mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
6a2b8ff392
This has us switch from the 'structure' "pkcs8" to "PrivateKeyInfo", which is sensible considering we already have "SubjectPublicKeyInfo". We also add "EncryptedPrivateKeyInfo", and use it for a special decoder that detects and decrypts an EncryptedPrivateKeyInfo structured DER blob into a PrivateKeyInfo structured DER blob and passes that on to the next decoder implementation. The result of this change is that PKCS#8 decryption should only happen once per decoding instead of once for every expected key type. Furthermore, this new decoder implementation sets the data type to the OID of the algorithmIdentifier field, thus reducing how many decoder implementations are tentativaly run further down the call chain. Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/15498)
245 lines
7.6 KiB
C
245 lines
7.6 KiB
C
/*
|
|
* Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* RSA low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/core_dispatch.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/core_object.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/params.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/proverr.h>
|
|
#include "internal/nelem.h"
|
|
#include "prov/bio.h"
|
|
#include "prov/implementations.h"
|
|
#include "endecoder_local.h"
|
|
|
|
static int read_pem(PROV_CTX *provctx, OSSL_CORE_BIO *cin,
|
|
char **pem_name, char **pem_header,
|
|
unsigned char **data, long *len)
|
|
{
|
|
BIO *in = ossl_bio_new_from_core_bio(provctx, cin);
|
|
int ok = (PEM_read_bio(in, pem_name, pem_header, data, len) > 0);
|
|
|
|
BIO_free(in);
|
|
return ok;
|
|
}
|
|
|
|
static OSSL_FUNC_decoder_newctx_fn pem2der_newctx;
|
|
static OSSL_FUNC_decoder_freectx_fn pem2der_freectx;
|
|
static OSSL_FUNC_decoder_decode_fn pem2der_decode;
|
|
|
|
/*
|
|
* Context used for PEM to DER decoding.
|
|
*/
|
|
struct pem2der_ctx_st {
|
|
PROV_CTX *provctx;
|
|
};
|
|
|
|
static void *pem2der_newctx(void *provctx)
|
|
{
|
|
struct pem2der_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
|
|
|
|
if (ctx != NULL)
|
|
ctx->provctx = provctx;
|
|
return ctx;
|
|
}
|
|
|
|
static void pem2der_freectx(void *vctx)
|
|
{
|
|
struct pem2der_ctx_st *ctx = vctx;
|
|
|
|
OPENSSL_free(ctx);
|
|
}
|
|
|
|
/* pem_password_cb compatible function */
|
|
struct pem2der_pass_data_st {
|
|
OSSL_PASSPHRASE_CALLBACK *cb;
|
|
void *cbarg;
|
|
};
|
|
|
|
static int pem2der_pass_helper(char *buf, int num, int w, void *data)
|
|
{
|
|
struct pem2der_pass_data_st *pass_data = data;
|
|
size_t plen;
|
|
|
|
if (pass_data == NULL
|
|
|| pass_data->cb == NULL
|
|
|| !pass_data->cb(buf, num, &plen, NULL, pass_data->cbarg))
|
|
return -1;
|
|
return (int)plen;
|
|
}
|
|
|
|
/*
|
|
* The selection parameter in pem2der_decode() is not used by this function
|
|
* because it's not relevant just to decode PEM to DER.
|
|
*/
|
|
static int pem2der_decode(void *vctx, OSSL_CORE_BIO *cin, int selection,
|
|
OSSL_CALLBACK *data_cb, void *data_cbarg,
|
|
OSSL_PASSPHRASE_CALLBACK *pw_cb, void *pw_cbarg)
|
|
{
|
|
/* Strings to peel off the pem name */
|
|
static struct peelablee_pem_name_endings_st {
|
|
const char *ending;
|
|
const char *data_structure;
|
|
} peelable_pem_name_endings[] = {
|
|
/*
|
|
* These entries should be in longest to shortest order to avoid
|
|
* mixups.
|
|
*/
|
|
{ "ENCRYPTED PRIVATE KEY", "EncryptedPrivateKeyInfo" },
|
|
{ "PRIVATE KEY", "PrivateKeyInfo" },
|
|
{ "PUBLIC KEY", "SubjectPublicKeyInfo" },
|
|
{ "PARAMETERS", NULL }
|
|
|
|
/*
|
|
* Libcrypto currently only supports decoding keys with provider side
|
|
* decoders, so we don't try to peel any other PEM name. That's an
|
|
* exercise for when libcrypto starts to treat other types of objects
|
|
* via providers.
|
|
*/
|
|
};
|
|
struct pem2der_ctx_st *ctx = vctx;
|
|
char *pem_name = NULL, *pem_header = NULL;
|
|
size_t pem_name_len, i;
|
|
unsigned char *der = NULL;
|
|
long der_len = 0;
|
|
int ok = 0;
|
|
int objtype = OSSL_OBJECT_UNKNOWN;
|
|
const char *data_structure = NULL;
|
|
|
|
ok = read_pem(ctx->provctx, cin, &pem_name, &pem_header,
|
|
&der, &der_len) > 0;
|
|
/* We return "empty handed". This is not an error. */
|
|
if (!ok)
|
|
return 1;
|
|
|
|
/*
|
|
* 10 is the number of characters in "Proc-Type:", which
|
|
* PEM_get_EVP_CIPHER_INFO() requires to be present.
|
|
* If the PEM header has less characters than that, it's
|
|
* not worth spending cycles on it.
|
|
*/
|
|
if (strlen(pem_header) > 10) {
|
|
EVP_CIPHER_INFO cipher;
|
|
struct pem2der_pass_data_st pass_data;
|
|
|
|
ok = 0; /* Assume that we fail */
|
|
pass_data.cb = pw_cb;
|
|
pass_data.cbarg = pw_cbarg;
|
|
if (!PEM_get_EVP_CIPHER_INFO(pem_header, &cipher)
|
|
|| !PEM_do_header(&cipher, der, &der_len,
|
|
pem2der_pass_helper, &pass_data))
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Indicated that we successfully decoded something, or not at all.
|
|
* Ending up "empty handed" is not an error.
|
|
*/
|
|
ok = 1;
|
|
|
|
/*
|
|
* Peal off certain strings from the end of |pem_name|, as they serve
|
|
* no further purpose.
|
|
*/
|
|
for (i = 0, pem_name_len = strlen(pem_name);
|
|
i < OSSL_NELEM(peelable_pem_name_endings);
|
|
i++) {
|
|
size_t peel_len = strlen(peelable_pem_name_endings[i].ending);
|
|
size_t pem_name_offset;
|
|
|
|
if (peel_len <= pem_name_len) {
|
|
pem_name_offset = pem_name_len - peel_len;
|
|
if (strcmp(pem_name + pem_name_offset,
|
|
peelable_pem_name_endings[i].ending) == 0) {
|
|
|
|
do {
|
|
pem_name[pem_name_offset] = '\0';
|
|
} while (pem_name_offset > 0
|
|
&& pem_name[--pem_name_offset] == ' ');
|
|
|
|
if (pem_name[0] == '\0') {
|
|
OPENSSL_free(pem_name);
|
|
pem_name = NULL;
|
|
}
|
|
/* All of these peelable endings are for EVP_PKEYs */
|
|
objtype = OSSL_OBJECT_PKEY;
|
|
if (pem_name == NULL) {
|
|
data_structure = peelable_pem_name_endings[i].data_structure;
|
|
if (data_structure == NULL)
|
|
goto end;
|
|
} else {
|
|
/*
|
|
* If there is an algorithm name prefix then it is a
|
|
* type-specific data structure
|
|
*/
|
|
data_structure = "type-specific";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we don't know the object type yet check if it's one we know about */
|
|
if (objtype == OSSL_OBJECT_UNKNOWN) {
|
|
if (strcmp(pem_name, PEM_STRING_X509) == 0
|
|
|| strcmp(pem_name, PEM_STRING_X509_TRUSTED) == 0
|
|
|| strcmp(pem_name, PEM_STRING_X509_OLD) == 0)
|
|
objtype = OSSL_OBJECT_CERT;
|
|
else if (strcmp(pem_name, PEM_STRING_X509_CRL) == 0)
|
|
objtype = OSSL_OBJECT_CRL;
|
|
}
|
|
|
|
{
|
|
OSSL_PARAM params[5], *p = params;
|
|
|
|
if (pem_name != NULL)
|
|
*p++ =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_TYPE,
|
|
pem_name, 0);
|
|
|
|
/* We expect this to be read only so casting away the const is ok */
|
|
if (data_structure != NULL)
|
|
*p++ =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_STRUCTURE,
|
|
(char *)data_structure, 0);
|
|
*p++ =
|
|
OSSL_PARAM_construct_octet_string(OSSL_OBJECT_PARAM_DATA,
|
|
der, der_len);
|
|
*p++ =
|
|
OSSL_PARAM_construct_int(OSSL_OBJECT_PARAM_TYPE, &objtype);
|
|
|
|
*p = OSSL_PARAM_construct_end();
|
|
|
|
ok = data_cb(params, data_cbarg);
|
|
}
|
|
|
|
end:
|
|
OPENSSL_free(pem_name);
|
|
OPENSSL_free(pem_header);
|
|
OPENSSL_free(der);
|
|
return ok;
|
|
}
|
|
|
|
const OSSL_DISPATCH ossl_pem_to_der_decoder_functions[] = {
|
|
{ OSSL_FUNC_DECODER_NEWCTX, (void (*)(void))pem2der_newctx },
|
|
{ OSSL_FUNC_DECODER_FREECTX, (void (*)(void))pem2der_freectx },
|
|
{ OSSL_FUNC_DECODER_DECODE, (void (*)(void))pem2der_decode },
|
|
{ 0, NULL }
|
|
};
|