
const BIGNUM *Xp,
|
|
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
|
|
{
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if (Xp1 == NULL)
|
|
Xp1 = BN_CTX_get(ctx);
|
|
if (Xp2 == NULL)
|
|
Xp2 = BN_CTX_get(ctx);
|
|
if (Xp1 == NULL || Xp2 == NULL)
|
|
goto error;
|
|
|
|
if (!BN_priv_rand_ex(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx))
|
|
goto error;
|
|
if (!BN_priv_rand_ex(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx))
|
|
goto error;
|
|
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
|
|
goto error;
|
|
|
|
ret = 1;
|
|
|
|
error:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|