openssl/test/tls-provider.c
Dimitri Papadopoulos eb4129e12c Fix typos found by codespell
Typos in doc/man* will be fixed in a different commit.

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20910)
2023-06-15 10:11:46 +10:00

3274 lines
110 KiB
C

/*
* Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/core_names.h>
#include <openssl/core_dispatch.h>
#include <openssl/rand.h>
#include <openssl/params.h>
#include <openssl/err.h>
#include <openssl/proverr.h>
#include <openssl/pkcs12.h>
#include <openssl/provider.h>
#include <assert.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/core_object.h>
#include "internal/asn1.h"
/* For TLS1_3_VERSION */
#include <openssl/ssl.h>
#include "internal/nelem.h"
#include "internal/refcount.h"
/* error codes */
/* xorprovider error codes */
#define XORPROV_R_INVALID_DIGEST 1
#define XORPROV_R_INVALID_SIZE 2
#define XORPROV_R_INVALID_KEY 3
#define XORPROV_R_UNSUPPORTED 4
#define XORPROV_R_MISSING_OID 5
#define XORPROV_R_OBJ_CREATE_ERR 6
#define XORPROV_R_INVALID_ENCODING 7
#define XORPROV_R_SIGN_ERROR 8
#define XORPROV_R_LIB_CREATE_ERR 9
#define XORPROV_R_NO_PRIVATE_KEY 10
#define XORPROV_R_BUFFER_LENGTH_WRONG 11
#define XORPROV_R_SIGNING_FAILED 12
#define XORPROV_R_WRONG_PARAMETERS 13
#define XORPROV_R_VERIFY_ERROR 14
#define XORPROV_R_EVPINFO_MISSING 15
static OSSL_FUNC_keymgmt_import_fn xor_import;
static OSSL_FUNC_keymgmt_import_types_fn xor_import_types;
static OSSL_FUNC_keymgmt_import_types_ex_fn xor_import_types_ex;
static OSSL_FUNC_keymgmt_export_fn xor_export;
static OSSL_FUNC_keymgmt_export_types_fn xor_export_types;
static OSSL_FUNC_keymgmt_export_types_ex_fn xor_export_types_ex;
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
const OSSL_DISPATCH *in,
const OSSL_DISPATCH **out,
void **provctx);
#define XOR_KEY_SIZE 32
/*
* Top secret. This algorithm only works if no one knows what this number is.
* Please don't tell anyone what it is.
*
* This algorithm is for testing only - don't really use it!
*/
static const unsigned char private_constant[XOR_KEY_SIZE] = {
0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5,
0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8,
0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8
};
typedef struct xorkey_st {
unsigned char privkey[XOR_KEY_SIZE];
unsigned char pubkey[XOR_KEY_SIZE];
int hasprivkey;
int haspubkey;
char *tls_name;
CRYPTO_REF_COUNT references;
CRYPTO_RWLOCK *lock;
} XORKEY;
/* Key Management for the dummy XOR KEX, KEM and signature algorithms */
static OSSL_FUNC_keymgmt_new_fn xor_newkey;
static OSSL_FUNC_keymgmt_free_fn xor_freekey;
static OSSL_FUNC_keymgmt_has_fn xor_has;
static OSSL_FUNC_keymgmt_dup_fn xor_dup;
static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init;
static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params;
static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params;
static OSSL_FUNC_keymgmt_gen_fn xor_gen;
static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup;
static OSSL_FUNC_keymgmt_load_fn xor_load;
static OSSL_FUNC_keymgmt_get_params_fn xor_get_params;
static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params;
static OSSL_FUNC_keymgmt_set_params_fn xor_set_params;
static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params;
/*
* Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys
* together. Don't use this!
*/
static OSSL_FUNC_keyexch_newctx_fn xor_newkemkexctx;
static OSSL_FUNC_keyexch_init_fn xor_init;
static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer;
static OSSL_FUNC_keyexch_derive_fn xor_derive;
static OSSL_FUNC_keyexch_freectx_fn xor_freectx;
static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx;
/*
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
* Don't use this!
*/
static OSSL_FUNC_kem_newctx_fn xor_newkemkexctx;
static OSSL_FUNC_kem_freectx_fn xor_freectx;
static OSSL_FUNC_kem_dupctx_fn xor_dupctx;
static OSSL_FUNC_kem_encapsulate_init_fn xor_init;
static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate;
static OSSL_FUNC_kem_decapsulate_init_fn xor_init;
static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate;
/*
* Common key management table access functions
*/
static OSSL_FUNC_keymgmt_new_fn *
xor_prov_get_keymgmt_new(const OSSL_DISPATCH *fns)
{
/* Pilfer the keymgmt dispatch table */
for (; fns->function_id != 0; fns++)
if (fns->function_id == OSSL_FUNC_KEYMGMT_NEW)
return OSSL_FUNC_keymgmt_new(fns);
return NULL;
}
static OSSL_FUNC_keymgmt_free_fn *
xor_prov_get_keymgmt_free(const OSSL_DISPATCH *fns)
{
/* Pilfer the keymgmt dispatch table */
for (; fns->function_id != 0; fns++)
if (fns->function_id == OSSL_FUNC_KEYMGMT_FREE)
return OSSL_FUNC_keymgmt_free(fns);
return NULL;
}
static OSSL_FUNC_keymgmt_import_fn *
xor_prov_get_keymgmt_import(const OSSL_DISPATCH *fns)
{
/* Pilfer the keymgmt dispatch table */
for (; fns->function_id != 0; fns++)
if (fns->function_id == OSSL_FUNC_KEYMGMT_IMPORT)
return OSSL_FUNC_keymgmt_import(fns);
return NULL;
}
static OSSL_FUNC_keymgmt_export_fn *
xor_prov_get_keymgmt_export(const OSSL_DISPATCH *fns)
{
/* Pilfer the keymgmt dispatch table */
for (; fns->function_id != 0; fns++)
if (fns->function_id == OSSL_FUNC_KEYMGMT_EXPORT)
return OSSL_FUNC_keymgmt_export(fns);
return NULL;
}
static void *xor_prov_import_key(const OSSL_DISPATCH *fns, void *provctx,
int selection, const OSSL_PARAM params[])
{
OSSL_FUNC_keymgmt_new_fn *kmgmt_new = xor_prov_get_keymgmt_new(fns);
OSSL_FUNC_keymgmt_free_fn *kmgmt_free = xor_prov_get_keymgmt_free(fns);
OSSL_FUNC_keymgmt_import_fn *kmgmt_import =
xor_prov_get_keymgmt_import(fns);
void *key = NULL;
if (kmgmt_new != NULL && kmgmt_import != NULL && kmgmt_free != NULL) {
if ((key = kmgmt_new(provctx)) == NULL
|| !kmgmt_import(key, selection, params)) {
kmgmt_free(key);
key = NULL;
}
}
return key;
}
static void xor_prov_free_key(const OSSL_DISPATCH *fns, void *key)
{
OSSL_FUNC_keymgmt_free_fn *kmgmt_free = xor_prov_get_keymgmt_free(fns);
if (kmgmt_free != NULL)
kmgmt_free(key);
}
/*
* We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test
* purposes
*/
struct tls_group_st {
unsigned int group_id; /* for "tls-group-id", see provider-base(7) */
unsigned int secbits;
unsigned int mintls;
unsigned int maxtls;
unsigned int mindtls;
unsigned int maxdtls;
unsigned int is_kem; /* boolean */
};
#define XORGROUP_NAME "xorgroup"
#define XORGROUP_NAME_INTERNAL "xorgroup-int"
static struct tls_group_st xor_group = {
0, /* group_id, set by randomize_tls_alg_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
-1, /* mindtls */
-1, /* maxdtls */
0 /* is_kem */
};
#define XORKEMGROUP_NAME "xorkemgroup"
#define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int"
static struct tls_group_st xor_kemgroup = {
0, /* group_id, set by randomize_tls_alg_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
-1, /* mindtls */
-1, /* maxdtls */
1 /* is_kem */
};
#define ALGORITHM "XOR"
static const OSSL_PARAM xor_group_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
XORGROUP_NAME, sizeof(XORGROUP_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
XORGROUP_NAME_INTERNAL,
sizeof(XORGROUP_NAME_INTERNAL)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
sizeof(ALGORITHM)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
&xor_group.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem),
OSSL_PARAM_END
};
static const OSSL_PARAM xor_kemgroup_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
XORKEMGROUP_NAME_INTERNAL,
sizeof(XORKEMGROUP_NAME_INTERNAL)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
sizeof(ALGORITHM)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
&xor_kemgroup.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem),
OSSL_PARAM_END
};
#define NUM_DUMMY_GROUPS 50
static char *dummy_group_names[NUM_DUMMY_GROUPS];
/*
* We define a dummy TLS sigalg called for test purposes
*/
struct tls_sigalg_st {
unsigned int code_point; /* for "tls-sigalg-alg", see provider-base(7) */
unsigned int secbits;
unsigned int mintls;
unsigned int maxtls;
};
#define XORSIGALG_NAME "xorhmacsig"
#define XORSIGALG_OID "1.3.6.1.4.1.16604.998888.1"
#define XORSIGALG_HASH_NAME "xorhmacsha2sig"
#define XORSIGALG_HASH "SHA256"
#define XORSIGALG_HASH_OID "1.3.6.1.4.1.16604.998888.2"
#define XORSIGALG12_NAME "xorhmacsig12"
#define XORSIGALG12_OID "1.3.6.1.4.1.16604.998888.3"
static struct tls_sigalg_st xor_sigalg = {
0, /* alg id, set by randomize_tls_alg_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
};
static struct tls_sigalg_st xor_sigalg_hash = {
0, /* alg id, set by randomize_tls_alg_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
};
static struct tls_sigalg_st xor_sigalg12 = {
0, /* alg id, set by randomize_tls_alg_id() */
128, /* secbits */
TLS1_2_VERSION, /* mintls */
TLS1_2_VERSION, /* maxtls */
};
static const OSSL_PARAM xor_sig_nohash_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME,
XORSIGALG_NAME, sizeof(XORSIGALG_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME,
XORSIGALG_NAME,
sizeof(XORSIGALG_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID,
XORSIGALG_OID, sizeof(XORSIGALG_OID)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT,
&xor_sigalg.code_point),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS,
&xor_sigalg.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS,
&xor_sigalg.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS,
&xor_sigalg.maxtls),
OSSL_PARAM_END
};
static const OSSL_PARAM xor_sig_hash_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME,
XORSIGALG_HASH_NAME, sizeof(XORSIGALG_HASH_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME,
XORSIGALG_HASH_NAME,
sizeof(XORSIGALG_HASH_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME,
XORSIGALG_HASH, sizeof(XORSIGALG_HASH)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID,
XORSIGALG_HASH_OID, sizeof(XORSIGALG_HASH_OID)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT,
&xor_sigalg_hash.code_point),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS,
&xor_sigalg_hash.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS,
&xor_sigalg_hash.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS,
&xor_sigalg_hash.maxtls),
OSSL_PARAM_END
};
static const OSSL_PARAM xor_sig_12_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME,
XORSIGALG12_NAME, sizeof(XORSIGALG12_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_NAME,
XORSIGALG12_NAME,
sizeof(XORSIGALG12_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_SIGALG_OID,
XORSIGALG12_OID, sizeof(XORSIGALG12_OID)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT,
&xor_sigalg12.code_point),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS,
&xor_sigalg12.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS,
&xor_sigalg12.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS,
&xor_sigalg12.maxtls),
OSSL_PARAM_END
};
static int tls_prov_get_capabilities(void *provctx, const char *capability,
OSSL_CALLBACK *cb, void *arg)
{
int ret = 0;
int i;
const char *dummy_base = "dummy";
const size_t dummy_name_max_size = strlen(dummy_base) + 3;
if (strcmp(capability, "TLS-GROUP") == 0) {
/* Register our 2 groups */
ret = cb(xor_group_params, arg);
ret &= cb(xor_kemgroup_params, arg);
/*
* Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined
* in ssl/t1_lib.c, to make sure we exercise the code paths for registering
* large numbers of groups.
*/
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)];
memcpy(dummygroup, xor_group_params, sizeof(xor_group_params));
/* Give the dummy group a unique name */
if (dummy_group_names[i] == NULL) {
dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size);
if (dummy_group_names[i] == NULL)
return 0;
BIO_snprintf(dummy_group_names[i],
dummy_name_max_size,
"%s%d", dummy_base, i);
}
dummygroup[0].data = dummy_group_names[i];
dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1;
ret &= cb(dummygroup, arg);
}
}
if (strcmp(capability, "TLS-SIGALG") == 0) {
ret = cb(xor_sig_nohash_params, arg);
ret &= cb(xor_sig_hash_params, arg);
ret &= cb(xor_sig_12_params, arg);
}
return ret;
}
typedef struct {
OSSL_LIB_CTX *libctx;
} PROV_XOR_CTX;
static PROV_XOR_CTX *xor_newprovctx(OSSL_LIB_CTX *libctx)
{
PROV_XOR_CTX* prov_ctx = OPENSSL_malloc(sizeof(PROV_XOR_CTX));
if (prov_ctx == NULL)
return NULL;
if (libctx == NULL) {
OPENSSL_free(prov_ctx);
return NULL;
}
prov_ctx->libctx = libctx;
return prov_ctx;
}
#define PROV_XOR_LIBCTX_OF(provctx) (((PROV_XOR_CTX *)provctx)->libctx)
/*
* Dummy "XOR" Key Exchange and signature algorithm. We just xor the
* private and public keys together. Don't use this!
*/
typedef struct {
XORKEY *key;
XORKEY *peerkey;
void *provctx;
} PROV_XORKEMKEX_CTX;
static void *xor_newkemkexctx(void *provctx)
{
PROV_XORKEMKEX_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XORKEMKEX_CTX));
if (pxorctx == NULL)
return NULL;
pxorctx->provctx = provctx;
return pxorctx;
}
static int xor_init(void *vpxorctx, void *vkey,
ossl_unused const OSSL_PARAM params[])
{
PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx;
if (pxorctx == NULL || vkey == NULL)
return 0;
pxorctx->key = vkey;
return 1;
}
static int xor_set_peer(void *vpxorctx, void *vpeerkey)
{
PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx;
if (pxorctx == NULL || vpeerkey == NULL)
return 0;
pxorctx->peerkey = vpeerkey;
return 1;
}
static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen,
size_t outlen)
{
PROV_XORKEMKEX_CTX *pxorctx = (PROV_XORKEMKEX_CTX *)vpxorctx;
int i;
if (pxorctx->key == NULL || pxorctx->peerkey == NULL)
return 0;
*secretlen = XOR_KEY_SIZE;
if (secret == NULL)
return 1;
if (outlen < XOR_KEY_SIZE)
return 0;
for (i = 0; i < XOR_KEY_SIZE; i++)
secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i];
return 1;
}
static void xor_freectx(void *pxorctx)
{
OPENSSL_free(pxorctx);
}
static void *xor_dupctx(void *vpxorctx)
{
PROV_XORKEMKEX_CTX *srcctx = (PROV_XORKEMKEX_CTX *)vpxorctx;
PROV_XORKEMKEX_CTX *dstctx;
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
if (dstctx == NULL)
return NULL;
*dstctx = *srcctx;
return dstctx;
}
static const OSSL_DISPATCH xor_keyexch_functions[] = {
{ OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newkemkexctx },
{ OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive },
{ OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer },
{ OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx },
{ OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx },
OSSL_DISPATCH_END
};
static const OSSL_ALGORITHM tls_prov_keyexch[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions },
{ NULL, NULL, NULL }
};
/*
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
* Don't use this!
*/
static int xor_encapsulate(void *vpxorctx,
unsigned char *ct, size_t *ctlen,
unsigned char *ss, size_t *sslen)
{
/*
* We are building this around a KEX:
*
* 1. we generate ephemeral keypair
* 2. we encode our ephemeral pubkey as the outgoing ct
* 3. we derive using our ephemeral privkey in combination with the peer
* pubkey from the ctx; the result is our ss.
*/
int rv = 0;
void *genctx = NULL, *derivectx = NULL;
XORKEY *ourkey = NULL;
PROV_XORKEMKEX_CTX *pxorctx = vpxorctx;
if (ct == NULL || ss == NULL) {
/* Just return sizes */
if (ctlen == NULL && sslen == NULL)
return 0;
if (ctlen != NULL)
*ctlen = XOR_KEY_SIZE;
if (sslen != NULL)
*sslen = XOR_KEY_SIZE;
return 1;
}
/* 1. Generate keypair */
genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL);
if (genctx == NULL)
goto end;
ourkey = xor_gen(genctx, NULL, NULL);
if (ourkey == NULL)
goto end;
/* 2. Encode ephemeral pubkey as ct */
memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE);
*ctlen = XOR_KEY_SIZE;
/* 3. Derive ss via KEX */
derivectx = xor_newkemkexctx(pxorctx->provctx);
if (derivectx == NULL
|| !xor_init(derivectx, ourkey, NULL)
|| !xor_set_peer(derivectx, pxorctx->key)
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
goto end;
rv = 1;
end:
xor_gen_cleanup(genctx);
xor_freekey(ourkey);
xor_freectx(derivectx);
return rv;
}
static int xor_decapsulate(void *vpxorctx,
unsigned char *ss, size_t *sslen,
const unsigned char *ct, size_t ctlen)
{
/*
* We are building this around a KEX:
*
* - ct is our peer's pubkey
* - decapsulate is just derive.
*/
int rv = 0;
void *derivectx = NULL;
XORKEY *peerkey = NULL;
PROV_XORKEMKEX_CTX *pxorctx = vpxorctx;
if (ss == NULL) {
/* Just return size */
if (sslen == NULL)
return 0;
*sslen = XOR_KEY_SIZE;
return 1;
}
if (ctlen != XOR_KEY_SIZE)
return 0;
peerkey = xor_newkey(pxorctx->provctx);
if (peerkey == NULL)
goto end;
memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE);
/* Derive ss via KEX */
derivectx = xor_newkemkexctx(pxorctx->provctx);
if (derivectx == NULL
|| !xor_init(derivectx, pxorctx->key, NULL)
|| !xor_set_peer(derivectx, peerkey)
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
goto end;
rv = 1;
end:
xor_freekey(peerkey);
xor_freectx(derivectx);
return rv;
}
static const OSSL_DISPATCH xor_kem_functions[] = {
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newkemkexctx },
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx },
{ OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx },
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate },
{ OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate },
OSSL_DISPATCH_END
};
static const OSSL_ALGORITHM tls_prov_kem[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes", xor_kem_functions },
{ NULL, NULL, NULL }
};
/* Key Management for the dummy XOR key exchange algorithm */
static void *xor_newkey(void *provctx)
{
XORKEY *ret = OPENSSL_zalloc(sizeof(XORKEY));
if (ret == NULL)
return NULL;
ret->references = 1;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ret);
return NULL;
}
return ret;
}
static void xor_freekey(void *keydata)
{
XORKEY* key = (XORKEY *)keydata;
int refcnt;
if (key == NULL)
return;
if (CRYPTO_DOWN_REF(&key->references, &refcnt, key->lock) <= 0)
return;
if (refcnt > 0)
return;
assert(refcnt == 0);
if (key != NULL) {
OPENSSL_free(key->tls_name);
key->tls_name = NULL;
}
CRYPTO_THREAD_lock_free(key->lock);
OPENSSL_free(key);
}
static int xor_key_up_ref(XORKEY *key)
{
int refcnt;
if (CRYPTO_UP_REF(&key->references, &refcnt, key->lock) <= 0)
return 0;
assert(refcnt > 1);
return (refcnt > 1);
}
static int xor_has(const void *vkey, int selection)
{
const XORKEY *key = vkey;
int ok = 0;
if (key != NULL) {
ok = 1;
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0)
ok = ok && key->haspubkey;
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0)
ok = ok && key->hasprivkey;
}
return ok;
}
static void *xor_dup(const void *vfromkey, int selection)
{
XORKEY *tokey = xor_newkey(NULL);
const XORKEY *fromkey = vfromkey;
int ok = 0;
if (tokey != NULL && fromkey != NULL) {
ok = 1;
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
if (fromkey->haspubkey) {
memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE);
tokey->haspubkey = 1;
} else {
tokey->haspubkey = 0;
}
}
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
if (fromkey->hasprivkey) {
memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE);
tokey->hasprivkey = 1;
} else {
tokey->hasprivkey = 0;
}
}
if (fromkey->tls_name != NULL)
tokey->tls_name = OPENSSL_strdup(fromkey->tls_name);
}
if (!ok) {
xor_freekey(tokey);
tokey = NULL;
}
return tokey;
}
static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[])
{
XORKEY *key = vkey;
OSSL_PARAM *p;
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL
&& !OSSL_PARAM_set_int(p, XOR_KEY_SIZE))
return 0;
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL
&& !OSSL_PARAM_set_int(p, xor_group.secbits))
return 0;
if ((p = OSSL_PARAM_locate(params,
OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING)
return 0;
p->return_size = XOR_KEY_SIZE;
if (p->data != NULL && p->data_size >= XOR_KEY_SIZE)
memcpy(p->data, key->pubkey, XOR_KEY_SIZE);
}
return 1;
}
static const OSSL_PARAM xor_params[] = {
OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL),
OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL),
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_gettable_params(void *provctx)
{
return xor_params;
}
static int xor_set_params(void *vkey, const OSSL_PARAM params[])
{
XORKEY *key = vkey;
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING
|| p->data_size != XOR_KEY_SIZE)
return 0;
memcpy(key->pubkey, p->data, XOR_KEY_SIZE);
key->haspubkey = 1;
}
return 1;
}
static const OSSL_PARAM xor_known_settable_params[] = {
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
OSSL_PARAM_END
};
static void *xor_load(const void *reference, size_t reference_sz)
{
XORKEY *key = NULL;
if (reference_sz == sizeof(key)) {
/* The contents of the reference is the address to our object */
key = *(XORKEY **)reference;
/* We grabbed, so we detach it */
*(XORKEY **)reference = NULL;
return key;
}
return NULL;
}
/* check one key is the "XOR complement" of the other */
static int xor_recreate(const unsigned char *kd1, const unsigned char *kd2) {
int i;
for (i = 0; i < XOR_KEY_SIZE; i++) {
if ((kd1[i] & 0xff) != ((kd2[i] ^ private_constant[i]) & 0xff))
return 0;
}
return 1;
}
static int xor_match(const void *keydata1, const void *keydata2, int selection)
{
const XORKEY *key1 = keydata1;
const XORKEY *key2 = keydata2;
int ok = 1;
if (key1->tls_name != NULL && key2->tls_name != NULL)
ok = ok & (strcmp(key1->tls_name, key2->tls_name) == 0);
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
if (key1->hasprivkey) {
if (key2->hasprivkey)
ok = ok & (CRYPTO_memcmp(key1->privkey, key2->privkey,
XOR_KEY_SIZE) == 0);
else
ok = ok & xor_recreate(key1->privkey, key2->pubkey);
} else {
if (key2->hasprivkey)
ok = ok & xor_recreate(key2->privkey, key1->pubkey);
else
ok = 0;
}
}
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
if (key1->haspubkey) {
if (key2->haspubkey)
ok = ok & (CRYPTO_memcmp(key1->pubkey, key2->pubkey, XOR_KEY_SIZE) == 0);
else
ok = ok & xor_recreate(key1->pubkey, key2->privkey);
} else {
if (key2->haspubkey)
ok = ok & xor_recreate(key2->pubkey, key1->privkey);
else
ok = 0;
}
}
return ok;
}
static const OSSL_PARAM *xor_settable_params(void *provctx)
{
return xor_known_settable_params;
}
struct xor_gen_ctx {
int selection;
OSSL_LIB_CTX *libctx;
};
static void *xor_gen_init(void *provctx, int selection,
const OSSL_PARAM params[])
{
struct xor_gen_ctx *gctx = NULL;
if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR
| OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0)
return NULL;
if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL)
gctx->selection = selection;
gctx->libctx = PROV_XOR_LIBCTX_OF(provctx);
if (!xor_gen_set_params(gctx, params)) {
OPENSSL_free(gctx);
return NULL;
}
return gctx;
}
static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[])
{
struct xor_gen_ctx *gctx = genctx;
const OSSL_PARAM *p;
if (gctx == NULL)
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0
&& strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0))
return 0;
}
return 1;
}
static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx,
ossl_unused void *provctx)
{
static OSSL_PARAM settable[] = {
OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0),
OSSL_PARAM_END
};
return settable;
}
static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg)
{
struct xor_gen_ctx *gctx = genctx;
XORKEY *key = xor_newkey(NULL);
size_t i;
if (key == NULL)
return NULL;
if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) {
if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) {
OPENSSL_free(key);
return NULL;
}
for (i = 0; i < XOR_KEY_SIZE; i++)
key->pubkey[i] = key->privkey[i] ^ private_constant[i];
key->hasprivkey = 1;
key->haspubkey = 1;
}
return key;
}
/* IMPORT + EXPORT */
static int xor_import(void *vkey, int select, const OSSL_PARAM params[])
{
XORKEY *key = vkey;
const OSSL_PARAM *param_priv_key, *param_pub_key;
unsigned char privkey[XOR_KEY_SIZE];
unsigned char pubkey[XOR_KEY_SIZE];
void *pprivkey = privkey, *ppubkey = pubkey;
size_t priv_len = 0, pub_len = 0;
int res = 0;
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
return 0;
memset(privkey, 0, sizeof(privkey));
memset(pubkey, 0, sizeof(pubkey));
param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY);
param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY);
if ((param_priv_key != NULL
&& !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey,
sizeof(privkey), &priv_len))
|| (param_pub_key != NULL
&& !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey,
sizeof(pubkey), &pub_len)))
goto err;
if (priv_len > 0) {
memcpy(key->privkey, privkey, priv_len);
key->hasprivkey = 1;
}
if (pub_len > 0) {
memcpy(key->pubkey, pubkey, pub_len);
key->haspubkey = 1;
}
res = 1;
err:
return res;
}
static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb,
void *cbarg)
{
XORKEY *key = vkey;
OSSL_PARAM params[3], *p = params;
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
return 0;
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY,
key->privkey,
sizeof(key->privkey));
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
key->pubkey, sizeof(key->pubkey));
*p++ = OSSL_PARAM_construct_end();
return param_cb(params, cbarg);
}
static const OSSL_PARAM xor_key_types[] = {
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0),
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_import_types(int select)
{
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
}
static const OSSL_PARAM *xor_import_types_ex(void *provctx, int select)
{
if (provctx == NULL)
return NULL;
return xor_import_types(select);
}
static const OSSL_PARAM *xor_export_types(int select)
{
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
}
static const OSSL_PARAM *xor_export_types_ex(void *provctx, int select)
{
if (provctx == NULL)
return NULL;
return xor_export_types(select);
}
static void xor_gen_cleanup(void *genctx)
{
OPENSSL_free(genctx);
}
static const OSSL_DISPATCH xor_keymgmt_functions[] = {
{ OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey },
{ OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init },
{ OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params },
{ OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS,
(void (*)(void))xor_gen_settable_params },
{ OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen },
{ OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup },
{ OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params },
{ OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params },
{ OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params },
{ OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params },
{ OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has },
{ OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup },
{ OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey },
{ OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import },
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types },
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES_EX, (void (*)(void))xor_import_types_ex },
{ OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export },
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types },
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES_EX, (void (*)(void))xor_export_types_ex },
OSSL_DISPATCH_END
};
/* We're re-using most XOR keymgmt functions also for signature operations: */
static void *xor_xorhmacsig_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg)
{
XORKEY *k = xor_gen(genctx, osslcb, cbarg);
if (k == NULL)
return NULL;
k->tls_name = OPENSSL_strdup(XORSIGALG_NAME);
if (k->tls_name == NULL) {
xor_freekey(k);
return NULL;
}
return k;
}
static void *xor_xorhmacsha2sig_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg)
{
XORKEY* k = xor_gen(genctx, osslcb, cbarg);
if (k == NULL)
return NULL;
k->tls_name = OPENSSL_strdup(XORSIGALG_HASH_NAME);
if (k->tls_name == NULL) {
xor_freekey(k);
return NULL;
}
return k;
}
static const OSSL_DISPATCH xor_xorhmacsig_keymgmt_functions[] = {
{ OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey },
{ OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init },
{ OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params },
{ OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS,
(void (*)(void))xor_gen_settable_params },
{ OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_xorhmacsig_gen },
{ OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup },
{ OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params },
{ OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params },
{ OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params },
{ OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params },
{ OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has },
{ OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup },
{ OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey },
{ OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import },
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types },
{ OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export },
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types },
{ OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))xor_load },
{ OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))xor_match },
OSSL_DISPATCH_END
};
static const OSSL_DISPATCH xor_xorhmacsha2sig_keymgmt_functions[] = {
{ OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newkey },
{ OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init },
{ OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params },
{ OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS,
(void (*)(void))xor_gen_settable_params },
{ OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_xorhmacsha2sig_gen },
{ OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup },
{ OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params },
{ OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params },
{ OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params },
{ OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params },
{ OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has },
{ OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup },
{ OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freekey },
{ OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import },
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types },
{ OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export },
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types },
{ OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))xor_load },
{ OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))xor_match },
OSSL_DISPATCH_END
};
typedef enum {
KEY_OP_PUBLIC,
KEY_OP_PRIVATE,
KEY_OP_KEYGEN
} xor_key_op_t;
/* Re-create XORKEY from encoding(s): Same end-state as after key-gen */
static XORKEY *xor_key_op(const X509_ALGOR *palg,
const unsigned char *p, int plen,
xor_key_op_t op,
OSSL_LIB_CTX *libctx, const char *propq)
{
XORKEY *key = NULL;
int nid = NID_undef;
if (palg != NULL) {
int ptype;
/* Algorithm parameters must be absent */
X509_ALGOR_get0(NULL, &ptype, NULL, palg);
if (ptype != V_ASN1_UNDEF || palg->algorithm == NULL) {
ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING);
return 0;
}
nid = OBJ_obj2nid(palg->algorithm);
}
if (p == NULL || nid == EVP_PKEY_NONE || nid == NID_undef) {
ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING);
return 0;
}
key = xor_newkey(NULL);
if (key == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
return 0;
}
if (XOR_KEY_SIZE != plen) {
ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_ENCODING);
goto err;
}
if (op == KEY_OP_PUBLIC) {
memcpy(key->pubkey, p, plen);
key->haspubkey = 1;
} else {
memcpy(key->privkey, p, plen);
key->hasprivkey = 1;
}
key->tls_name = OPENSSL_strdup(OBJ_nid2sn(nid));
if (key->tls_name == NULL)
goto err;
return key;
err:
xor_freekey(key);
return NULL;
}
static XORKEY *xor_key_from_x509pubkey(const X509_PUBKEY *xpk,
OSSL_LIB_CTX *libctx, const char *propq)
{
const unsigned char *p;
int plen;
X509_ALGOR *palg;
if (!xpk || (!X509_PUBKEY_get0_param(NULL, &p, &plen, &palg, xpk))) {
return NULL;
}
return xor_key_op(palg, p, plen, KEY_OP_PUBLIC, libctx, propq);
}
static XORKEY *xor_key_from_pkcs8(const PKCS8_PRIV_KEY_INFO *p8inf,
OSSL_LIB_CTX *libctx, const char *propq)
{
XORKEY *xork = NULL;
const unsigned char *p;
int plen;
ASN1_OCTET_STRING *oct = NULL;
const X509_ALGOR *palg;
if (!PKCS8_pkey_get0(NULL, &p, &plen, &palg, p8inf))
return 0;
oct = d2i_ASN1_OCTET_STRING(NULL, &p, plen);
if (oct == NULL) {
p = NULL;
plen = 0;
} else {
p = ASN1_STRING_get0_data(oct);
plen = ASN1_STRING_length(oct);
}
xork = xor_key_op(palg, p, plen, KEY_OP_PRIVATE,
libctx, propq);
ASN1_OCTET_STRING_free(oct);
return xork;
}
static const OSSL_ALGORITHM tls_prov_keymgmt[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes",
xor_keymgmt_functions },
{ XORSIGALG_NAME, "provider=tls-provider,fips=yes",
xor_xorhmacsig_keymgmt_functions },
{ XORSIGALG_HASH_NAME,
"provider=tls-provider,fips=yes",
xor_xorhmacsha2sig_keymgmt_functions },
{ NULL, NULL, NULL }
};
struct key2any_ctx_st {
PROV_XOR_CTX *provctx;
/* Set to 0 if parameters should not be saved (dsa only) */
int save_parameters;
/* Set to 1 if intending to encrypt/decrypt, otherwise 0 */
int cipher_intent;
EVP_CIPHER *cipher;
OSSL_PASSPHRASE_CALLBACK *pwcb;
void *pwcbarg;
};
typedef int check_key_type_fn(const void *key, int nid);
typedef int key_to_paramstring_fn(const void *key, int nid, int save,
void **str, int *strtype);
typedef int key_to_der_fn(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx);
typedef int write_bio_of_void_fn(BIO *bp, const void *x);
/* Free the blob allocated during key_to_paramstring_fn */
static void free_asn1_data(int type, void *data)
{
switch(type) {
case V_ASN1_OBJECT:
ASN1_OBJECT_free(data);
break;
case V_ASN1_SEQUENCE:
ASN1_STRING_free(data);
break;
}
}
static PKCS8_PRIV_KEY_INFO *key_to_p8info(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final PKCS#8 info */
PKCS8_PRIV_KEY_INFO *p8info = NULL;
if ((p8info = PKCS8_PRIV_KEY_INFO_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !PKCS8_pkey_set0(p8info, OBJ_nid2obj(key_nid), 0,
V_ASN1_UNDEF, NULL,
der, derlen)) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
PKCS8_PRIV_KEY_INFO_free(p8info);
OPENSSL_free(der);
p8info = NULL;
}
return p8info;
}
static X509_SIG *p8info_to_encp8(PKCS8_PRIV_KEY_INFO *p8info,
struct key2any_ctx_st *ctx)
{
X509_SIG *p8 = NULL;
char kstr[PEM_BUFSIZE];
size_t klen = 0;
OSSL_LIB_CTX *libctx = PROV_XOR_LIBCTX_OF(ctx->provctx);
if (ctx->cipher == NULL || ctx->pwcb == NULL)
return NULL;
if (!ctx->pwcb(kstr, PEM_BUFSIZE, &klen, NULL, ctx->pwcbarg)) {
ERR_raise(ERR_LIB_USER, PROV_R_UNABLE_TO_GET_PASSPHRASE);
return NULL;
}
/* First argument == -1 means "standard" */
p8 = PKCS8_encrypt_ex(-1, ctx->cipher, kstr, klen, NULL, 0, 0, p8info, libctx, NULL);
OPENSSL_cleanse(kstr, klen);
return p8;
}
static X509_SIG *key_to_encp8(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d, struct key2any_ctx_st *ctx)
{
PKCS8_PRIV_KEY_INFO *p8info =
key_to_p8info(key, key_nid, params, params_type, k2d);
X509_SIG *p8 = NULL;
if (p8info == NULL) {
free_asn1_data(params_type, params);
} else {
p8 = p8info_to_encp8(p8info, ctx);
PKCS8_PRIV_KEY_INFO_free(p8info);
}
return p8;
}
static X509_PUBKEY *xorx_key_to_pubkey(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final X509_PUBKEY */
X509_PUBKEY *xpk = NULL;
if ((xpk = X509_PUBKEY_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !X509_PUBKEY_set0_param(xpk, OBJ_nid2obj(key_nid),
V_ASN1_UNDEF, NULL,
der, derlen)) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
X509_PUBKEY_free(xpk);
OPENSSL_free(der);
xpk = NULL;
}
return xpk;
}
/*
* key_to_epki_* produce encoded output with the private key data in a
* EncryptedPrivateKeyInfo structure (defined by PKCS#8). They require
* that there's an intent to encrypt, anything else is an error.
*
* key_to_pki_* primarily produce encoded output with the private key data
* in a PrivateKeyInfo structure (also defined by PKCS#8). However, if
* there is an intent to encrypt the data, the corresponding key_to_epki_*
* function is used instead.
*
* key_to_spki_* produce encoded output with the public key data in an
* X.509 SubjectPublicKeyInfo.
*
* Key parameters don't have any defined envelopment of this kind, but are
* included in some manner in the output from the functions described above,
* either in the AlgorithmIdentifier's parameter field, or as part of the
* key data itself.
*/
static int key_to_epki_der_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_SIG *p8;
if (!ctx->cipher_intent)
return 0;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = i2d_PKCS8_bio(out, p8);
X509_SIG_free(p8);
return ret;
}
static int key_to_epki_pem_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_SIG *p8;
if (!ctx->cipher_intent)
return 0;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = PEM_write_bio_PKCS8(out, p8);
X509_SIG_free(p8);
return ret;
}
static int key_to_pki_der_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
PKCS8_PRIV_KEY_INFO *p8info;
if (ctx->cipher_intent)
return key_to_epki_der_priv_bio(out, key, key_nid, pemname,
p2s, k2d, ctx);
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8info);
else
free_asn1_data(strtype, str);
PKCS8_PRIV_KEY_INFO_free(p8info);
return ret;
}
static int key_to_pki_pem_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
PKCS8_PRIV_KEY_INFO *p8info;
if (ctx->cipher_intent)
return key_to_epki_pem_priv_bio(out, key, key_nid, pemname,
p2s, k2d, ctx);
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8info);
else
free_asn1_data(strtype, str);
PKCS8_PRIV_KEY_INFO_free(p8info);
return ret;
}
static int key_to_spki_der_pub_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
X509_PUBKEY *xpk = NULL;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
xpk = xorx_key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = i2d_X509_PUBKEY_bio(out, xpk);
X509_PUBKEY_free(xpk);
return ret;
}
static int key_to_spki_pem_pub_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
X509_PUBKEY *xpk = NULL;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
xpk = xorx_key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = PEM_write_bio_X509_PUBKEY(out, xpk);
else
free_asn1_data(strtype, str);
/* Also frees |str| */
X509_PUBKEY_free(xpk);
return ret;
}
/* ---------------------------------------------------------------------- */
static int prepare_xorx_params(const void *xorxkey, int nid, int save,
void **pstr, int *pstrtype)
{
ASN1_OBJECT *params = NULL;
XORKEY *k = (XORKEY*)xorxkey;
if (k->tls_name && OBJ_sn2nid(k->tls_name) != nid) {
ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_KEY);
return 0;
}
if (nid == NID_undef) {
ERR_raise(ERR_LIB_USER, XORPROV_R_MISSING_OID);
return 0;
}
params = OBJ_nid2obj(nid);
if (params == NULL || OBJ_length(params) == 0) {
/* unexpected error */
ERR_raise(ERR_LIB_USER, XORPROV_R_MISSING_OID);
ASN1_OBJECT_free(params);
return 0;
}
*pstr = params;
*pstrtype = V_ASN1_OBJECT;
return 1;
}
static int xorx_spki_pub_to_der(const void *vecxkey, unsigned char **pder)
{
const XORKEY *xorxkey = vecxkey;
unsigned char *keyblob;
int retlen;
if (xorxkey == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
keyblob = OPENSSL_memdup(xorxkey->pubkey, retlen = XOR_KEY_SIZE);
if (keyblob == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
return 0;
}
*pder = keyblob;
return retlen;
}
static int xorx_pki_priv_to_der(const void *vecxkey, unsigned char **pder)
{
XORKEY *xorxkey = (XORKEY *)vecxkey;
unsigned char* buf = NULL;
ASN1_OCTET_STRING oct;
int keybloblen;
if (xorxkey == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
buf = OPENSSL_secure_malloc(XOR_KEY_SIZE);
memcpy(buf, xorxkey->privkey, XOR_KEY_SIZE);
oct.data = buf;
oct.length = XOR_KEY_SIZE;
oct.flags = 0;
keybloblen = i2d_ASN1_OCTET_STRING(&oct, pder);
if (keybloblen < 0) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
keybloblen = 0;
}
OPENSSL_secure_clear_free(buf, XOR_KEY_SIZE);
return keybloblen;
}
# define xorx_epki_priv_to_der xorx_pki_priv_to_der
/*
* XORX only has PKCS#8 / SubjectPublicKeyInfo
* representation, so we don't define xorx_type_specific_[priv,pub,params]_to_der.
*/
# define xorx_check_key_type NULL
# define xorhmacsig_evp_type 0
# define xorhmacsig_input_type XORSIGALG_NAME
# define xorhmacsig_pem_type XORSIGALG_NAME
# define xorhmacsha2sig_evp_type 0
# define xorhmacsha2sig_input_type XORSIGALG_HASH_NAME
# define xorhmacsha2sig_pem_type XORSIGALG_HASH_NAME
/* ---------------------------------------------------------------------- */
static OSSL_FUNC_decoder_newctx_fn key2any_newctx;
static OSSL_FUNC_decoder_freectx_fn key2any_freectx;
static void *key2any_newctx(void *provctx)
{
struct key2any_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx != NULL) {
ctx->provctx = provctx;
ctx->save_parameters = 1;
}
return ctx;
}
static void key2any_freectx(void *vctx)
{
struct key2any_ctx_st *ctx = vctx;
EVP_CIPHER_free(ctx->cipher);
OPENSSL_free(ctx);
}
static const OSSL_PARAM *key2any_settable_ctx_params(ossl_unused void *provctx)
{
static const OSSL_PARAM settables[] = {
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END,
};
return settables;
}
static int key2any_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
struct key2any_ctx_st *ctx = vctx;
OSSL_LIB_CTX *libctx = PROV_XOR_LIBCTX_OF(ctx->provctx);
const OSSL_PARAM *cipherp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_CIPHER);
const OSSL_PARAM *propsp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_PROPERTIES);
const OSSL_PARAM *save_paramsp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_SAVE_PARAMETERS);
if (cipherp != NULL) {
const char *ciphername = NULL;
const char *props = NULL;
if (!OSSL_PARAM_get_utf8_string_ptr(cipherp, &ciphername))
return 0;
if (propsp != NULL && !OSSL_PARAM_get_utf8_string_ptr(propsp, &props))
return 0;
EVP_CIPHER_free(ctx->cipher);
ctx->cipher = NULL;
ctx->cipher_intent = ciphername != NULL;
if (ciphername != NULL
&& ((ctx->cipher =
EVP_CIPHER_fetch(libctx, ciphername, props)) == NULL)) {
return 0;
}
}
if (save_paramsp != NULL) {
if (!OSSL_PARAM_get_int(save_paramsp, &ctx->save_parameters)) {
return 0;
}
}
return 1;
}
static int key2any_check_selection(int selection, int selection_mask)
{
/*
* The selections are kinda sorta "levels", i.e. each selection given
* here is assumed to include those following.
*/
int checks[] = {
OSSL_KEYMGMT_SELECT_PRIVATE_KEY,
OSSL_KEYMGMT_SELECT_PUBLIC_KEY,
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
};
size_t i;
/* The decoder implementations made here support guessing */
if (selection == 0)
return 1;
for (i = 0; i < OSSL_NELEM(checks); i++) {
int check1 = (selection & checks[i]) != 0;
int check2 = (selection_mask & checks[i]) != 0;
/*
* If the caller asked for the currently checked bit(s), return
* whether the decoder description says it's supported.
*/
if (check1)
return check2;
}
/* This should be dead code, but just to be safe... */
return 0;
}
static int key2any_encode(struct key2any_ctx_st *ctx, OSSL_CORE_BIO *cout,
const void *key, const char* typestr, const char *pemname,
key_to_der_fn *writer,
OSSL_PASSPHRASE_CALLBACK *pwcb, void *pwcbarg,
key_to_paramstring_fn *key2paramstring,
i2d_of_void *key2der)
{
int ret = 0;
int type = OBJ_sn2nid(typestr);
if (key == NULL || type <= 0) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
} else if (writer != NULL) {
BIO *out = BIO_new_from_core_bio(ctx->provctx->libctx, cout);
if (out != NULL) {
ctx->pwcb = pwcb;
ctx->pwcbarg = pwcbarg;
ret = writer(out, key, type, pemname, key2paramstring, key2der, ctx);
}
BIO_free(out);
} else {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT);
}
return ret;
}
#define DO_ENC_PRIVATE_KEY_selection_mask OSSL_KEYMGMT_SELECT_PRIVATE_KEY
#define DO_ENC_PRIVATE_KEY(impl, type, kind, output) \
if ((selection & DO_ENC_PRIVATE_KEY_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PRIVATE KEY", \
key_to_##kind##_##output##_priv_bio, \
cb, cbarg, prepare_##type##_params, \
type##_##kind##_priv_to_der);
#define DO_ENC_PUBLIC_KEY_selection_mask OSSL_KEYMGMT_SELECT_PUBLIC_KEY
#define DO_ENC_PUBLIC_KEY(impl, type, kind, output) \
if ((selection & DO_ENC_PUBLIC_KEY_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PUBLIC KEY", \
key_to_##kind##_##output##_pub_bio, \
cb, cbarg, prepare_##type##_params, \
type##_##kind##_pub_to_der);
#define DO_ENC_PARAMETERS_selection_mask OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
#define DO_ENC_PARAMETERS(impl, type, kind, output) \
if ((selection & DO_ENC_PARAMETERS_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PARAMETERS", \
key_to_##kind##_##output##_param_bio, \
NULL, NULL, NULL, \
type##_##kind##_params_to_der);
/*-
* Implement the kinds of output structure that can be produced. They are
* referred to by name, and for each name, the following macros are defined
* (braces not included):
*
* DO_{kind}_selection_mask
*
* A mask of selection bits that must not be zero. This is used as a
* selection criterion for each implementation.
* This mask must never be zero.
*
* DO_{kind}
*
* The performing macro. It must use the DO_ macros defined above,
* always in this order:
*
* - DO_PRIVATE_KEY
* - DO_PUBLIC_KEY
* - DO_PARAMETERS
*
* Any of those may be omitted, but the relative order must still be
* the same.
*/
/*
* PKCS#8 defines two structures for private keys only:
* - PrivateKeyInfo (raw unencrypted form)
* - EncryptedPrivateKeyInfo (encrypted wrapping)
*
* To allow a certain amount of flexibility, we allow the routines
* for PrivateKeyInfo to also produce EncryptedPrivateKeyInfo if a
* passphrase callback has been passed to them.
*/
#define DO_ENC_PrivateKeyInfo_selection_mask DO_ENC_PRIVATE_KEY_selection_mask
#define DO_ENC_PrivateKeyInfo(impl, type, output) \
DO_ENC_PRIVATE_KEY(impl, type, pki, output)
#define DO_ENC_EncryptedPrivateKeyInfo_selection_mask DO_ENC_PRIVATE_KEY_selection_mask
#define DO_ENC_EncryptedPrivateKeyInfo(impl, type, output) \
DO_ENC_PRIVATE_KEY(impl, type, epki, output)
/* SubjectPublicKeyInfo is a structure for public keys only */
#define DO_ENC_SubjectPublicKeyInfo_selection_mask DO_ENC_PUBLIC_KEY_selection_mask
#define DO_ENC_SubjectPublicKeyInfo(impl, type, output) \
DO_ENC_PUBLIC_KEY(impl, type, spki, output)
/*
* MAKE_ENCODER is the single driver for creating OSSL_DISPATCH tables.
* It takes the following arguments:
*
* impl This is the key type name that's being implemented.
* type This is the type name for the set of functions that implement
* the key type. For example, ed25519, ed448, x25519 and x448
* are all implemented with the exact same set of functions.
* kind What kind of support to implement. These translate into
* the DO_##kind macros above.
* output The output type to implement. may be der or pem.
*
* The resulting OSSL_DISPATCH array gets the following name (expressed in
* C preprocessor terms) from those arguments:
*
* xor_##impl##_to_##kind##_##output##_encoder_functions
*/
#define MAKE_ENCODER(impl, type, kind, output) \
static OSSL_FUNC_encoder_import_object_fn \
impl##_to_##kind##_##output##_import_object; \
static OSSL_FUNC_encoder_free_object_fn \
impl##_to_##kind##_##output##_free_object; \
static OSSL_FUNC_encoder_encode_fn \
impl##_to_##kind##_##output##_encode; \
\
static void * \
impl##_to_##kind##_##output##_import_object(void *vctx, int selection, \
const OSSL_PARAM params[]) \
{ \
struct key2any_ctx_st *ctx = vctx; \
\
return xor_prov_import_key(xor_##impl##_keymgmt_functions, \
ctx->provctx, selection, params); \
} \
static void impl##_to_##kind##_##output##_free_object(void *key) \
{ \
xor_prov_free_key(xor_##impl##_keymgmt_functions, key); \
} \
static int impl##_to_##kind##_##output##_does_selection(void *ctx, \
int selection) \
{ \
return key2any_check_selection(selection, \
DO_ENC_##kind##_selection_mask); \
} \
static int \
impl##_to_##kind##_##output##_encode(void *ctx, OSSL_CORE_BIO *cout, \
const void *key, \
const OSSL_PARAM key_abstract[], \
int selection, \
OSSL_PASSPHRASE_CALLBACK *cb, \
void *cbarg) \
{ \
/* We don't deal with abstract objects */ \
if (key_abstract != NULL) { \
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
DO_ENC_##kind(impl, type, output) \
\
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
static const OSSL_DISPATCH \
xor_##impl##_to_##kind##_##output##_encoder_functions[] = { \
{ OSSL_FUNC_ENCODER_NEWCTX, \
(void (*)(void))key2any_newctx }, \
{ OSSL_FUNC_ENCODER_FREECTX, \
(void (*)(void))key2any_freectx }, \
{ OSSL_FUNC_ENCODER_SETTABLE_CTX_PARAMS, \
(void (*)(void))key2any_settable_ctx_params }, \
{ OSSL_FUNC_ENCODER_SET_CTX_PARAMS, \
(void (*)(void))key2any_set_ctx_params }, \
{ OSSL_FUNC_ENCODER_DOES_SELECTION, \
(void (*)(void))impl##_to_##kind##_##output##_does_selection }, \
{ OSSL_FUNC_ENCODER_IMPORT_OBJECT, \
(void (*)(void))impl##_to_##kind##_##output##_import_object }, \
{ OSSL_FUNC_ENCODER_FREE_OBJECT, \
(void (*)(void))impl##_to_##kind##_##output##_free_object }, \
{ OSSL_FUNC_ENCODER_ENCODE, \
(void (*)(void))impl##_to_##kind##_##output##_encode }, \
OSSL_DISPATCH_END \
}
/*
* Replacements for i2d_{TYPE}PrivateKey, i2d_{TYPE}PublicKey,
* i2d_{TYPE}params, as they exist.
*/
/*
* PKCS#8 and SubjectPublicKeyInfo support. This may duplicate some of the
* implementations specified above, but are more specific.
* The SubjectPublicKeyInfo implementations also replace the
* PEM_write_bio_{TYPE}_PUBKEY functions.
* For PEM, these are expected to be used by PEM_write_bio_PrivateKey(),
* PEM_write_bio_PUBKEY() and PEM_write_bio_Parameters().
*/
MAKE_ENCODER(xorhmacsig, xorx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(xorhmacsig, xorx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(xorhmacsig, xorx, PrivateKeyInfo, der);
MAKE_ENCODER(xorhmacsig, xorx, PrivateKeyInfo, pem);
MAKE_ENCODER(xorhmacsig, xorx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(xorhmacsig, xorx, SubjectPublicKeyInfo, pem);
MAKE_ENCODER(xorhmacsha2sig, xorx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(xorhmacsha2sig, xorx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(xorhmacsha2sig, xorx, PrivateKeyInfo, der);
MAKE_ENCODER(xorhmacsha2sig, xorx, PrivateKeyInfo, pem);
MAKE_ENCODER(xorhmacsha2sig, xorx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(xorhmacsha2sig, xorx, SubjectPublicKeyInfo, pem);
static const OSSL_ALGORITHM tls_prov_encoder[] = {
#define ENCODER_PROVIDER "tls-provider"
#ifndef ENCODER_PROVIDER
# error Macro ENCODER_PROVIDER undefined
#endif
#define ENCODER_STRUCTURE_PKCS8 "pkcs8"
#define ENCODER_STRUCTURE_SubjectPublicKeyInfo "SubjectPublicKeyInfo"
#define ENCODER_STRUCTURE_PrivateKeyInfo "PrivateKeyInfo"
#define ENCODER_STRUCTURE_EncryptedPrivateKeyInfo "EncryptedPrivateKeyInfo"
#define ENCODER_STRUCTURE_PKCS1 "pkcs1"
#define ENCODER_STRUCTURE_PKCS3 "pkcs3"
/* Arguments are prefixed with '_' to avoid build breaks on certain platforms */
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
#define ENCODER_TEXT(_name, _sym) \
{ _name, \
"provider=" ENCODER_PROVIDER ",fips=yes,output=text", \
(xor_##_sym##_to_text_encoder_functions) }
#define ENCODER(_name, _sym, _fips, _output) \
{ _name, \
"provider=" ENCODER_PROVIDER ",fips=yes,output=" #_output, \
(xor_##_sym##_to_##_output##_encoder_functions) }
#define ENCODER_w_structure(_name, _sym, _output, _structure) \
{ _name, \
"provider=" ENCODER_PROVIDER ",fips=yes,output=" #_output \
",structure=" ENCODER_STRUCTURE_##_structure, \
(xor_##_sym##_to_##_structure##_##_output##_encoder_functions) }
/*
* Entries for human text "encoders"
*/
/*
* Entries for PKCS#8 and SubjectPublicKeyInfo.
* The "der" ones are added convenience for any user that wants to use
* OSSL_ENCODER directly.
* The "pem" ones also support PEM_write_bio_PrivateKey() and
* PEM_write_bio_PUBKEY().
*/
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, PrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, PrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, EncryptedPrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, EncryptedPrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, der, SubjectPublicKeyInfo),
ENCODER_w_structure(XORSIGALG_NAME, xorhmacsig, pem, SubjectPublicKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
der, PrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
pem, PrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
der, EncryptedPrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
pem, EncryptedPrivateKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
der, SubjectPublicKeyInfo),
ENCODER_w_structure(XORSIGALG_HASH_NAME, xorhmacsha2sig,
pem, SubjectPublicKeyInfo),
#undef ENCODER_PROVIDER
{ NULL, NULL, NULL }
};
struct der2key_ctx_st; /* Forward declaration */
typedef int check_key_fn(void *, struct der2key_ctx_st *ctx);
typedef void adjust_key_fn(void *, struct der2key_ctx_st *ctx);
typedef void free_key_fn(void *);
typedef void *d2i_PKCS8_fn(void **, const unsigned char **, long,
struct der2key_ctx_st *);
struct keytype_desc_st {
const char *keytype_name;
const OSSL_DISPATCH *fns; /* Keymgmt (to pilfer functions from) */
/* The input structure name */
const char *structure_name;
/*
* The EVP_PKEY_xxx type macro. Should be zero for type specific
* structures, non-zero when the outermost structure is PKCS#8 or
* SubjectPublicKeyInfo. This determines which of the function
* pointers below will be used.
*/
int evp_type;
/* The selection mask for OSSL_FUNC_decoder_does_selection() */
int selection_mask;
/* For type specific decoders, we use the corresponding d2i */
d2i_of_void *d2i_private_key; /* From type-specific DER */
d2i_of_void *d2i_public_key; /* From type-specific DER */
d2i_of_void *d2i_key_params; /* From type-specific DER */
d2i_PKCS8_fn *d2i_PKCS8; /* Wrapped in a PrivateKeyInfo */
d2i_of_void *d2i_PUBKEY; /* Wrapped in a SubjectPublicKeyInfo */
/*
* For any key, we may need to check that the key meets expectations.
* This is useful when the same functions can decode several variants
* of a key.
*/
check_key_fn *check_key;
/*
* For any key, we may need to make provider specific adjustments, such
* as ensure the key carries the correct library context.
*/
adjust_key_fn *adjust_key;
/* {type}_free() */
free_key_fn *free_key;
};
/*
* Start blatant code steal. Alternative: Open up d2i_X509_PUBKEY_INTERNAL
* as per https://github.com/openssl/openssl/issues/16697 (TBD)
* Code from from openssl/crypto/x509/x_pubkey.c as
* ossl_d2i_X509_PUBKEY_INTERNAL is presently not public
*/
struct X509_pubkey_st {
X509_ALGOR *algor;
ASN1_BIT_STRING *public_key;
EVP_PKEY *pkey;
/* extra data for the callback, used by d2i_PUBKEY_ex */
OSSL_LIB_CTX *libctx;
char *propq;
};
ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL)
static X509_PUBKEY *xorx_d2i_X509_PUBKEY_INTERNAL(const unsigned char **pp,
long len, OSSL_LIB_CTX *libctx)
{
X509_PUBKEY *xpub = OPENSSL_zalloc(sizeof(*xpub));
if (xpub == NULL)
return NULL;
return (X509_PUBKEY *)ASN1_item_d2i_ex((ASN1_VALUE **)&xpub, pp, len,
ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL),
libctx, NULL);
}
/* end steal https://github.com/openssl/openssl/issues/16697 */
/*
* Context used for DER to key decoding.
*/
struct der2key_ctx_st {
PROV_XOR_CTX *provctx;
struct keytype_desc_st *desc;
/* The selection that is passed to xor_der2key_decode() */
int selection;
/* Flag used to signal that a failure is fatal */
unsigned int flag_fatal : 1;
};
static int xor_read_der(PROV_XOR_CTX *provctx, OSSL_CORE_BIO *cin,
unsigned char **data, long *len)
{
BUF_MEM *mem = NULL;
BIO *in = BIO_new_from_core_bio(provctx->libctx, cin);
int ok = (asn1_d2i_read_bio(in, &mem) >= 0);
if (ok) {
*data = (unsigned char *)mem->data;
*len = (long)mem->length;
OPENSSL_free(mem);
}
BIO_free(in);
return ok;
}
typedef void *key_from_pkcs8_t(const PKCS8_PRIV_KEY_INFO *p8inf,
OSSL_LIB_CTX *libctx, const char *propq);
static void *xor_der2key_decode_p8(const unsigned char **input_der,
long input_der_len, struct der2key_ctx_st *ctx,
key_from_pkcs8_t *key_from_pkcs8)
{
PKCS8_PRIV_KEY_INFO *p8inf = NULL;
const X509_ALGOR *alg = NULL;
void *key = NULL;
if ((p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, input_der, input_der_len)) != NULL
&& PKCS8_pkey_get0(NULL, NULL, NULL, &alg, p8inf)
&& OBJ_obj2nid(alg->algorithm) == ctx->desc->evp_type)
key = key_from_pkcs8(p8inf, PROV_XOR_LIBCTX_OF(ctx->provctx), NULL);
PKCS8_PRIV_KEY_INFO_free(p8inf);
return key;
}
static XORKEY *xor_d2i_PUBKEY(XORKEY **a,
const unsigned char **pp, long length)
{
XORKEY *key = NULL;
X509_PUBKEY *xpk;
xpk = xorx_d2i_X509_PUBKEY_INTERNAL(pp, length, NULL);
key = xor_key_from_x509pubkey(xpk, NULL, NULL);
if (key == NULL)
goto err_exit;
if (a != NULL) {
xor_freekey(*a);
*a = key;
}
err_exit:
X509_PUBKEY_free(xpk);
return key;
}
/* ---------------------------------------------------------------------- */
static OSSL_FUNC_decoder_freectx_fn der2key_freectx;
static OSSL_FUNC_decoder_decode_fn xor_der2key_decode;
static OSSL_FUNC_decoder_export_object_fn der2key_export_object;
static struct der2key_ctx_st *
der2key_newctx(void *provctx, struct keytype_desc_st *desc, const char* tls_name)
{
struct der2key_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx != NULL) {
ctx->provctx = provctx;
ctx->desc = desc;
if (desc->evp_type == 0) {
ctx->desc->evp_type = OBJ_sn2nid(tls_name);
}
}
return ctx;
}
static void der2key_freectx(void *vctx)
{
struct der2key_ctx_st *ctx = vctx;
OPENSSL_free(ctx);
}
static int der2key_check_selection(int selection,
const struct keytype_desc_st *desc)
{
/*
* The selections are kinda sorta "levels", i.e. each selection given
* here is assumed to include those following.
*/
int checks[] = {
OSSL_KEYMGMT_SELECT_PRIVATE_KEY,
OSSL_KEYMGMT_SELECT_PUBLIC_KEY,
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
};
size_t i;
/* The decoder implementations made here support guessing */
if (selection == 0)
return 1;
for (i = 0; i < OSSL_NELEM(checks); i++) {
int check1 = (selection & checks[i]) != 0;
int check2 = (desc->selection_mask & checks[i]) != 0;
/*
* If the caller asked for the currently checked bit(s), return
* whether the decoder description says it's supported.
*/
if (check1)
return check2;
}
/* This should be dead code, but just to be safe... */
return 0;
}
static int xor_der2key_decode(void *vctx, OSSL_CORE_BIO *cin, int selection,
OSSL_CALLBACK *data_cb, void *data_cbarg,
OSSL_PASSPHRASE_CALLBACK *pw_cb, void *pw_cbarg)
{
struct der2key_ctx_st *ctx = vctx;
unsigned char *der = NULL;
const unsigned char *derp;
long der_len = 0;
void *key = NULL;
int ok = 0;
ctx->selection = selection;
/*
* The caller is allowed to specify 0 as a selection mark, to have the
* structure and key type guessed. For type-specific structures, this
* is not recommended, as some structures are very similar.
* Note that 0 isn't the same as OSSL_KEYMGMT_SELECT_ALL, as the latter
* signifies a private key structure, where everything else is assumed
* to be present as well.
*/
if (selection == 0)
selection = ctx->desc->selection_mask;
if ((selection & ctx->desc->selection_mask) == 0) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
ok = xor_read_der(ctx->provctx, cin, &der, &der_len);
if (!ok)
goto next;
ok = 0; /* Assume that we fail */
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
derp = der;
if (ctx->desc->d2i_PKCS8 != NULL) {
key = ctx->desc->d2i_PKCS8(NULL, &derp, der_len, ctx);
if (ctx->flag_fatal)
goto end;
} else if (ctx->desc->d2i_private_key != NULL) {
key = ctx->desc->d2i_private_key(NULL, &derp, der_len);
}
if (key == NULL && ctx->selection != 0)
goto next;
}
if (key == NULL && (selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
derp = der;
if (ctx->desc->d2i_PUBKEY != NULL)
key = ctx->desc->d2i_PUBKEY(NULL, &derp, der_len);
else
key = ctx->desc->d2i_public_key(NULL, &derp, der_len);
if (key == NULL && ctx->selection != 0)
goto next;
}
if (key == NULL && (selection & OSSL_KEYMGMT_SELECT_ALL_PARAMETERS) != 0) {
derp = der;
if (ctx->desc->d2i_key_params != NULL)
key = ctx->desc->d2i_key_params(NULL, &derp, der_len);
if (key == NULL && ctx->selection != 0)
goto next;
}
/*
* Last minute check to see if this was the correct type of key. This
* should never lead to a fatal error, i.e. the decoding itself was
* correct, it was just an unexpected key type. This is generally for
* classes of key types that have subtle variants, like RSA-PSS keys as
* opposed to plain RSA keys.
*/
if (key != NULL
&& ctx->desc->check_key != NULL
&& !ctx->desc->check_key(key, ctx)) {
ctx->desc->free_key(key);
key = NULL;
}
if (key != NULL && ctx->desc->adjust_key != NULL)
ctx->desc->adjust_key(key, ctx);
next:
/*
* Indicated that we successfully decoded something, or not at all.
* Ending up "empty handed" is not an error.
*/
ok = 1;
/*
* We free memory here so it's not held up during the callback, because
* we know the process is recursive and the allocated chunks of memory
* add up.
*/
OPENSSL_free(der);
der = NULL;
if (key != NULL) {
OSSL_PARAM params[4];
int object_type = OSSL_OBJECT_PKEY;
params[0] =
OSSL_PARAM_construct_int(OSSL_OBJECT_PARAM_TYPE, &object_type);
params[1] =
OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_TYPE,
(char *)ctx->desc->keytype_name,
0);
/* The address of the key becomes the octet string */
params[2] =
OSSL_PARAM_construct_octet_string(OSSL_OBJECT_PARAM_REFERENCE,
&key, sizeof(key));
params[3] = OSSL_PARAM_construct_end();
ok = data_cb(params, data_cbarg);
}
end:
ctx->desc->free_key(key);
OPENSSL_free(der);
return ok;
}
static int der2key_export_object(void *vctx,
const void *reference, size_t reference_sz,
OSSL_CALLBACK *export_cb, void *export_cbarg)
{
struct der2key_ctx_st *ctx = vctx;
OSSL_FUNC_keymgmt_export_fn *export =
xor_prov_get_keymgmt_export(ctx->desc->fns);
void *keydata;
if (reference_sz == sizeof(keydata) && export != NULL) {
/* The contents of the reference is the address to our object */
keydata = *(void **)reference;
return export(keydata, ctx->selection, export_cb, export_cbarg);
}
return 0;
}
/* ---------------------------------------------------------------------- */
static void *xorx_d2i_PKCS8(void **key, const unsigned char **der, long der_len,
struct der2key_ctx_st *ctx)
{
return xor_der2key_decode_p8(der, der_len, ctx,
(key_from_pkcs8_t *)xor_key_from_pkcs8);
}
static void xorx_key_adjust(void *key, struct der2key_ctx_st *ctx)
{
}
/* ---------------------------------------------------------------------- */
#define DO_PrivateKeyInfo(keytype) \
"PrivateKeyInfo", 0, \
( OSSL_KEYMGMT_SELECT_PRIVATE_KEY ), \
NULL, \
NULL, \
NULL, \
xorx_d2i_PKCS8, \
NULL, \
NULL, \
xorx_key_adjust, \
(free_key_fn *)xor_freekey
#define DO_SubjectPublicKeyInfo(keytype) \
"SubjectPublicKeyInfo", 0, \
( OSSL_KEYMGMT_SELECT_PUBLIC_KEY ), \
NULL, \
NULL, \
NULL, \
NULL, \
(d2i_of_void *)xor_d2i_PUBKEY, \
NULL, \
xorx_key_adjust, \
(free_key_fn *)xor_freekey
/*
* MAKE_DECODER is the single driver for creating OSSL_DISPATCH tables.
* It takes the following arguments:
*
* keytype_name The implementation key type as a string.
* keytype The implementation key type. This must correspond exactly
* to our existing keymgmt keytype names... in other words,
* there must exist an ossl_##keytype##_keymgmt_functions.
* type The type name for the set of functions that implement the
* decoder for the key type. This isn't necessarily the same
* as keytype. For example, the key types ed25519, ed448,
* x25519 and x448 are all handled by the same functions with
* the common type name ecx.
* kind The kind of support to implement. This translates into
* the DO_##kind macros above, to populate the keytype_desc_st
* structure.
*/
#define MAKE_DECODER(keytype_name, keytype, type, kind) \
static struct keytype_desc_st kind##_##keytype##_desc = \
{ keytype_name, xor_##keytype##_keymgmt_functions, \
DO_##kind(keytype) }; \
\
static OSSL_FUNC_decoder_newctx_fn kind##_der2##keytype##_newctx; \
\
static void *kind##_der2##keytype##_newctx(void *provctx) \
{ \
return der2key_newctx(provctx, &kind##_##keytype##_desc, keytype_name );\
} \
static int kind##_der2##keytype##_does_selection(void *provctx, \
int selection) \
{ \
return der2key_check_selection(selection, \
&kind##_##keytype##_desc); \
} \
static const OSSL_DISPATCH \
xor_##kind##_der_to_##keytype##_decoder_functions[] = { \
{ OSSL_FUNC_DECODER_NEWCTX, \
(void (*)(void))kind##_der2##keytype##_newctx }, \
{ OSSL_FUNC_DECODER_FREECTX, \
(void (*)(void))der2key_freectx }, \
{ OSSL_FUNC_DECODER_DOES_SELECTION, \
(void (*)(void))kind##_der2##keytype##_does_selection }, \
{ OSSL_FUNC_DECODER_DECODE, \
(void (*)(void))xor_der2key_decode }, \
{ OSSL_FUNC_DECODER_EXPORT_OBJECT, \
(void (*)(void))der2key_export_object }, \
OSSL_DISPATCH_END \
}
MAKE_DECODER(XORSIGALG_NAME, xorhmacsig, xor, PrivateKeyInfo);
MAKE_DECODER(XORSIGALG_NAME, xorhmacsig, xor, SubjectPublicKeyInfo);
MAKE_DECODER(XORSIGALG_HASH_NAME, xorhmacsha2sig, xor, PrivateKeyInfo);
MAKE_DECODER(XORSIGALG_HASH_NAME, xorhmacsha2sig, xor, SubjectPublicKeyInfo);
static const OSSL_ALGORITHM tls_prov_decoder[] = {
#define DECODER_PROVIDER "tls-provider"
#define DECODER_STRUCTURE_SubjectPublicKeyInfo "SubjectPublicKeyInfo"
#define DECODER_STRUCTURE_PrivateKeyInfo "PrivateKeyInfo"
/* Arguments are prefixed with '_' to avoid build breaks on certain platforms */
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
#define DECODER(_name, _input, _output) \
{ _name, \
"provider=" DECODER_PROVIDER ",fips=yes,input=" #_input, \
(xor_##_input##_to_##_output##_decoder_functions) }
#define DECODER_w_structure(_name, _input, _structure, _output) \
{ _name, \
"provider=" DECODER_PROVIDER ",fips=yes,input=" #_input \
",structure=" DECODER_STRUCTURE_##_structure, \
(xor_##_structure##_##_input##_to_##_output##_decoder_functions) }
DECODER_w_structure(XORSIGALG_NAME, der, PrivateKeyInfo, xorhmacsig),
DECODER_w_structure(XORSIGALG_NAME, der, SubjectPublicKeyInfo, xorhmacsig),
DECODER_w_structure(XORSIGALG_HASH_NAME, der, PrivateKeyInfo, xorhmacsha2sig),
DECODER_w_structure(XORSIGALG_HASH_NAME, der, SubjectPublicKeyInfo, xorhmacsha2sig),
#undef DECODER_PROVIDER
{ NULL, NULL, NULL }
};
#define OSSL_MAX_NAME_SIZE 50
#define OSSL_MAX_PROPQUERY_SIZE 256 /* Property query strings */
static OSSL_FUNC_signature_newctx_fn xor_sig_newctx;
static OSSL_FUNC_signature_sign_init_fn xor_sig_sign_init;
static OSSL_FUNC_signature_verify_init_fn xor_sig_verify_init;
static OSSL_FUNC_signature_sign_fn xor_sig_sign;
static OSSL_FUNC_signature_verify_fn xor_sig_verify;
static OSSL_FUNC_signature_digest_sign_init_fn xor_sig_digest_sign_init;
static OSSL_FUNC_signature_digest_sign_update_fn xor_sig_digest_signverify_update;
static OSSL_FUNC_signature_digest_sign_final_fn xor_sig_digest_sign_final;
static OSSL_FUNC_signature_digest_verify_init_fn xor_sig_digest_verify_init;
static OSSL_FUNC_signature_digest_verify_update_fn xor_sig_digest_signverify_update;
static OSSL_FUNC_signature_digest_verify_final_fn xor_sig_digest_verify_final;
static OSSL_FUNC_signature_freectx_fn xor_sig_freectx;
static OSSL_FUNC_signature_dupctx_fn xor_sig_dupctx;
static OSSL_FUNC_signature_get_ctx_params_fn xor_sig_get_ctx_params;
static OSSL_FUNC_signature_gettable_ctx_params_fn xor_sig_gettable_ctx_params;
static OSSL_FUNC_signature_set_ctx_params_fn xor_sig_set_ctx_params;
static OSSL_FUNC_signature_settable_ctx_params_fn xor_sig_settable_ctx_params;
static OSSL_FUNC_signature_get_ctx_md_params_fn xor_sig_get_ctx_md_params;
static OSSL_FUNC_signature_gettable_ctx_md_params_fn xor_sig_gettable_ctx_md_params;
static OSSL_FUNC_signature_set_ctx_md_params_fn xor_sig_set_ctx_md_params;
static OSSL_FUNC_signature_settable_ctx_md_params_fn xor_sig_settable_ctx_md_params;
static int xor_get_aid(unsigned char** oidbuf, const char *tls_name) {
X509_ALGOR *algor = X509_ALGOR_new();
int aidlen = 0;
X509_ALGOR_set0(algor, OBJ_txt2obj(tls_name, 0), V_ASN1_UNDEF, NULL);
aidlen = i2d_X509_ALGOR(algor, oidbuf);
X509_ALGOR_free(algor);
return(aidlen);
}
/*
* What's passed as an actual key is defined by the KEYMGMT interface.
*/
typedef struct {
OSSL_LIB_CTX *libctx;
char *propq;
XORKEY *sig;
/*
* Flag to determine if the hash function can be changed (1) or not (0)
* Because it's dangerous to change during a DigestSign or DigestVerify
* operation, this flag is cleared by their Init function, and set again
* by their Final function.
*/
unsigned int flag_allow_md : 1;
char mdname[OSSL_MAX_NAME_SIZE];
/* The Algorithm Identifier of the combined signature algorithm */
unsigned char *aid;
size_t aid_len;
/* main digest */
EVP_MD *md;
EVP_MD_CTX *mdctx;
int operation;
} PROV_XORSIG_CTX;
static void *xor_sig_newctx(void *provctx, const char *propq)
{
PROV_XORSIG_CTX *pxor_sigctx;
pxor_sigctx = OPENSSL_zalloc(sizeof(PROV_XORSIG_CTX));
if (pxor_sigctx == NULL)
return NULL;
pxor_sigctx->libctx = ((PROV_XOR_CTX*)provctx)->libctx;
pxor_sigctx->flag_allow_md = 0;
if (propq != NULL && (pxor_sigctx->propq = OPENSSL_strdup(propq)) == NULL) {
OPENSSL_free(pxor_sigctx);
pxor_sigctx = NULL;
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
}
return pxor_sigctx;
}
static int xor_sig_setup_md(PROV_XORSIG_CTX *ctx,
const char *mdname, const char *mdprops)
{
EVP_MD *md;
if (mdprops == NULL)
mdprops = ctx->propq;
md = EVP_MD_fetch(ctx->libctx, mdname, mdprops);
if ((md == NULL) || (EVP_MD_nid(md)==NID_undef)) {
if (md == NULL)
ERR_raise_data(ERR_LIB_USER, XORPROV_R_INVALID_DIGEST,
"%s could not be fetched", mdname);
EVP_MD_free(md);
return 0;
}
EVP_MD_CTX_free(ctx->mdctx);
ctx->mdctx = NULL;
EVP_MD_free(ctx->md);
ctx->md = NULL;
OPENSSL_free(ctx->aid);
ctx->aid = NULL;
ctx->aid_len = xor_get_aid(&(ctx->aid), ctx->sig->tls_name);
ctx->mdctx = NULL;
ctx->md = md;
OPENSSL_strlcpy(ctx->mdname, mdname, sizeof(ctx->mdname));
return 1;
}
static int xor_sig_signverify_init(void *vpxor_sigctx, void *vxorsig,
int operation)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx == NULL || vxorsig == NULL)
return 0;
xor_freekey(pxor_sigctx->sig);
if (!xor_key_up_ref(vxorsig))
return 0;
pxor_sigctx->sig = vxorsig;
pxor_sigctx->operation = operation;
if ((operation==EVP_PKEY_OP_SIGN && pxor_sigctx->sig == NULL)
|| (operation==EVP_PKEY_OP_VERIFY && pxor_sigctx->sig == NULL)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_INVALID_KEY);
return 0;
}
return 1;
}
static int xor_sig_sign_init(void *vpxor_sigctx, void *vxorsig,
const OSSL_PARAM params[])
{
return xor_sig_signverify_init(vpxor_sigctx, vxorsig, EVP_PKEY_OP_SIGN);
}
static int xor_sig_verify_init(void *vpxor_sigctx, void *vxorsig,
const OSSL_PARAM params[])
{
return xor_sig_signverify_init(vpxor_sigctx, vxorsig, EVP_PKEY_OP_VERIFY);
}
static int xor_sig_sign(void *vpxor_sigctx, unsigned char *sig, size_t *siglen,
size_t sigsize, const unsigned char *tbs, size_t tbslen)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
XORKEY *xorkey = pxor_sigctx->sig;
size_t max_sig_len = EVP_MAX_MD_SIZE;
size_t xor_sig_len = 0;
int rv = 0;
if (xorkey == NULL || !xorkey->hasprivkey) {
ERR_raise(ERR_LIB_USER, XORPROV_R_NO_PRIVATE_KEY);
return rv;
}
if (sig == NULL) {
*siglen = max_sig_len;
return 1;
}
if (*siglen < max_sig_len) {
ERR_raise(ERR_LIB_USER, XORPROV_R_BUFFER_LENGTH_WRONG);
return rv;
}
/*
* create HMAC using XORKEY as key and hash as data:
* No real crypto, just for test, don't do this at home!
*/
if (!EVP_Q_mac(pxor_sigctx->libctx, "HMAC", NULL, "sha1", NULL,
xorkey->privkey, XOR_KEY_SIZE, tbs, tbslen,
&sig[0], EVP_MAX_MD_SIZE, &xor_sig_len)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_SIGNING_FAILED);
goto endsign;
}
*siglen = xor_sig_len;
rv = 1; /* success */
endsign:
return rv;
}
static int xor_sig_verify(void *vpxor_sigctx,
const unsigned char *sig, size_t siglen,
const unsigned char *tbs, size_t tbslen)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
XORKEY *xorkey = pxor_sigctx->sig;
unsigned char resignature[EVP_MAX_MD_SIZE];
size_t resiglen;
int i;
if (xorkey == NULL || sig == NULL || tbs == NULL) {
ERR_raise(ERR_LIB_USER, XORPROV_R_WRONG_PARAMETERS);
return 0;
}
/*
* This is no real verify: just re-sign and compare:
* Don't do this at home! Not fit for real use!
*/
/* First re-create private key from public key: */
for (i = 0; i < XOR_KEY_SIZE; i++)
xorkey->privkey[i] = xorkey->pubkey[i] ^ private_constant[i];
/* Now re-create signature */
if (!EVP_Q_mac(pxor_sigctx->libctx, "HMAC", NULL, "sha1", NULL,
xorkey->privkey, XOR_KEY_SIZE, tbs, tbslen,
&resignature[0], EVP_MAX_MD_SIZE, &resiglen)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_VERIFY_ERROR);
return 0;
}
/* Now compare with signature passed */
if (siglen != resiglen || memcmp(resignature, sig, siglen) != 0) {
ERR_raise(ERR_LIB_USER, XORPROV_R_VERIFY_ERROR);
return 0;
}
return 1;
}
static int xor_sig_digest_signverify_init(void *vpxor_sigctx, const char *mdname,
void *vxorsig, int operation)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
char *rmdname = (char *)mdname;
if (rmdname == NULL)
rmdname = "sha256";
pxor_sigctx->flag_allow_md = 0;
if (!xor_sig_signverify_init(vpxor_sigctx, vxorsig, operation))
return 0;
if (!xor_sig_setup_md(pxor_sigctx, rmdname, NULL))
return 0;
pxor_sigctx->mdctx = EVP_MD_CTX_new();
if (pxor_sigctx->mdctx == NULL)
goto error;
if (!EVP_DigestInit_ex(pxor_sigctx->mdctx, pxor_sigctx->md, NULL))
goto error;
return 1;
error:
EVP_MD_CTX_free(pxor_sigctx->mdctx);
EVP_MD_free(pxor_sigctx->md);
pxor_sigctx->mdctx = NULL;
pxor_sigctx->md = NULL;
return 0;
}
static int xor_sig_digest_sign_init(void *vpxor_sigctx, const char *mdname,
void *vxorsig, const OSSL_PARAM params[])
{
return xor_sig_digest_signverify_init(vpxor_sigctx, mdname, vxorsig,
EVP_PKEY_OP_SIGN);
}
static int xor_sig_digest_verify_init(void *vpxor_sigctx, const char *mdname, void *vxorsig, const OSSL_PARAM params[])
{
return xor_sig_digest_signverify_init(vpxor_sigctx, mdname,
vxorsig, EVP_PKEY_OP_VERIFY);
}
int xor_sig_digest_signverify_update(void *vpxor_sigctx,
const unsigned char *data,
size_t datalen)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL)
return 0;
return EVP_DigestUpdate(pxor_sigctx->mdctx, data, datalen);
}
int xor_sig_digest_sign_final(void *vpxor_sigctx,
unsigned char *sig, size_t *siglen,
size_t sigsize)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
unsigned char digest[EVP_MAX_MD_SIZE];
unsigned int dlen = 0;
if (sig != NULL) {
if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL)
return 0;
if (!EVP_DigestFinal_ex(pxor_sigctx->mdctx, digest, &dlen))
return 0;
pxor_sigctx->flag_allow_md = 1;
}
return xor_sig_sign(vpxor_sigctx, sig, siglen, sigsize, digest, (size_t)dlen);
}
int xor_sig_digest_verify_final(void *vpxor_sigctx, const unsigned char *sig,
size_t siglen)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
unsigned char digest[EVP_MAX_MD_SIZE];
unsigned int dlen = 0;
if (pxor_sigctx == NULL || pxor_sigctx->mdctx == NULL)
return 0;
if (!EVP_DigestFinal_ex(pxor_sigctx->mdctx, digest, &dlen))
return 0;
pxor_sigctx->flag_allow_md = 1;
return xor_sig_verify(vpxor_sigctx, sig, siglen, digest, (size_t)dlen);
}
static void xor_sig_freectx(void *vpxor_sigctx)
{
PROV_XORSIG_CTX *ctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
OPENSSL_free(ctx->propq);
EVP_MD_CTX_free(ctx->mdctx);
EVP_MD_free(ctx->md);
ctx->propq = NULL;
ctx->mdctx = NULL;
ctx->md = NULL;
xor_freekey(ctx->sig);
ctx->sig = NULL;
OPENSSL_free(ctx->aid);
OPENSSL_free(ctx);
}
static void *xor_sig_dupctx(void *vpxor_sigctx)
{
PROV_XORSIG_CTX *srcctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
PROV_XORSIG_CTX *dstctx;
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
if (dstctx == NULL)
return NULL;
*dstctx = *srcctx;
dstctx->sig = NULL;
dstctx->md = NULL;
dstctx->mdctx = NULL;
dstctx->aid = NULL;
if ((srcctx->sig != NULL) && !xor_key_up_ref(srcctx->sig))
goto err;
dstctx->sig = srcctx->sig;
if (srcctx->md != NULL && !EVP_MD_up_ref(srcctx->md))
goto err;
dstctx->md = srcctx->md;
if (srcctx->mdctx != NULL) {
dstctx->mdctx = EVP_MD_CTX_new();
if (dstctx->mdctx == NULL
|| !EVP_MD_CTX_copy_ex(dstctx->mdctx, srcctx->mdctx))
goto err;
}
return dstctx;
err:
xor_sig_freectx(dstctx);
return NULL;
}
static int xor_sig_get_ctx_params(void *vpxor_sigctx, OSSL_PARAM *params)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
OSSL_PARAM *p;
if (pxor_sigctx == NULL || params == NULL)
return 0;
p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_ALGORITHM_ID);
if (pxor_sigctx->aid == NULL)
pxor_sigctx->aid_len = xor_get_aid(&(pxor_sigctx->aid), pxor_sigctx->sig->tls_name);
if (p != NULL
&& !OSSL_PARAM_set_octet_string(p, pxor_sigctx->aid, pxor_sigctx->aid_len))
return 0;
p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_DIGEST);
if (p != NULL && !OSSL_PARAM_set_utf8_string(p, pxor_sigctx->mdname))
return 0;
return 1;
}
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_octet_string(OSSL_SIGNATURE_PARAM_ALGORITHM_ID, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_sig_gettable_ctx_params(ossl_unused void *vpxor_sigctx, ossl_unused void *vctx)
{
return known_gettable_ctx_params;
}
static int xor_sig_set_ctx_params(void *vpxor_sigctx, const OSSL_PARAM params[])
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
const OSSL_PARAM *p;
if (pxor_sigctx == NULL || params == NULL)
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_DIGEST);
/* Not allowed during certain operations */
if (p != NULL && !pxor_sigctx->flag_allow_md)
return 0;
if (p != NULL) {
char mdname[OSSL_MAX_NAME_SIZE] = "", *pmdname = mdname;
char mdprops[OSSL_MAX_PROPQUERY_SIZE] = "", *pmdprops = mdprops;
const OSSL_PARAM *propsp =
OSSL_PARAM_locate_const(params,
OSSL_SIGNATURE_PARAM_PROPERTIES);
if (!OSSL_PARAM_get_utf8_string(p, &pmdname, sizeof(mdname)))
return 0;
if (propsp != NULL
&& !OSSL_PARAM_get_utf8_string(propsp, &pmdprops, sizeof(mdprops)))
return 0;
if (!xor_sig_setup_md(pxor_sigctx, mdname, mdprops))
return 0;
}
return 1;
}
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_sig_settable_ctx_params(ossl_unused void *vpsm2ctx,
ossl_unused void *provctx)
{
return known_settable_ctx_params;
}
static int xor_sig_get_ctx_md_params(void *vpxor_sigctx, OSSL_PARAM *params)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx->mdctx == NULL)
return 0;
return EVP_MD_CTX_get_params(pxor_sigctx->mdctx, params);
}
static const OSSL_PARAM *xor_sig_gettable_ctx_md_params(void *vpxor_sigctx)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx->md == NULL)
return 0;
return EVP_MD_gettable_ctx_params(pxor_sigctx->md);
}
static int xor_sig_set_ctx_md_params(void *vpxor_sigctx, const OSSL_PARAM params[])
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx->mdctx == NULL)
return 0;
return EVP_MD_CTX_set_params(pxor_sigctx->mdctx, params);
}
static const OSSL_PARAM *xor_sig_settable_ctx_md_params(void *vpxor_sigctx)
{
PROV_XORSIG_CTX *pxor_sigctx = (PROV_XORSIG_CTX *)vpxor_sigctx;
if (pxor_sigctx->md == NULL)
return 0;
return EVP_MD_settable_ctx_params(pxor_sigctx->md);
}
static const OSSL_DISPATCH xor_signature_functions[] = {
{ OSSL_FUNC_SIGNATURE_NEWCTX, (void (*)(void))xor_sig_newctx },
{ OSSL_FUNC_SIGNATURE_SIGN_INIT, (void (*)(void))xor_sig_sign_init },
{ OSSL_FUNC_SIGNATURE_SIGN, (void (*)(void))xor_sig_sign },
{ OSSL_FUNC_SIGNATURE_VERIFY_INIT, (void (*)(void))xor_sig_verify_init },
{ OSSL_FUNC_SIGNATURE_VERIFY, (void (*)(void))xor_sig_verify },
{ OSSL_FUNC_SIGNATURE_DIGEST_SIGN_INIT,
(void (*)(void))xor_sig_digest_sign_init },
{ OSSL_FUNC_SIGNATURE_DIGEST_SIGN_UPDATE,
(void (*)(void))xor_sig_digest_signverify_update },
{ OSSL_FUNC_SIGNATURE_DIGEST_SIGN_FINAL,
(void (*)(void))xor_sig_digest_sign_final },
{ OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_INIT,
(void (*)(void))xor_sig_digest_verify_init },
{ OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_UPDATE,
(void (*)(void))xor_sig_digest_signverify_update },
{ OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_FINAL,
(void (*)(void))xor_sig_digest_verify_final },
{ OSSL_FUNC_SIGNATURE_FREECTX, (void (*)(void))xor_sig_freectx },
{ OSSL_FUNC_SIGNATURE_DUPCTX, (void (*)(void))xor_sig_dupctx },
{ OSSL_FUNC_SIGNATURE_GET_CTX_PARAMS, (void (*)(void))xor_sig_get_ctx_params },
{ OSSL_FUNC_SIGNATURE_GETTABLE_CTX_PARAMS,
(void (*)(void))xor_sig_gettable_ctx_params },
{ OSSL_FUNC_SIGNATURE_SET_CTX_PARAMS, (void (*)(void))xor_sig_set_ctx_params },
{ OSSL_FUNC_SIGNATURE_SETTABLE_CTX_PARAMS,
(void (*)(void))xor_sig_settable_ctx_params },
{ OSSL_FUNC_SIGNATURE_GET_CTX_MD_PARAMS,
(void (*)(void))xor_sig_get_ctx_md_params },
{ OSSL_FUNC_SIGNATURE_GETTABLE_CTX_MD_PARAMS,
(void (*)(void))xor_sig_gettable_ctx_md_params },
{ OSSL_FUNC_SIGNATURE_SET_CTX_MD_PARAMS,
(void (*)(void))xor_sig_set_ctx_md_params },
{ OSSL_FUNC_SIGNATURE_SETTABLE_CTX_MD_PARAMS,
(void (*)(void))xor_sig_settable_ctx_md_params },
OSSL_DISPATCH_END
};
static const OSSL_ALGORITHM tls_prov_signature[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjunction
* with the FIPS provider we pretend that it is.
*/
{ XORSIGALG_NAME, "provider=tls-provider,fips=yes",
xor_signature_functions },
{ XORSIGALG_HASH_NAME, "provider=tls-provider,fips=yes",
xor_signature_functions },
{ XORSIGALG12_NAME, "provider=tls-provider,fips=yes",
xor_signature_functions },
{ NULL, NULL, NULL }
};
static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id,
int *no_cache)
{
*no_cache = 0;
switch (operation_id) {
case OSSL_OP_KEYMGMT:
return tls_prov_keymgmt;
case OSSL_OP_KEYEXCH:
return tls_prov_keyexch;
case OSSL_OP_KEM:
return tls_prov_kem;
case OSSL_OP_ENCODER:
return tls_prov_encoder;
case OSSL_OP_DECODER:
return tls_prov_decoder;
case OSSL_OP_SIGNATURE:
return tls_prov_signature;
}
return NULL;
}
static void tls_prov_teardown(void *provctx)
{
int i;
PROV_XOR_CTX *pctx = (PROV_XOR_CTX*)provctx;
OSSL_LIB_CTX_free(pctx->libctx);
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
OPENSSL_free(dummy_group_names[i]);
dummy_group_names[i] = NULL;
}
OPENSSL_free(pctx);
}
/* Functions we provide to the core */
static const OSSL_DISPATCH tls_prov_dispatch_table[] = {
{ OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown },
{ OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query },
{ OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities },
OSSL_DISPATCH_END
};
static
unsigned int randomize_tls_alg_id(OSSL_LIB_CTX *libctx)
{
/*
* Randomise the id we're going to use to ensure we don't interoperate
* with anything but ourselves.
*/
unsigned int id;
static unsigned int mem[10] = { 0 };
static int in_mem = 0;
int i;
retry:
if (RAND_bytes_ex(libctx, (unsigned char *)&id, sizeof(id), 0) <= 0)
return 0;
/*
* Ensure id is within the IANA Reserved for private use range
* (65024-65279)
*/
id %= 65279 - 65024;
id += 65024;
/* Ensure we did not already issue this id */
for (i = 0; i < in_mem; i++)
if (mem[i] == id)
goto retry;
/* Add this id to the list of ids issued by this function */
mem[in_mem++] = id;
return id;
}
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
const OSSL_DISPATCH *in,
const OSSL_DISPATCH **out,
void **provctx)
{
OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new_from_dispatch(handle, in);
OSSL_FUNC_core_obj_create_fn *c_obj_create= NULL;
OSSL_FUNC_core_obj_add_sigid_fn *c_obj_add_sigid= NULL;
PROV_XOR_CTX *prov_ctx = xor_newprovctx(libctx);
if (libctx == NULL || prov_ctx == NULL)
return 0;
*provctx = prov_ctx;
/*
* Randomise the group_id and code_points we're going to use to ensure we
* don't interoperate with anything but ourselves.
*/
xor_group.group_id = randomize_tls_alg_id(libctx);
xor_kemgroup.group_id = randomize_tls_alg_id(libctx);
xor_sigalg.code_point = randomize_tls_alg_id(libctx);
xor_sigalg_hash.code_point = randomize_tls_alg_id(libctx);
/* Retrieve registration functions */
for (; in->function_id != 0; in++) {
switch (in->function_id) {
case OSSL_FUNC_CORE_OBJ_CREATE:
c_obj_create = OSSL_FUNC_core_obj_create(in);
break;
case OSSL_FUNC_CORE_OBJ_ADD_SIGID:
c_obj_add_sigid = OSSL_FUNC_core_obj_add_sigid(in);
break;
/* Just ignore anything we don't understand */
default:
break;
}
}
/*
* Register algorithms manually as add_provider_sigalgs is
* only called during session establishment -- too late for
* key & cert generation...
*/
if (!c_obj_create(handle, XORSIGALG_OID, XORSIGALG_NAME, XORSIGALG_NAME)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR);
return 0;
}
if (!c_obj_add_sigid(handle, XORSIGALG_OID, "", XORSIGALG_OID)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR);
return 0;
}
if (!c_obj_create(handle, XORSIGALG_HASH_OID, XORSIGALG_HASH_NAME, NULL)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR);
return 0;
}
if (!c_obj_add_sigid(handle, XORSIGALG_HASH_OID, XORSIGALG_HASH, XORSIGALG_HASH_OID)) {
ERR_raise(ERR_LIB_USER, XORPROV_R_OBJ_CREATE_ERR);
return 0;
}
*out = tls_prov_dispatch_table;
return 1;
}