openssl/apps/speed.c
Peiwei Hu 8baf61d51b Fix wrong return value checks for some functions
- in particular in use of X509_LOOKUP_load_file, EVP_PKEY_print_params,
EVP_PKEY_keygen, X509_CRL_add1_ext_i2d, EVP_PKEY_keygen_init

Reviewed-by: Paul Dale <ppzgs1@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/25811)
2024-11-22 12:10:26 +01:00

5173 lines
178 KiB
C

/*
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#undef SECONDS
#define SECONDS 3
#define PKEY_SECONDS 10
#define RSA_SECONDS PKEY_SECONDS
#define DSA_SECONDS PKEY_SECONDS
#define ECDSA_SECONDS PKEY_SECONDS
#define ECDH_SECONDS PKEY_SECONDS
#define EdDSA_SECONDS PKEY_SECONDS
#define SM2_SECONDS PKEY_SECONDS
#define FFDH_SECONDS PKEY_SECONDS
#define KEM_SECONDS PKEY_SECONDS
#define SIG_SECONDS PKEY_SECONDS
#define MAX_ALGNAME_SUFFIX 100
/* We need to use some deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include "internal/e_os.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include "progs.h"
#include "internal/nelem.h"
#include "internal/numbers.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/core_names.h>
#include <openssl/async.h>
#include <openssl/provider.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include <unistd.h>
#endif
#if defined(_WIN32)
# include <windows.h>
/*
* While VirtualLock is available under the app partition (e.g. UWP),
* the headers do not define the API. Define it ourselves instead.
*/
WINBASEAPI
BOOL
WINAPI
VirtualLock(
_In_ LPVOID lpAddress,
_In_ SIZE_T dwSize
);
#endif
#if defined(OPENSSL_SYS_LINUX)
# include <sys/mman.h>
#endif
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include "./testrsa.h"
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include <openssl/x509.h>
#include <openssl/dsa.h>
#include "./testdsa.h"
#include <openssl/modes.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# include <sys/wait.h>
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#define MAX_MISALIGNMENT 63
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
#define MAX_FFDH_SIZE 1024
#ifndef RSA_DEFAULT_PRIME_NUM
# define RSA_DEFAULT_PRIME_NUM 2
#endif
typedef struct openssl_speed_sec_st {
int sym;
int rsa;
int dsa;
int ecdsa;
int ecdh;
int eddsa;
int sm2;
int ffdh;
int kem;
int sig;
} openssl_speed_sec_t;
static volatile int run = 0;
static int mr = 0; /* machine-readeable output format to merge fork results */
static int usertime = 1;
static double Time_F(int s);
static void print_message(const char *s, int length, int tm);
static void pkey_print_message(const char *str, const char *str2,
unsigned int bits, int sec);
static void kskey_print_message(const char *str, const char *str2, int tm);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi, int size_num);
#endif
static int domlock = 0;
static int testmode = 0;
static int testmoderesult = 0;
static const int lengths_list[] = {
16, 64, 256, 1024, 8 * 1024, 16 * 1024
};
#define SIZE_NUM OSSL_NELEM(lengths_list)
static const int *lengths = lengths_list;
static const int aead_lengths_list[] = {
2, 31, 136, 1024, 8 * 1024, 16 * 1024
};
#define START 0
#define STOP 1
#ifdef SIGALRM
static void alarmed(ossl_unused int sig)
{
signal(SIGALRM, alarmed);
run = 0;
}
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#elif defined(_WIN32)
# define SIGALRM -1
static unsigned int lapse;
static volatile unsigned int schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
# error "SIGALRM not defined and the platform is not Windows"
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds);
static int opt_found(const char *name, unsigned int *result,
const OPT_PAIR pairs[], unsigned int nbelem)
{
unsigned int idx;
for (idx = 0; idx < nbelem; ++idx, pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
#define opt_found(value, pairs, result)\
opt_found(value, result, pairs, OSSL_NELEM(pairs))
typedef enum OPTION_choice {
OPT_COMMON,
OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM,
OPT_CONFIG, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC,
OPT_MLOCK, OPT_TESTMODE, OPT_KEM, OPT_SIG
} OPTION_CHOICE;
const OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-',
"Usage: %s [options] [algorithm...]\n"
"All +int options consider prefix '0' as base-8 input, "
"prefix '0x'/'0X' as base-16 input.\n"
},
OPT_SECTION("General"),
{"help", OPT_HELP, '-', "Display this summary"},
{"mb", OPT_MB, '-',
"Enable (tls1>=1) multi-block mode on EVP-named cipher"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef OPENSSL_NO_ASYNC
{"async_jobs", OPT_ASYNCJOBS, 'p',
"Enable async mode and start specified number of jobs"},
#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
{"mlock", OPT_MLOCK, '-', "Lock memory for better result determinism"},
{"testmode", OPT_TESTMODE, '-', "Run the speed command in test mode"},
OPT_CONFIG_OPTION,
OPT_SECTION("Selection"),
{"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
{"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"},
{"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"},
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"aead", OPT_AEAD, '-',
"Benchmark EVP-named AEAD cipher in TLS-like sequence"},
{"kem-algorithms", OPT_KEM, '-',
"Benchmark KEM algorithms"},
{"signature-algorithms", OPT_SIG, '-',
"Benchmark signature algorithms"},
OPT_SECTION("Timing"),
{"elapsed", OPT_ELAPSED, '-',
"Use wall-clock time instead of CPU user time as divisor"},
{"seconds", OPT_SECONDS, 'p',
"Run benchmarks for specified amount of seconds"},
{"bytes", OPT_BYTES, 'p',
"Run [non-PKI] benchmarks on custom-sized buffer"},
{"misalign", OPT_MISALIGN, 'p',
"Use specified offset to mis-align buffers"},
OPT_R_OPTIONS,
OPT_PROV_OPTIONS,
OPT_PARAMETERS(),
{"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"},
{NULL}
};
enum {
D_MD2, D_MDC2, D_MD4, D_MD5, D_SHA1, D_RMD160,
D_SHA256, D_SHA512, D_WHIRLPOOL, D_HMAC,
D_CBC_DES, D_EDE3_DES, D_RC4, D_CBC_IDEA, D_CBC_SEED,
D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST,
D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES,
D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML,
D_EVP, D_GHASH, D_RAND, D_EVP_CMAC, D_KMAC128, D_KMAC256,
ALGOR_NUM
};
/* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "sha1", "rmd160",
"sha256", "sha512", "whirlpool", "hmac(sha256)",
"des-cbc", "des-ede3", "rc4", "idea-cbc", "seed-cbc",
"rc2-cbc", "rc5-cbc", "blowfish", "cast-cbc",
"aes-128-cbc", "aes-192-cbc", "aes-256-cbc",
"camellia-128-cbc", "camellia-192-cbc", "camellia-256-cbc",
"evp", "ghash", "rand", "cmac", "kmac128", "kmac256"
};
/* list of configured algorithm (remaining), with some few alias */
static const OPT_PAIR doit_choices[] = {
{"md2", D_MD2},
{"mdc2", D_MDC2},
{"md4", D_MD4},
{"md5", D_MD5},
{"hmac", D_HMAC},
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
{"whirlpool", D_WHIRLPOOL},
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
{"rc4", D_RC4},
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"camellia-128-cbc", D_CBC_128_CML},
{"camellia-192-cbc", D_CBC_192_CML},
{"camellia-256-cbc", D_CBC_256_CML},
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
{"ghash", D_GHASH},
{"rand", D_RAND},
{"kmac128", D_KMAC128},
{"kmac256", D_KMAC256},
};
static double results[ALGOR_NUM][SIZE_NUM];
#ifndef OPENSSL_NO_DSA
enum { R_DSA_1024, R_DSA_2048, DSA_NUM };
static const OPT_PAIR dsa_choices[DSA_NUM] = {
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048}
};
static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_DSA */
enum {
R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680,
R_RSA_15360, RSA_NUM
};
static const OPT_PAIR rsa_choices[RSA_NUM] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360}
};
static double rsa_results[RSA_NUM][4]; /* 4 ops: sign, verify, encrypt, decrypt */
#ifndef OPENSSL_NO_DH
enum ff_params_t {
R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM
};
static const OPT_PAIR ffdh_choices[FFDH_NUM] = {
{"ffdh2048", R_FFDH_2048},
{"ffdh3072", R_FFDH_3072},
{"ffdh4096", R_FFDH_4096},
{"ffdh6144", R_FFDH_6144},
{"ffdh8192", R_FFDH_8192},
};
static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */
#endif /* OPENSSL_NO_DH */
enum ec_curves_t {
R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
#ifndef OPENSSL_NO_EC2M
R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
#endif
R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1,
R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM
};
/* list of ecdsa curves */
static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
#ifndef OPENSSL_NO_EC2M
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
#endif
{"ecdsabrp256r1", R_EC_BRP256R1},
{"ecdsabrp256t1", R_EC_BRP256T1},
{"ecdsabrp384r1", R_EC_BRP384R1},
{"ecdsabrp384t1", R_EC_BRP384T1},
{"ecdsabrp512r1", R_EC_BRP512R1},
{"ecdsabrp512t1", R_EC_BRP512T1}
};
enum {
#ifndef OPENSSL_NO_ECX
R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM
#else
EC_NUM = ECDSA_NUM
#endif
};
/* list of ecdh curves, extension of |ecdsa_choices| list above */
static const OPT_PAIR ecdh_choices[EC_NUM] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
#ifndef OPENSSL_NO_EC2M
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
#endif
{"ecdhbrp256r1", R_EC_BRP256R1},
{"ecdhbrp256t1", R_EC_BRP256T1},
{"ecdhbrp384r1", R_EC_BRP384R1},
{"ecdhbrp384t1", R_EC_BRP384T1},
{"ecdhbrp512r1", R_EC_BRP512R1},
{"ecdhbrp512t1", R_EC_BRP512T1},
#ifndef OPENSSL_NO_ECX
{"ecdhx25519", R_EC_X25519},
{"ecdhx448", R_EC_X448}
#endif
};
static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
#ifndef OPENSSL_NO_ECX
enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM };
static const OPT_PAIR eddsa_choices[EdDSA_NUM] = {
{"ed25519", R_EC_Ed25519},
{"ed448", R_EC_Ed448}
};
static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
enum { R_EC_CURVESM2, SM2_NUM };
static const OPT_PAIR sm2_choices[SM2_NUM] = {
{"curveSM2", R_EC_CURVESM2}
};
# define SM2_ID "TLSv1.3+GM+Cipher+Suite"
# define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1
static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_SM2 */
#define MAX_KEM_NUM 111
static size_t kems_algs_len = 0;
static char *kems_algname[MAX_KEM_NUM] = { NULL };
static double kems_results[MAX_KEM_NUM][3]; /* keygen, encaps, decaps */
#define MAX_SIG_NUM 111
static size_t sigs_algs_len = 0;
static char *sigs_algname[MAX_SIG_NUM] = { NULL };
static double sigs_results[MAX_SIG_NUM][3]; /* keygen, sign, verify */
#define COND(unused_cond) (run && count < (testmode ? 1 : INT_MAX))
#define COUNT(d) (count)
#define TAG_LEN 16
static unsigned int mode_op; /* AE Mode of operation */
static unsigned int aead = 0; /* AEAD flag */
static unsigned char aead_iv[12]; /* For AEAD modes */
static unsigned char aad[EVP_AEAD_TLS1_AAD_LEN] = { 0xcc };
static int aead_ivlen = sizeof(aead_iv);
typedef struct loopargs_st {
ASYNC_JOB *inprogress_job;
ASYNC_WAIT_CTX *wait_ctx;
unsigned char *buf;
unsigned char *buf2;
unsigned char *buf_malloc;
unsigned char *buf2_malloc;
unsigned char *key;
unsigned char tag[TAG_LEN];
size_t buflen;
size_t sigsize;
size_t encsize;
EVP_PKEY_CTX *rsa_sign_ctx[RSA_NUM];
EVP_PKEY_CTX *rsa_verify_ctx[RSA_NUM];
EVP_PKEY_CTX *rsa_encrypt_ctx[RSA_NUM];
EVP_PKEY_CTX *rsa_decrypt_ctx[RSA_NUM];
#ifndef OPENSSL_NO_DSA
EVP_PKEY_CTX *dsa_sign_ctx[DSA_NUM];
EVP_PKEY_CTX *dsa_verify_ctx[DSA_NUM];
#endif
EVP_PKEY_CTX *ecdsa_sign_ctx[ECDSA_NUM];
EVP_PKEY_CTX *ecdsa_verify_ctx[ECDSA_NUM];
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
#ifndef OPENSSL_NO_ECX
EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM];
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
EVP_MD_CTX *sm2_ctx[SM2_NUM];
EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM];
EVP_PKEY *sm2_pkey[SM2_NUM];
#endif
unsigned char *secret_a;
unsigned char *secret_b;
size_t outlen[EC_NUM];
#ifndef OPENSSL_NO_DH
EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM];
unsigned char *secret_ff_a;
unsigned char *secret_ff_b;
#endif
EVP_CIPHER_CTX *ctx;
EVP_MAC_CTX *mctx;
EVP_PKEY_CTX *kem_gen_ctx[MAX_KEM_NUM];
EVP_PKEY_CTX *kem_encaps_ctx[MAX_KEM_NUM];
EVP_PKEY_CTX *kem_decaps_ctx[MAX_KEM_NUM];
size_t kem_out_len[MAX_KEM_NUM];
size_t kem_secret_len[MAX_KEM_NUM];
unsigned char *kem_out[MAX_KEM_NUM];
unsigned char *kem_send_secret[MAX_KEM_NUM];
unsigned char *kem_rcv_secret[MAX_KEM_NUM];
EVP_PKEY_CTX *sig_gen_ctx[MAX_KEM_NUM];
EVP_PKEY_CTX *sig_sign_ctx[MAX_KEM_NUM];
EVP_PKEY_CTX *sig_verify_ctx[MAX_KEM_NUM];
size_t sig_max_sig_len[MAX_KEM_NUM];
size_t sig_act_sig_len[MAX_KEM_NUM];
unsigned char *sig_sig[MAX_KEM_NUM];
} loopargs_t;
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
loopargs_t *loopargs);
static unsigned int testnum;
static char *evp_mac_mdname = "sha256";
static char *evp_hmac_name = NULL;
static const char *evp_md_name = NULL;
static char *evp_mac_ciphername = "aes-128-cbc";
static char *evp_cmac_name = NULL;
static void dofail(void)
{
ERR_print_errors(bio_err);
testmoderesult = 1;
}
static int have_md(const char *name)
{
int ret = 0;
EVP_MD *md = NULL;
if (opt_md_silent(name, &md)) {
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
if (ctx != NULL && EVP_DigestInit(ctx, md) > 0)
ret = 1;
EVP_MD_CTX_free(ctx);
EVP_MD_free(md);
}
return ret;
}
static int have_cipher(const char *name)
{
int ret = 0;
EVP_CIPHER *cipher = NULL;
if (opt_cipher_silent(name, &cipher)) {
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
if (ctx != NULL
&& EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1) > 0)
ret = 1;
EVP_CIPHER_CTX_free(ctx);
EVP_CIPHER_free(cipher);
}
return ret;
}
static int EVP_Digest_loop(const char *mdname, ossl_unused int algindex, void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char digest[EVP_MAX_MD_SIZE];
int count;
EVP_MD *md = NULL;
EVP_MD_CTX *ctx = NULL;
if (!opt_md_silent(mdname, &md))
return -1;
if (EVP_MD_xof(md)) {
ctx = EVP_MD_CTX_new();
if (ctx == NULL) {
count = -1;
goto out;
}
for (count = 0; COND(c[algindex][testnum]); count++) {
if (!EVP_DigestInit_ex2(ctx, md, NULL)
|| !EVP_DigestUpdate(ctx, buf, (size_t)lengths[testnum])
|| !EVP_DigestFinalXOF(ctx, digest, sizeof(digest))) {
count = -1;
break;
}
}
} else {
for (count = 0; COND(c[algindex][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], digest, NULL, md,
NULL)) {
count = -1;
break;
}
}
}
out:
EVP_MD_free(md);
EVP_MD_CTX_free(ctx);
return count;
}
static int EVP_Digest_md_loop(void *args)
{
return EVP_Digest_loop(evp_md_name, D_EVP, args);
}
static int EVP_Digest_MD2_loop(void *args)
{
return EVP_Digest_loop("md2", D_MD2, args);
}
static int EVP_Digest_MDC2_loop(void *args)
{
return EVP_Digest_loop("mdc2", D_MDC2, args);
}
static int EVP_Digest_MD4_loop(void *args)
{
return EVP_Digest_loop("md4", D_MD4, args);
}
static int MD5_loop(void *args)
{
return EVP_Digest_loop("md5", D_MD5, args);
}
static int mac_setup(const char *name,
EVP_MAC **mac, OSSL_PARAM params[],
loopargs_t *loopargs, unsigned int loopargs_len)
{
unsigned int i;
*mac = EVP_MAC_fetch(app_get0_libctx(), name, app_get0_propq());
if (*mac == NULL)
return 0;
for (i = 0; i < loopargs_len; i++) {
loopargs[i].mctx = EVP_MAC_CTX_new(*mac);
if (loopargs[i].mctx == NULL)
return 0;
if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
return 0;
}
return 1;
}
static void mac_teardown(EVP_MAC **mac,
loopargs_t *loopargs, unsigned int loopargs_len)
{
unsigned int i;
for (i = 0; i < loopargs_len; i++)
EVP_MAC_CTX_free(loopargs[i].mctx);
EVP_MAC_free(*mac);
*mac = NULL;
return;
}
static int EVP_MAC_loop(ossl_unused int algindex, void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MAC_CTX *mctx = tempargs->mctx;
unsigned char mac[EVP_MAX_MD_SIZE];
int count;
for (count = 0; COND(c[algindex][testnum]); count++) {
size_t outl;
if (!EVP_MAC_init(mctx, NULL, 0, NULL)
|| !EVP_MAC_update(mctx, buf, lengths[testnum])
|| !EVP_MAC_final(mctx, mac, &outl, sizeof(mac)))
return -1;
}
return count;
}
static int HMAC_loop(void *args)
{
return EVP_MAC_loop(D_HMAC, args);
}
static int CMAC_loop(void *args)
{
return EVP_MAC_loop(D_EVP_CMAC, args);
}
static int KMAC128_loop(void *args)
{
return EVP_MAC_loop(D_KMAC128, args);
}
static int KMAC256_loop(void *args)
{
return EVP_MAC_loop(D_KMAC256, args);
}
static int SHA1_loop(void *args)
{
return EVP_Digest_loop("sha1", D_SHA1, args);
}
static int SHA256_loop(void *args)
{
return EVP_Digest_loop("sha256", D_SHA256, args);
}
static int SHA512_loop(void *args)
{
return EVP_Digest_loop("sha512", D_SHA512, args);
}
static int WHIRLPOOL_loop(void *args)
{
return EVP_Digest_loop("whirlpool", D_WHIRLPOOL, args);
}
static int EVP_Digest_RMD160_loop(void *args)
{
return EVP_Digest_loop("ripemd160", D_RMD160, args);
}
static int algindex;
static int EVP_Cipher_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
if (tempargs->ctx == NULL)
return -1;
for (count = 0; COND(c[algindex][testnum]); count++)
if (EVP_Cipher(tempargs->ctx, buf, buf, (size_t)lengths[testnum]) <= 0)
return -1;
return count;
}
static int GHASH_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MAC_CTX *mctx = tempargs->mctx;
int count;
/* just do the update in the loop to be comparable with 1.1.1 */
for (count = 0; COND(c[D_GHASH][testnum]); count++) {
if (!EVP_MAC_update(mctx, buf, lengths[testnum]))
return -1;
}
return count;
}
#define MAX_BLOCK_SIZE 128
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
static EVP_CIPHER_CTX *init_evp_cipher_ctx(const char *ciphername,
const unsigned char *key,
int keylen)
{
EVP_CIPHER_CTX *ctx = NULL;
EVP_CIPHER *cipher = NULL;
if (!opt_cipher_silent(ciphername, &cipher))
return NULL;
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
goto end;
if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1)) {
EVP_CIPHER_CTX_free(ctx);
ctx = NULL;
goto end;
}
if (EVP_CIPHER_CTX_set_key_length(ctx, keylen) <= 0) {
EVP_CIPHER_CTX_free(ctx);
ctx = NULL;
goto end;
}
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1)) {
EVP_CIPHER_CTX_free(ctx);
ctx = NULL;
goto end;
}
end:
EVP_CIPHER_free(cipher);
return ctx;
}
static int RAND_bytes_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RAND][testnum]); count++)
RAND_bytes(buf, lengths[testnum]);
return count;
}
static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count, rc;
if (decrypt) {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
} else {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
}
if (decrypt)
rc = EVP_DecryptFinal_ex(ctx, buf, &outl);
else
rc = EVP_EncryptFinal_ex(ctx, buf, &outl);
if (rc == 0)
BIO_printf(bio_err, "Error finalizing cipher loop\n");
return count;
}
/*
* To make AEAD benchmarking more relevant perform TLS-like operations,
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
* payload length is not actually limited by 16KB...
* CCM does not support streaming. For the purpose of performance measurement,
* each message is encrypted using the same (key,iv)-pair. Do not use this
* code in your application.
*/
static int EVP_Update_loop_aead_enc(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *key = tempargs->key;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count, realcount = 0;
for (count = 0; COND(c[D_EVP][testnum]); count++) {
/* Set length of iv (Doesn't apply to SIV mode) */
if (mode_op != EVP_CIPH_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
aead_ivlen, NULL)) {
BIO_printf(bio_err, "\nFailed to set iv length\n");
dofail();
exit(1);
}
}
/* Set tag_len (Not for GCM/SIV at encryption stage) */
if (mode_op != EVP_CIPH_GCM_MODE
&& mode_op != EVP_CIPH_SIV_MODE
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
TAG_LEN, NULL)) {
BIO_printf(bio_err, "\nFailed to set tag length\n");
dofail();
exit(1);
}
}
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, aead_iv, -1)) {
BIO_printf(bio_err, "\nFailed to set key and iv\n");
dofail();
exit(1);
}
/* Set total length of input. Only required for CCM */
if (mode_op == EVP_CIPH_CCM_MODE) {
if (!EVP_EncryptUpdate(ctx, NULL, &outl,
NULL, lengths[testnum])) {
BIO_printf(bio_err, "\nCouldn't set input text length\n");
dofail();
exit(1);
}
}
if (aead) {
if (!EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad))) {
BIO_printf(bio_err, "\nCouldn't insert AAD when encrypting\n");
dofail();
exit(1);
}
}
if (!EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum])) {
BIO_printf(bio_err, "\nFailed to encrypt the data\n");
dofail();
exit(1);
}
if (EVP_EncryptFinal_ex(ctx, buf, &outl))
realcount++;
}
return realcount;
}
/*
* To make AEAD benchmarking more relevant perform TLS-like operations,
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
* payload length is not actually limited by 16KB...
* CCM does not support streaming. For the purpose of performance measurement,
* each message is decrypted using the same (key,iv)-pair. Do not use this
* code in your application.
* For decryption, we will use buf2 to preserve the input text in buf.
*/
static int EVP_Update_loop_aead_dec(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *outbuf = tempargs->buf2;
unsigned char *key = tempargs->key;
unsigned char tag[TAG_LEN];
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count, realcount = 0;
for (count = 0; COND(c[D_EVP][testnum]); count++) {
/* Set the length of iv (Doesn't apply to SIV mode) */
if (mode_op != EVP_CIPH_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
aead_ivlen, NULL)) {
BIO_printf(bio_err, "\nFailed to set iv length\n");
dofail();
exit(1);
}
}
/* Set the tag length (Doesn't apply to SIV mode) */
if (mode_op != EVP_CIPH_SIV_MODE
&& mode_op != EVP_CIPH_GCM_MODE
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
TAG_LEN, NULL)) {
BIO_printf(bio_err, "\nFailed to set tag length\n");
dofail();
exit(1);
}
}
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, aead_iv, -1)) {
BIO_printf(bio_err, "\nFailed to set key and iv\n");
dofail();
exit(1);
}
/* Set iv before decryption (Doesn't apply to SIV mode) */
if (mode_op != EVP_CIPH_SIV_MODE) {
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, aead_iv)) {
BIO_printf(bio_err, "\nFailed to set iv\n");
dofail();
exit(1);
}
}
memcpy(tag, tempargs->tag, TAG_LEN);
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
TAG_LEN, tag)) {
BIO_printf(bio_err, "\nFailed to set tag\n");
dofail();
exit(1);
}
/* Set the total length of cipher text. Only required for CCM */
if (mode_op == EVP_CIPH_CCM_MODE) {
if (!EVP_DecryptUpdate(ctx, NULL, &outl,
NULL, lengths[testnum])) {
BIO_printf(bio_err, "\nCouldn't set cipher text length\n");
dofail();
exit(1);
}
}
if (aead) {
if (!EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad))) {
BIO_printf(bio_err, "\nCouldn't insert AAD when decrypting\n");
dofail();
exit(1);
}
}
if (!EVP_DecryptUpdate(ctx, outbuf, &outl, buf, lengths[testnum])) {
BIO_printf(bio_err, "\nFailed to decrypt the data\n");
dofail();
exit(1);
}
if (EVP_DecryptFinal_ex(ctx, outbuf, &outl))
realcount++;
}
return realcount;
}
static int RSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t *rsa_num = &tempargs->sigsize;
EVP_PKEY_CTX **rsa_sign_ctx = tempargs->rsa_sign_ctx;
int ret, count;
for (count = 0; COND(rsa_c[testnum][0]); count++) {
*rsa_num = tempargs->buflen;
ret = EVP_PKEY_sign(rsa_sign_ctx[testnum], buf2, rsa_num, buf, 36);
if (ret <= 0) {
BIO_printf(bio_err, "RSA sign failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int RSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t rsa_num = tempargs->sigsize;
EVP_PKEY_CTX **rsa_verify_ctx = tempargs->rsa_verify_ctx;
int ret, count;
for (count = 0; COND(rsa_c[testnum][1]); count++) {
ret = EVP_PKEY_verify(rsa_verify_ctx[testnum], buf2, rsa_num, buf, 36);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int RSA_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t *rsa_num = &tempargs->encsize;
EVP_PKEY_CTX **rsa_encrypt_ctx = tempargs->rsa_encrypt_ctx;
int ret, count;
for (count = 0; COND(rsa_c[testnum][2]); count++) {
*rsa_num = tempargs->buflen;
ret = EVP_PKEY_encrypt(rsa_encrypt_ctx[testnum], buf2, rsa_num, buf, 36);
if (ret <= 0) {
BIO_printf(bio_err, "RSA encrypt failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int RSA_decrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t rsa_num;
EVP_PKEY_CTX **rsa_decrypt_ctx = tempargs->rsa_decrypt_ctx;
int ret, count;
for (count = 0; COND(rsa_c[testnum][3]); count++) {
rsa_num = tempargs->buflen;
ret = EVP_PKEY_decrypt(rsa_decrypt_ctx[testnum], buf, &rsa_num, buf2, tempargs->encsize);
if (ret <= 0) {
BIO_printf(bio_err, "RSA decrypt failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
#ifndef OPENSSL_NO_DH
static int FFDH_derive_key_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum];
unsigned char *derived_secret = tempargs->secret_ff_a;
int count;
for (count = 0; COND(ffdh_c[testnum][0]); count++) {
/* outlen can be overwritten with a too small value (no padding used) */
size_t outlen = MAX_FFDH_SIZE;
EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen);
}
return count;
}
#endif /* OPENSSL_NO_DH */
#ifndef OPENSSL_NO_DSA
static int DSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t *dsa_num = &tempargs->sigsize;
EVP_PKEY_CTX **dsa_sign_ctx = tempargs->dsa_sign_ctx;
int ret, count;
for (count = 0; COND(dsa_c[testnum][0]); count++) {
*dsa_num = tempargs->buflen;
ret = EVP_PKEY_sign(dsa_sign_ctx[testnum], buf2, dsa_num, buf, 20);
if (ret <= 0) {
BIO_printf(bio_err, "DSA sign failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int DSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t dsa_num = tempargs->sigsize;
EVP_PKEY_CTX **dsa_verify_ctx = tempargs->dsa_verify_ctx;
int ret, count;
for (count = 0; COND(dsa_c[testnum][1]); count++) {
ret = EVP_PKEY_verify(dsa_verify_ctx[testnum], buf2, dsa_num, buf, 20);
if (ret <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
#endif /* OPENSSL_NO_DSA */
static int ECDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t *ecdsa_num = &tempargs->sigsize;
EVP_PKEY_CTX **ecdsa_sign_ctx = tempargs->ecdsa_sign_ctx;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
*ecdsa_num = tempargs->buflen;
ret = EVP_PKEY_sign(ecdsa_sign_ctx[testnum], buf2, ecdsa_num, buf, 20);
if (ret <= 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int ECDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
size_t ecdsa_num = tempargs->sigsize;
EVP_PKEY_CTX **ecdsa_verify_ctx = tempargs->ecdsa_verify_ctx;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
ret = EVP_PKEY_verify(ecdsa_verify_ctx[testnum], buf2, ecdsa_num,
buf, 20);
if (ret <= 0) {
BIO_printf(bio_err, "ECDSA verify failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
/* ******************************************************************** */
static int ECDH_EVP_derive_key_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
unsigned char *derived_secret = tempargs->secret_a;
int count;
size_t *outlen = &(tempargs->outlen[testnum]);
for (count = 0; COND(ecdh_c[testnum][0]); count++)
EVP_PKEY_derive(ctx, derived_secret, outlen);
return count;
}
#ifndef OPENSSL_NO_ECX
static int EdDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
unsigned char *eddsasig = tempargs->buf2;
size_t *eddsasigsize = &tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][0]); count++) {
ret = EVP_DigestSignInit(edctx[testnum], NULL, NULL, NULL, NULL);
if (ret == 0) {
BIO_printf(bio_err, "EdDSA sign init failure\n");
dofail();
count = -1;
break;
}
ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret == 0) {
BIO_printf(bio_err, "EdDSA sign failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
static int EdDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx2;
unsigned char *eddsasig = tempargs->buf2;
size_t eddsasigsize = tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][1]); count++) {
ret = EVP_DigestVerifyInit(edctx[testnum], NULL, NULL, NULL, NULL);
if (ret == 0) {
BIO_printf(bio_err, "EdDSA verify init failure\n");
dofail();
count = -1;
break;
}
ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret != 1) {
BIO_printf(bio_err, "EdDSA verify failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
static int SM2_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx;
unsigned char *sm2sig = tempargs->buf2;
size_t sm2sigsize;
int ret, count;
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
const size_t max_size = EVP_PKEY_get_size(sm2_pkey[testnum]);
for (count = 0; COND(sm2_c[testnum][0]); count++) {
sm2sigsize = max_size;
if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(),
NULL, sm2_pkey[testnum])) {
BIO_printf(bio_err, "SM2 init sign failure\n");
dofail();
count = -1;
break;
}
ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize,
buf, 20);
if (ret == 0) {
BIO_printf(bio_err, "SM2 sign failure\n");
dofail();
count = -1;
break;
}
/* update the latest returned size and always use the fixed buffer size */
tempargs->sigsize = sm2sigsize;
}
return count;
}
static int SM2_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx;
unsigned char *sm2sig = tempargs->buf2;
size_t sm2sigsize = tempargs->sigsize;
int ret, count;
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
for (count = 0; COND(sm2_c[testnum][1]); count++) {
if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(),
NULL, sm2_pkey[testnum])) {
BIO_printf(bio_err, "SM2 verify init failure\n");
dofail();
count = -1;
break;
}
ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize,
buf, 20);
if (ret != 1) {
BIO_printf(bio_err, "SM2 verify failure\n");
dofail();
count = -1;
break;
}
}
return count;
}
#endif /* OPENSSL_NO_SM2 */
static int KEM_keygen_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->kem_gen_ctx[testnum];
EVP_PKEY *pkey = NULL;
int count;
for (count = 0; COND(kems_c[testnum][0]); count++) {
if (EVP_PKEY_keygen(ctx, &pkey) <= 0)
return -1;
/*
* runtime defined to quite some degree by randomness,
* so performance overhead of _free doesn't impact
* results significantly. In any case this test is
* meant to permit relative algorithm performance
* comparison.
*/
EVP_PKEY_free(pkey);
pkey = NULL;
}
return count;
}
static int KEM_encaps_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->kem_encaps_ctx[testnum];
size_t out_len = tempargs->kem_out_len[testnum];
size_t secret_len = tempargs->kem_secret_len[testnum];
unsigned char *out = tempargs->kem_out[testnum];
unsigned char *secret = tempargs->kem_send_secret[testnum];
int count;
for (count = 0; COND(kems_c[testnum][1]); count++) {
if (EVP_PKEY_encapsulate(ctx, out, &out_len, secret, &secret_len) <= 0)
return -1;
}
return count;
}
static int KEM_decaps_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->kem_decaps_ctx[testnum];
size_t out_len = tempargs->kem_out_len[testnum];
size_t secret_len = tempargs->kem_secret_len[testnum];
unsigned char *out = tempargs->kem_out[testnum];
unsigned char *secret = tempargs->kem_send_secret[testnum];
int count;
for (count = 0; COND(kems_c[testnum][2]); count++) {
if (EVP_PKEY_decapsulate(ctx, secret, &secret_len, out, out_len) <= 0)
return -1;
}
return count;
}
static int SIG_keygen_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->sig_gen_ctx[testnum];
EVP_PKEY *pkey = NULL;
int count;
for (count = 0; COND(kems_c[testnum][0]); count++) {
EVP_PKEY_keygen(ctx, &pkey);
/* TBD: How much does free influence runtime? */
EVP_PKEY_free(pkey);
pkey = NULL;
}
return count;
}
static int SIG_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->sig_sign_ctx[testnum];
/* be sure to not change stored sig: */
unsigned char *sig = app_malloc(tempargs->sig_max_sig_len[testnum],
"sig sign loop");
unsigned char md[SHA256_DIGEST_LENGTH] = { 0 };
size_t md_len = SHA256_DIGEST_LENGTH;
int count;
for (count = 0; COND(kems_c[testnum][1]); count++) {
size_t sig_len = tempargs->sig_max_sig_len[testnum];
int ret = EVP_PKEY_sign(ctx, sig, &sig_len, md, md_len);
if (ret <= 0) {
BIO_printf(bio_err, "SIG sign failure at count %d\n", count);
dofail();
count = -1;
break;
}
}
OPENSSL_free(sig);
return count;
}
static int SIG_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->sig_verify_ctx[testnum];
size_t sig_len = tempargs->sig_act_sig_len[testnum];
unsigned char *sig = tempargs->sig_sig[testnum];
unsigned char md[SHA256_DIGEST_LENGTH] = { 0 };
size_t md_len = SHA256_DIGEST_LENGTH;
int count;
for (count = 0; COND(kems_c[testnum][2]); count++) {
int ret = EVP_PKEY_verify(ctx, sig, sig_len, md, md_len);
if (ret <= 0) {
BIO_printf(bio_err, "SIG verify failure at count %d\n", count);
dofail();
count = -1;
break;
}
}
return count;
}
static int check_block_size(EVP_CIPHER_CTX *ctx, int length)
{
const EVP_CIPHER *ciph = EVP_CIPHER_CTX_get0_cipher(ctx);
int blocksize = EVP_CIPHER_CTX_get_block_size(ctx);
if (ciph == NULL || blocksize <= 0) {
BIO_printf(bio_err, "\nInvalid cipher!\n");
return 0;
}
if (length % blocksize != 0) {
BIO_printf(bio_err,
"\nRequested encryption length not a multiple of block size for %s!\n",
EVP_CIPHER_get0_name(ciph));
return 0;
}
return 1;
}
static int run_benchmark(int async_jobs,
int (*loop_function) (void *), loopargs_t *loopargs)
{
int job_op_count = 0;
int total_op_count = 0;
int num_inprogress = 0;
int error = 0, i = 0, ret = 0;
OSSL_ASYNC_FD job_fd = 0;
size_t num_job_fds = 0;
if (async_jobs == 0) {
return loop_function((void *)&loopargs);
}
for (i = 0; i < async_jobs && !error; i++) {
loopargs_t *looparg_item = loopargs + i;
/* Copy pointer content (looparg_t item address) into async context */
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
&job_op_count, loop_function,
(void *)&looparg_item, sizeof(looparg_item));
switch (ret) {
case ASYNC_PAUSE:
++num_inprogress;
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
BIO_printf(bio_err, "Failure in the job\n");
dofail();
error = 1;
break;
}
}
while (num_inprogress > 0) {
#if defined(OPENSSL_SYS_WINDOWS)
DWORD avail = 0;
#elif defined(OPENSSL_SYS_UNIX)
int select_result = 0;
OSSL_ASYNC_FD max_fd = 0;
fd_set waitfdset;
FD_ZERO(&waitfdset);
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
dofail();
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
FD_SET(job_fd, &waitfdset);
if (job_fd > max_fd)
max_fd = job_fd;
}
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
BIO_printf(bio_err,
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
"Decrease the value of async_jobs\n",
max_fd, FD_SETSIZE);
dofail();
error = 1;
break;
}
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
if (select_result == -1 && errno == EINTR)
continue;
if (select_result == -1) {
BIO_printf(bio_err, "Failure in the select\n");
dofail();
error = 1;
break;
}
if (select_result == 0)
continue;
#endif
for (i = 0; i < async_jobs; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
dofail();
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
#if defined(OPENSSL_SYS_UNIX)
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
continue;
#elif defined(OPENSSL_SYS_WINDOWS)
if (num_job_fds == 1
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
&& avail > 0)
continue;
#endif
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
loopargs[i].wait_ctx, &job_op_count,
loop_function, (void *)(loopargs + i),
sizeof(loopargs_t));
switch (ret) {
case ASYNC_PAUSE:
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
--num_inprogress;
loopargs[i].inprogress_job = NULL;
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
--num_inprogress;
loopargs[i].inprogress_job = NULL;
BIO_printf(bio_err, "Failure in the job\n");
dofail();
error = 1;
break;
}
}
}
return error ? -1 : total_op_count;
}
typedef struct ec_curve_st {
const char *name;
unsigned int nid;
unsigned int bits;
size_t sigsize; /* only used for EdDSA curves */
} EC_CURVE;
static EVP_PKEY *get_ecdsa(const EC_CURVE *curve)
{
EVP_PKEY_CTX *kctx = NULL;
EVP_PKEY *key = NULL;
/* Ensure that the error queue is empty */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
dofail();
}
/*
* Let's try to create a ctx directly from the NID: this works for
* curves like Curve25519 that are not implemented through the low
* level EC interface.
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
* then we set the curve by NID before deriving the actual keygen
* ctx for that specific curve.
*/
kctx = EVP_PKEY_CTX_new_id(curve->nid, NULL);
if (kctx == NULL) {
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *params = NULL;
/*
* If we reach this code EVP_PKEY_CTX_new_id() failed and a
* "int_ctx_new:unsupported algorithm" error was added to the
* error queue.
* We remove it from the error queue as we are handling it.
*/
unsigned long error = ERR_peek_error();
if (error == ERR_peek_last_error() /* oldest and latest errors match */
/* check that the error origin matches */
&& ERR_GET_LIB(error) == ERR_LIB_EVP
&& (ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM
|| ERR_GET_REASON(error) == ERR_R_UNSUPPORTED))
ERR_get_error(); /* pop error from queue */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"Unhandled error in the error queue during EC key setup.\n");
dofail();
return NULL;
}
/* Create the context for parameter generation */
if ((pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL)) == NULL
|| EVP_PKEY_paramgen_init(pctx) <= 0
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
curve->nid) <= 0
|| EVP_PKEY_paramgen(pctx, &params) <= 0) {
BIO_printf(bio_err, "EC params init failure.\n");
dofail();
EVP_PKEY_CTX_free(pctx);
return NULL;
}
EVP_PKEY_CTX_free(pctx);
/* Create the context for the key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
EVP_PKEY_free(params);
}
if (kctx == NULL
|| EVP_PKEY_keygen_init(kctx) <= 0
|| EVP_PKEY_keygen(kctx, &key) <= 0) {
BIO_printf(bio_err, "EC key generation failure.\n");
dofail();
key = NULL;
}
EVP_PKEY_CTX_free(kctx);
return key;
}
#define stop_it(do_it, test_num)\
memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num);
/* Checks to see if algorithms are fetchable */
#define IS_FETCHABLE(type, TYPE) \
static int is_ ## type ## _fetchable(const TYPE *alg) \
{ \
TYPE *impl; \
const char *propq = app_get0_propq(); \
OSSL_LIB_CTX *libctx = app_get0_libctx(); \
const char *name = TYPE ## _get0_name(alg); \
\
ERR_set_mark(); \
impl = TYPE ## _fetch(libctx, name, propq); \
ERR_pop_to_mark(); \
if (impl == NULL) \
return 0; \
TYPE ## _free(impl); \
return 1; \
}
IS_FETCHABLE(signature, EVP_SIGNATURE)
IS_FETCHABLE(kem, EVP_KEM)
DEFINE_STACK_OF(EVP_KEM)
static int kems_cmp(const EVP_KEM * const *a,
const EVP_KEM * const *b)
{
return strcmp(OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*a)),
OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*b)));
}
static void collect_kem(EVP_KEM *kem, void *stack)
{
STACK_OF(EVP_KEM) *kem_stack = stack;
if (is_kem_fetchable(kem)
&& sk_EVP_KEM_push(kem_stack, kem) > 0) {
EVP_KEM_up_ref(kem);
}
}
static int kem_locate(const char *algo, unsigned int *idx)
{
unsigned int i;
for (i = 0; i < kems_algs_len; i++) {
if (strcmp(kems_algname[i], algo) == 0) {
*idx = i;
return 1;
}
}
return 0;
}
DEFINE_STACK_OF(EVP_SIGNATURE)
static int signatures_cmp(const EVP_SIGNATURE * const *a,
const EVP_SIGNATURE * const *b)
{
return strcmp(OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*a)),
OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*b)));
}
static void collect_signatures(EVP_SIGNATURE *sig, void *stack)
{
STACK_OF(EVP_SIGNATURE) *sig_stack = stack;
if (is_signature_fetchable(sig)
&& sk_EVP_SIGNATURE_push(sig_stack, sig) > 0)
EVP_SIGNATURE_up_ref(sig);
}
static int sig_locate(const char *algo, unsigned int *idx)
{
unsigned int i;
for (i = 0; i < sigs_algs_len; i++) {
if (strcmp(sigs_algname[i], algo) == 0) {
*idx = i;
return 1;
}
}
return 0;
}
static int get_max(const uint8_t doit[], size_t algs_len) {
size_t i = 0;
int maxcnt = 0;
for (i = 0; i < algs_len; i++)
if (maxcnt < doit[i]) maxcnt = doit[i];
return maxcnt;
}
int speed_main(int argc, char **argv)
{
CONF *conf = NULL;
ENGINE *e = NULL;
loopargs_t *loopargs = NULL;
const char *prog;
const char *engine_id = NULL;
EVP_CIPHER *evp_cipher = NULL;
EVP_MAC *mac = NULL;
double d = 0.0;
OPTION_CHOICE o;
int async_init = 0, multiblock = 0, pr_header = 0;
uint8_t doit[ALGOR_NUM] = { 0 };
int ret = 1, misalign = 0, lengths_single = 0;
STACK_OF(EVP_KEM) *kem_stack = NULL;
STACK_OF(EVP_SIGNATURE) *sig_stack = NULL;
long count = 0;
unsigned int size_num = SIZE_NUM;
unsigned int i, k, loopargs_len = 0, async_jobs = 0;
unsigned int idx;
int keylen = 0;
int buflen;
size_t declen;
BIGNUM *bn = NULL;
EVP_PKEY_CTX *genctx = NULL;
#ifndef NO_FORK
int multi = 0;
#endif
long op_count = 1;
openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
ECDSA_SECONDS, ECDH_SECONDS,
EdDSA_SECONDS, SM2_SECONDS,
FFDH_SECONDS, KEM_SECONDS,
SIG_SECONDS };
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
static const unsigned char deskey[] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, /* key1 */
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, /* key2 */
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 /* key3 */
};
static const struct {
const unsigned char *data;
unsigned int length;
unsigned int bits;
} rsa_keys[] = {
{ test512, sizeof(test512), 512 },
{ test1024, sizeof(test1024), 1024 },
{ test2048, sizeof(test2048), 2048 },
{ test3072, sizeof(test3072), 3072 },
{ test4096, sizeof(test4096), 4096 },
{ test7680, sizeof(test7680), 7680 },
{ test15360, sizeof(test15360), 15360 }
};
uint8_t rsa_doit[RSA_NUM] = { 0 };
int primes = RSA_DEFAULT_PRIME_NUM;
#ifndef OPENSSL_NO_DH
typedef struct ffdh_params_st {
const char *name;
unsigned int nid;
unsigned int bits;
} FFDH_PARAMS;
static const FFDH_PARAMS ffdh_params[FFDH_NUM] = {
{"ffdh2048", NID_ffdhe2048, 2048},
{"ffdh3072", NID_ffdhe3072, 3072},
{"ffdh4096", NID_ffdhe4096, 4096},
{"ffdh6144", NID_ffdhe6144, 6144},
{"ffdh8192", NID_ffdhe8192, 8192}
};
uint8_t ffdh_doit[FFDH_NUM] = { 0 };
#endif /* OPENSSL_NO_DH */
#ifndef OPENSSL_NO_DSA
static const unsigned int dsa_bits[DSA_NUM] = { 1024, 2048 };
uint8_t dsa_doit[DSA_NUM] = { 0 };
#endif /* OPENSSL_NO_DSA */
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the |ecdh_choices| and |ecdsa_choices|
* lists accordingly.
*/
static const EC_CURVE ec_curves[EC_NUM] = {
/* Prime Curves */
{"secp160r1", NID_secp160r1, 160},
{"nistp192", NID_X9_62_prime192v1, 192},
{"nistp224", NID_secp224r1, 224},
{"nistp256", NID_X9_62_prime256v1, 256},
{"nistp384", NID_secp384r1, 384},
{"nistp521", NID_secp521r1, 521},
#ifndef OPENSSL_NO_EC2M
/* Binary Curves */
{"nistk163", NID_sect163k1, 163},
{"nistk233", NID_sect233k1, 233},
{"nistk283", NID_sect283k1, 283},
{"nistk409", NID_sect409k1, 409},
{"nistk571", NID_sect571k1, 571},
{"nistb163", NID_sect163r2, 163},
{"nistb233", NID_sect233r1, 233},
{"nistb283", NID_sect283r1, 283},
{"nistb409", NID_sect409r1, 409},
{"nistb571", NID_sect571r1, 571},
#endif
{"brainpoolP256r1", NID_brainpoolP256r1, 256},
{"brainpoolP256t1", NID_brainpoolP256t1, 256},
{"brainpoolP384r1", NID_brainpoolP384r1, 384},
{"brainpoolP384t1", NID_brainpoolP384t1, 384},
{"brainpoolP512r1", NID_brainpoolP512r1, 512},
{"brainpoolP512t1", NID_brainpoolP512t1, 512},
#ifndef OPENSSL_NO_ECX
/* Other and ECDH only ones */
{"X25519", NID_X25519, 253},
{"X448", NID_X448, 448}
#endif
};
#ifndef OPENSSL_NO_ECX
static const EC_CURVE ed_curves[EdDSA_NUM] = {
/* EdDSA */
{"Ed25519", NID_ED25519, 253, 64},
{"Ed448", NID_ED448, 456, 114}
};
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
static const EC_CURVE sm2_curves[SM2_NUM] = {
/* SM2 */
{"CurveSM2", NID_sm2, 256}
};
uint8_t sm2_doit[SM2_NUM] = { 0 };
#endif
uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
uint8_t ecdh_doit[EC_NUM] = { 0 };
#ifndef OPENSSL_NO_ECX
uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
#endif /* OPENSSL_NO_ECX */
uint8_t kems_doit[MAX_KEM_NUM] = { 0 };
uint8_t sigs_doit[MAX_SIG_NUM] = { 0 };
uint8_t do_kems = 0;
uint8_t do_sigs = 0;
/* checks declared curves against choices list. */
#ifndef OPENSSL_NO_ECX
OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448);
OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0);
OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448);
OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0);
OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1);
OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0);
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2);
OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0);
#endif
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
if (doit[D_EVP]) {
BIO_printf(bio_err, "%s: -evp option cannot be used more than once\n", prog);
goto opterr;
}
ERR_set_mark();
if (!opt_cipher_silent(opt_arg(), &evp_cipher)) {
if (have_md(opt_arg()))
evp_md_name = opt_arg();
}
if (evp_cipher == NULL && evp_md_name == NULL) {
ERR_clear_last_mark();
BIO_printf(bio_err,
"%s: %s is an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
ERR_pop_to_mark();
doit[D_EVP] = 1;
break;
case OPT_HMAC:
if (!have_md(opt_arg())) {
BIO_printf(bio_err, "%s: %s is an unknown digest\n",
prog, opt_arg());
goto end;
}
evp_mac_mdname = opt_arg();
doit[D_HMAC] = 1;
break;
case OPT_CMAC:
if (!have_cipher(opt_arg())) {
BIO_printf(bio_err, "%s: %s is an unknown cipher\n",
prog, opt_arg());
goto end;
}
evp_mac_ciphername = opt_arg();
doit[D_EVP_CMAC] = 1;
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
/*
* In a forked execution, an engine might need to be
* initialised by each child process, not by the parent.
* So store the name here and run setup_engine() later on.
*/
engine_id = opt_arg();
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = opt_int_arg();
if ((size_t)multi >= SIZE_MAX / sizeof(int)) {
BIO_printf(bio_err, "%s: multi argument too large\n", prog);
return 0;
}
#endif
break;
case OPT_ASYNCJOBS:
#ifndef OPENSSL_NO_ASYNC
async_jobs = opt_int_arg();
if (async_jobs > 99999) {
BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
goto opterr;
}
if (!ASYNC_is_capable()) {
BIO_printf(bio_err,
"%s: async_jobs specified but async not supported\n",
prog);
if (testmode)
/* Return success in the testmode. */
return 0;
goto opterr;
}
#endif
break;
case OPT_MISALIGN:
misalign = opt_int_arg();
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
#ifdef OPENSSL_NO_MULTIBLOCK
BIO_printf(bio_err,
"%s: -mb specified but multi-block support is disabled\n",
prog);
goto end;
#endif
break;
case OPT_R_CASES:
if (!opt_rand(o))
goto end;
break;
case OPT_PROV_CASES:
if (!opt_provider(o))
goto end;
break;
case OPT_CONFIG:
conf = app_load_config_modules(opt_arg());
if (conf == NULL)
goto end;
break;
case OPT_PRIMES:
primes = opt_int_arg();
break;
case OPT_SECONDS:
seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
= seconds.ecdh = seconds.eddsa
= seconds.sm2 = seconds.ffdh
= seconds.kem = seconds.sig = opt_int_arg();
break;
case OPT_BYTES:
lengths_single = opt_int_arg();
lengths = &lengths_single;
size_num = 1;
break;
case OPT_AEAD:
aead = 1;
break;
case OPT_KEM:
do_kems = 1;
break;
case OPT_SIG:
do_sigs = 1;
break;
case OPT_MLOCK:
domlock = 1;
#if !defined(_WIN32) && !defined(OPENSSL_SYS_LINUX)
BIO_printf(bio_err,
"%s: -mlock not supported on this platform\n",
prog);
goto end;
#endif
break;
case OPT_TESTMODE:
testmode = 1;
break;
}
}
/* find all KEMs currently available */
kem_stack = sk_EVP_KEM_new(kems_cmp);
EVP_KEM_do_all_provided(app_get0_libctx(), collect_kem, kem_stack);
kems_algs_len = 0;
for (idx = 0; idx < (unsigned int)sk_EVP_KEM_num(kem_stack); idx++) {
EVP_KEM *kem = sk_EVP_KEM_value(kem_stack, idx);
if (strcmp(EVP_KEM_get0_name(kem), "RSA") == 0) {
if (kems_algs_len + OSSL_NELEM(rsa_choices) >= MAX_KEM_NUM) {
BIO_printf(bio_err,
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
goto end;
}
for (i = 0; i < OSSL_NELEM(rsa_choices); i++) {
kems_doit[kems_algs_len] = 1;
kems_algname[kems_algs_len++] = OPENSSL_strdup(rsa_choices[i].name);
}
} else if (strcmp(EVP_KEM_get0_name(kem), "EC") == 0) {
if (kems_algs_len + 3 >= MAX_KEM_NUM) {
BIO_printf(bio_err,
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
goto end;
}
kems_doit[kems_algs_len] = 1;
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-256");
kems_doit[kems_algs_len] = 1;
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-384");
kems_doit[kems_algs_len] = 1;
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-521");
} else {
if (kems_algs_len + 1 >= MAX_KEM_NUM) {
BIO_printf(bio_err,
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
goto end;
}
kems_doit[kems_algs_len] = 1;
kems_algname[kems_algs_len++] = OPENSSL_strdup(EVP_KEM_get0_name(kem));
}
}
sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
kem_stack = NULL;
/* find all SIGNATUREs currently available */
sig_stack = sk_EVP_SIGNATURE_new(signatures_cmp);
EVP_SIGNATURE_do_all_provided(app_get0_libctx(), collect_signatures, sig_stack);
sigs_algs_len = 0;
for (idx = 0; idx < (unsigned int)sk_EVP_SIGNATURE_num(sig_stack); idx++) {
EVP_SIGNATURE *s = sk_EVP_SIGNATURE_value(sig_stack, idx);
const char *sig_name = EVP_SIGNATURE_get0_name(s);
if (strcmp(sig_name, "RSA") == 0) {
if (sigs_algs_len + OSSL_NELEM(rsa_choices) >= MAX_SIG_NUM) {
BIO_printf(bio_err,
"Too many signatures registered. Change MAX_SIG_NUM.\n");
goto end;
}
for (i = 0; i < OSSL_NELEM(rsa_choices); i++) {
sigs_doit[sigs_algs_len] = 1;
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(rsa_choices[i].name);
}
}
#ifndef OPENSSL_NO_DSA
else if (strcmp(sig_name, "DSA") == 0) {
if (sigs_algs_len + DSA_NUM >= MAX_SIG_NUM) {
BIO_printf(bio_err,
"Too many signatures registered. Change MAX_SIG_NUM.\n");
goto end;
}
for (i = 0; i < DSA_NUM; i++) {
sigs_doit[sigs_algs_len] = 1;
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(dsa_choices[i].name);
}
}
#endif /* OPENSSL_NO_DSA */
/* skipping these algs as tested elsewhere - and b/o setup is a pain */
else if (strcmp(sig_name, "ED25519") &&
strcmp(sig_name, "ED448") &&
strcmp(sig_name, "ECDSA") &&
strcmp(sig_name, "HMAC") &&
strcmp(sig_name, "SIPHASH") &&
strcmp(sig_name, "POLY1305") &&
strcmp(sig_name, "CMAC") &&
strcmp(sig_name, "SM2")) { /* skip alg */
if (sigs_algs_len + 1 >= MAX_SIG_NUM) {
BIO_printf(bio_err,
"Too many signatures registered. Change MAX_SIG_NUM.\n");
goto end;
}
/* activate this provider algorithm */
sigs_doit[sigs_algs_len] = 1;
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(sig_name);
}
}
sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
sig_stack = NULL;
/* Remaining arguments are algorithms. */
argc = opt_num_rest();
argv = opt_rest();
if (!app_RAND_load())
goto end;
for (; *argv; argv++) {
const char *algo = *argv;
int algo_found = 0;
if (opt_found(algo, doit_choices, &i)) {
doit[i] = 1;
algo_found = 1;
}
if (strcmp(algo, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
algo_found = 1;
}
if (strcmp(algo, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
algo_found = 1;
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (strcmp(algo, "openssl") == 0) /* just for compatibility */
algo_found = 1;
#endif
if (HAS_PREFIX(algo, "rsa")) {
if (algo[sizeof("rsa") - 1] == '\0') {
memset(rsa_doit, 1, sizeof(rsa_doit));
algo_found = 1;
}
if (opt_found(algo, rsa_choices, &i)) {
rsa_doit[i] = 1;
algo_found = 1;
}
}
#ifndef OPENSSL_NO_DH
if (HAS_PREFIX(algo, "ffdh")) {
if (algo[sizeof("ffdh") - 1] == '\0') {
memset(ffdh_doit, 1, sizeof(ffdh_doit));
algo_found = 1;
}
if (opt_found(algo, ffdh_choices, &i)) {
ffdh_doit[i] = 2;
algo_found = 1;
}
}
#endif
#ifndef OPENSSL_NO_DSA
if (HAS_PREFIX(algo, "dsa")) {
if (algo[sizeof("dsa") - 1] == '\0') {
memset(dsa_doit, 1, sizeof(dsa_doit));
algo_found = 1;
}
if (opt_found(algo, dsa_choices, &i)) {
dsa_doit[i] = 2;
algo_found = 1;
}
}
#endif
if (strcmp(algo, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
algo_found = 1;
}
if (strcmp(algo, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
algo_found = 1;
}
if (HAS_PREFIX(algo, "ecdsa")) {
if (algo[sizeof("ecdsa") - 1] == '\0') {
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
algo_found = 1;
}
if (opt_found(algo, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
algo_found = 1;
}
}
if (HAS_PREFIX(algo, "ecdh")) {
if (algo[sizeof("ecdh") - 1] == '\0') {
memset(ecdh_doit, 1, sizeof(ecdh_doit));
algo_found = 1;
}
if (opt_found(algo, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
algo_found = 1;
}
}
#ifndef OPENSSL_NO_ECX
if (strcmp(algo, "eddsa") == 0) {
memset(eddsa_doit, 1, sizeof(eddsa_doit));
algo_found = 1;
}
if (opt_found(algo, eddsa_choices, &i)) {
eddsa_doit[i] = 2;
algo_found = 1;
}
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
if (strcmp(algo, "sm2") == 0) {
memset(sm2_doit, 1, sizeof(sm2_doit));
algo_found = 1;
}
if (opt_found(algo, sm2_choices, &i)) {
sm2_doit[i] = 2;
algo_found = 1;
}
#endif
if (kem_locate(algo, &idx)) {
kems_doit[idx]++;
do_kems = 1;
algo_found = 1;
}
if (sig_locate(algo, &idx)) {
sigs_doit[idx]++;
do_sigs = 1;
algo_found = 1;
}
if (strcmp(algo, "kmac") == 0) {
doit[D_KMAC128] = doit[D_KMAC256] = 1;
algo_found = 1;
}
if (strcmp(algo, "cmac") == 0) {
doit[D_EVP_CMAC] = 1;
algo_found = 1;
}
if (!algo_found) {
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo);
goto end;
}
}
/* Sanity checks */
if (aead) {
if (evp_cipher == NULL) {
BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
goto end;
} else if (!(EVP_CIPHER_get_flags(evp_cipher) &
EVP_CIPH_FLAG_AEAD_CIPHER)) {
BIO_printf(bio_err, "%s is not an AEAD cipher\n",
EVP_CIPHER_get0_name(evp_cipher));
goto end;
}
}
if (kems_algs_len > 0) {
int maxcnt = get_max(kems_doit, kems_algs_len);
if (maxcnt > 1) {
/* some algs explicitly selected */
for (i = 0; i < kems_algs_len; i++) {
/* disable the rest */
kems_doit[i]--;
}
}
}
if (sigs_algs_len > 0) {
int maxcnt = get_max(sigs_doit, sigs_algs_len);
if (maxcnt > 1) {
/* some algs explicitly selected */
for (i = 0; i < sigs_algs_len; i++) {
/* disable the rest */
sigs_doit[i]--;
}
}
}
if (multiblock) {
if (evp_cipher == NULL) {
BIO_printf(bio_err, "-mb can be used only with a multi-block"
" capable cipher\n");
goto end;
} else if (!(EVP_CIPHER_get_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not a multi-block capable\n",
EVP_CIPHER_get0_name(evp_cipher));
goto end;
} else if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with -mb");
goto end;
}
}
/* Initialize the job pool if async mode is enabled */
if (async_jobs > 0) {
async_init = ASYNC_init_thread(async_jobs, async_jobs);
if (!async_init) {
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
goto end;
}
}
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
loopargs =
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
buflen = lengths[size_num - 1];
if (buflen < 36) /* size of random vector in RSA benchmark */
buflen = 36;
if (INT_MAX - (MAX_MISALIGNMENT + 1) < buflen) {
BIO_printf(bio_err, "Error: buffer size too large\n");
goto end;
}
buflen += MAX_MISALIGNMENT + 1;
for (i = 0; i < loopargs_len; i++) {
if (async_jobs > 0) {
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
if (loopargs[i].wait_ctx == NULL) {
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
goto end;
}
}
loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
/* Align the start of buffers on a 64 byte boundary */
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
loopargs[i].buflen = buflen - misalign;
loopargs[i].sigsize = buflen - misalign;
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#ifndef OPENSSL_NO_DH
loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a");
loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b");
#endif
}
#ifndef NO_FORK
if (multi && do_multi(multi, size_num))
goto show_res;
#endif
for (i = 0; i < loopargs_len; ++i) {
if (domlock) {
#if defined(_WIN32)
(void)VirtualLock(loopargs[i].buf_malloc, buflen);
(void)VirtualLock(loopargs[i].buf2_malloc, buflen);
#elif defined(OPENSSL_SYS_LINUX)
(void)mlock(loopargs[i].buf_malloc, buflen);
(void)mlock(loopargs[i].buf_malloc, buflen);
#endif
}
memset(loopargs[i].buf_malloc, 0, buflen);
memset(loopargs[i].buf2_malloc, 0, buflen);
}
/* Initialize the engine after the fork */
e = setup_engine(engine_id, 0);
/* No parameters; turn on everything. */
if (argc == 0 && !doit[D_EVP] && !doit[D_HMAC]
&& !doit[D_EVP_CMAC] && !do_kems && !do_sigs) {
memset(doit, 1, sizeof(doit));
doit[D_EVP] = doit[D_EVP_CMAC] = 0;
ERR_set_mark();
for (i = D_MD2; i <= D_WHIRLPOOL; i++) {
if (!have_md(names[i]))
doit[i] = 0;
}
for (i = D_CBC_DES; i <= D_CBC_256_CML; i++) {
if (!have_cipher(names[i]))
doit[i] = 0;
}
if ((mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC",
app_get0_propq())) != NULL) {
EVP_MAC_free(mac);
mac = NULL;
} else {
doit[D_GHASH] = 0;
}
if ((mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC",
app_get0_propq())) != NULL) {
EVP_MAC_free(mac);
mac = NULL;
} else {
doit[D_HMAC] = 0;
}
ERR_pop_to_mark();
memset(rsa_doit, 1, sizeof(rsa_doit));
#ifndef OPENSSL_NO_DH
memset(ffdh_doit, 1, sizeof(ffdh_doit));
#endif
#ifndef OPENSSL_NO_DSA
memset(dsa_doit, 1, sizeof(dsa_doit));
#endif
#ifndef OPENSSL_NO_ECX
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
memset(ecdh_doit, 1, sizeof(ecdh_doit));
memset(eddsa_doit, 1, sizeof(eddsa_doit));
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
memset(sm2_doit, 1, sizeof(sm2_doit));
#endif
memset(kems_doit, 1, sizeof(kems_doit));
do_kems = 1;
memset(sigs_doit, 1, sizeof(sigs_doit));
do_sigs = 1;
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#if SIGALRM > 0
signal(SIGALRM, alarmed);
#endif
if (doit[D_MD2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD2], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD2, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_MDC2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MDC2], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MDC2, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_MD4]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD4], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD4, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_MD5]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD5], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, MD5_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD5, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_SHA1]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA1], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA1, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_SHA256]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA256], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA256, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_SHA512]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA512], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA512, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_WHIRLPOOL]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_WHIRLPOOL], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_RMD160]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RMD160], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
print_result(D_RMD160, testnum, count, d);
if (count < 0)
break;
}
}
if (doit[D_HMAC]) {
static const char hmac_key[] = "This is a key...";
int len = strlen(hmac_key);
size_t hmac_name_len = sizeof("hmac()") + strlen(evp_mac_mdname);
OSSL_PARAM params[3];
if (evp_mac_mdname == NULL)
goto end;
evp_hmac_name = app_malloc(hmac_name_len, "HMAC name");
BIO_snprintf(evp_hmac_name, hmac_name_len, "hmac(%s)", evp_mac_mdname);
names[D_HMAC] = evp_hmac_name;
params[0] =
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
evp_mac_mdname, 0);
params[1] =
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(char *)hmac_key, len);
params[2] = OSSL_PARAM_construct_end();
if (mac_setup("HMAC", &mac, params, loopargs, loopargs_len) < 1)
goto end;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_HMAC], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_HMAC, testnum, count, d);
if (count < 0)
break;
}
mac_teardown(&mac, loopargs, loopargs_len);
}
if (doit[D_CBC_DES]) {
int st = 1;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ctx = init_evp_cipher_ctx("des-cbc", deskey,
sizeof(deskey) / 3);
st = loopargs[i].ctx != NULL;
}
algindex = D_CBC_DES;
for (testnum = 0; st && testnum < size_num; testnum++) {
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
break;
print_message(names[D_CBC_DES], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_DES, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
EVP_CIPHER_CTX_free(loopargs[i].ctx);
}
if (doit[D_EDE3_DES]) {
int st = 1;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ctx = init_evp_cipher_ctx("des-ede3-cbc", deskey,
sizeof(deskey));
st = loopargs[i].ctx != NULL;
}
algindex = D_EDE3_DES;
for (testnum = 0; st && testnum < size_num; testnum++) {
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
break;
print_message(names[D_EDE3_DES], lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
d = Time_F(STOP);
print_result(D_EDE3_DES, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
EVP_CIPHER_CTX_free(loopargs[i].ctx);
}
for (k = 0; k < 3; k++) {
algindex = D_CBC_128_AES + k;
if (doit[algindex]) {
int st = 1;
keylen = 16 + k * 8;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
key32, keylen);
st = loopargs[i].ctx != NULL;
}
for (testnum = 0; st && testnum < size_num; testnum++) {
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
break;
print_message(names[algindex], lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
d = Time_F(STOP);
print_result(algindex, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
EVP_CIPHER_CTX_free(loopargs[i].ctx);
}
}
for (k = 0; k < 3; k++) {
algindex = D_CBC_128_CML + k;
if (doit[algindex]) {
int st = 1;
keylen = 16 + k * 8;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
key32, keylen);
st = loopargs[i].ctx != NULL;
}
for (testnum = 0; st && testnum < size_num; testnum++) {
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
break;
print_message(names[algindex], lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
d = Time_F(STOP);
print_result(algindex, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
EVP_CIPHER_CTX_free(loopargs[i].ctx);
}
}
for (algindex = D_RC4; algindex <= D_CBC_CAST; algindex++) {
if (doit[algindex]) {
int st = 1;
keylen = 16;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
key32, keylen);
st = loopargs[i].ctx != NULL;
}
for (testnum = 0; st && testnum < size_num; testnum++) {
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
break;
print_message(names[algindex], lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
d = Time_F(STOP);
print_result(algindex, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
EVP_CIPHER_CTX_free(loopargs[i].ctx);
}
}
if (doit[D_GHASH]) {
static const char gmac_iv[] = "0123456789ab";
OSSL_PARAM params[4];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
"aes-128-gcm", 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
(char *)gmac_iv,
sizeof(gmac_iv) - 1);
params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(void *)key32, 16);
params[3] = OSSL_PARAM_construct_end();
if (mac_setup("GMAC", &mac, params, loopargs, loopargs_len) < 1)
goto end;
/* b/c of the definition of GHASH_loop(), init() calls are needed here */
for (i = 0; i < loopargs_len; i++) {
if (!EVP_MAC_init(loopargs[i].mctx, NULL, 0, NULL))
goto end;
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_GHASH], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, GHASH_loop, loopargs);
d = Time_F(STOP);
print_result(D_GHASH, testnum, count, d);
if (count < 0)
break;
}
mac_teardown(&mac, loopargs, loopargs_len);
}
if (doit[D_RAND]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RAND], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
d = Time_F(STOP);
print_result(D_RAND, testnum, count, d);
}
}
/*-
* There are three scenarios for D_EVP:
* 1- Using authenticated encryption (AE) e.g. CCM, GCM, OCB etc.
* 2- Using AE + associated data (AD) i.e. AEAD using CCM, GCM, OCB etc.
* 3- Not using AE or AD e.g. ECB, CBC, CFB etc.
*/
if (doit[D_EVP]) {
if (evp_cipher != NULL) {
int (*loopfunc) (void *);
int outlen = 0;
unsigned int ae_mode = 0;
if (multiblock && (EVP_CIPHER_get_flags(evp_cipher)
& EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
multiblock_speed(evp_cipher, lengths_single, &seconds);
ret = 0;
goto end;
}
names[D_EVP] = EVP_CIPHER_get0_name(evp_cipher);
mode_op = EVP_CIPHER_get_mode(evp_cipher);
if (aead) {
if (lengths == lengths_list) {
lengths = aead_lengths_list;
size_num = OSSL_NELEM(aead_lengths_list);
}
}
if (mode_op == EVP_CIPH_GCM_MODE
|| mode_op == EVP_CIPH_CCM_MODE
|| mode_op == EVP_CIPH_OCB_MODE
|| mode_op == EVP_CIPH_SIV_MODE
|| mode_op == EVP_CIPH_GCM_SIV_MODE) {
ae_mode = 1;
if (decrypt)
loopfunc = EVP_Update_loop_aead_dec;
else
loopfunc = EVP_Update_loop_aead_enc;
} else {
loopfunc = EVP_Update_loop;
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], lengths[testnum], seconds.sym);
for (k = 0; k < loopargs_len; k++) {
loopargs[k].ctx = EVP_CIPHER_CTX_new();
if (loopargs[k].ctx == NULL) {
BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n");
exit(1);
}
/*
* For AE modes, we must first encrypt the data to get
* a valid tag that enables us to decrypt. If we don't
* encrypt first, we won't have a valid tag that enables
* authenticity and hence decryption will fail.
*/
if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL,
NULL, NULL, ae_mode ? 1 : !decrypt)) {
BIO_printf(bio_err, "\nCouldn't init the context\n");
dofail();
exit(1);
}
/* Padding isn't needed */
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
keylen = EVP_CIPHER_CTX_get_key_length(loopargs[k].ctx);
loopargs[k].key = app_malloc(keylen, "evp_cipher key");
EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
if (!ae_mode) {
if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
loopargs[k].key, NULL, -1)) {
BIO_printf(bio_err, "\nFailed to set the key\n");
dofail();
exit(1);
}
} else if (mode_op == EVP_CIPH_SIV_MODE
|| mode_op == EVP_CIPH_GCM_SIV_MODE) {
EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
EVP_CTRL_SET_SPEED, 1, NULL);
}
if (ae_mode && decrypt) {
/* Set length of iv (Doesn't apply to SIV mode) */
if (mode_op != EVP_CIPH_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
EVP_CTRL_AEAD_SET_IVLEN,
aead_ivlen, NULL)) {
BIO_printf(bio_err, "\nFailed to set iv length\n");
dofail();
exit(1);
}
}
/* Set tag_len (Not for GCM/SIV at encryption stage) */
if (mode_op != EVP_CIPH_GCM_MODE
&& mode_op != EVP_CIPH_SIV_MODE
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
EVP_CTRL_AEAD_SET_TAG,
TAG_LEN, NULL)) {
BIO_printf(bio_err,
"\nFailed to set tag length\n");
dofail();
exit(1);
}
}
if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
loopargs[k].key, aead_iv, -1)) {
BIO_printf(bio_err, "\nFailed to set the key\n");
dofail();
exit(1);
}
/* Set total length of input. Only required for CCM */
if (mode_op == EVP_CIPH_CCM_MODE) {
if (!EVP_EncryptUpdate(loopargs[k].ctx, NULL,
&outlen, NULL,
lengths[testnum])) {
BIO_printf(bio_err,
"\nCouldn't set input text length\n");
dofail();
exit(1);
}
}
if (aead) {
if (!EVP_EncryptUpdate(loopargs[k].ctx, NULL,
&outlen, aad, sizeof(aad))) {
BIO_printf(bio_err,
"\nCouldn't insert AAD when encrypting\n");
dofail();
exit(1);
}
}
if (!EVP_EncryptUpdate(loopargs[k].ctx, loopargs[k].buf,
&outlen, loopargs[k].buf,
lengths[testnum])) {
BIO_printf(bio_err,
"\nFailed to to encrypt the data\n");
dofail();
exit(1);
}
if (!EVP_EncryptFinal_ex(loopargs[k].ctx,
loopargs[k].buf, &outlen)) {
BIO_printf(bio_err,
"\nFailed finalize the encryption\n");
dofail();
exit(1);
}
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_AEAD_GET_TAG,
TAG_LEN, &loopargs[k].tag)) {
BIO_printf(bio_err, "\nFailed to get the tag\n");
dofail();
exit(1);
}
EVP_CIPHER_CTX_free(loopargs[k].ctx);
loopargs[k].ctx = EVP_CIPHER_CTX_new();
if (loopargs[k].ctx == NULL) {
BIO_printf(bio_err,
"\nEVP_CIPHER_CTX_new failure\n");
exit(1);
}
if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher,
NULL, NULL, NULL, 0)) {
BIO_printf(bio_err,
"\nFailed initializing the context\n");
dofail();
exit(1);
}
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
/* GCM-SIV/SIV only allows for a single Update operation */
if (mode_op == EVP_CIPH_SIV_MODE
|| mode_op == EVP_CIPH_GCM_SIV_MODE)
EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
EVP_CTRL_SET_SPEED, 1, NULL);
}
}
Time_F(START);
count = run_benchmark(async_jobs, loopfunc, loopargs);
d = Time_F(STOP);
for (k = 0; k < loopargs_len; k++) {
OPENSSL_clear_free(loopargs[k].key, keylen);
EVP_CIPHER_CTX_free(loopargs[k].ctx);
}
print_result(D_EVP, testnum, count, d);
}
} else if (evp_md_name != NULL) {
names[D_EVP] = evp_md_name;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_md_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP, testnum, count, d);
if (count < 0)
break;
}
}
}
if (doit[D_EVP_CMAC]) {
size_t len = sizeof("cmac()") + strlen(evp_mac_ciphername);
OSSL_PARAM params[3];
EVP_CIPHER *cipher = NULL;
if (!opt_cipher(evp_mac_ciphername, &cipher))
goto end;
keylen = EVP_CIPHER_get_key_length(cipher);
EVP_CIPHER_free(cipher);
if (keylen <= 0 || keylen > (int)sizeof(key32)) {
BIO_printf(bio_err, "\nRequested CMAC cipher with unsupported key length.\n");
goto end;
}
evp_cmac_name = app_malloc(len, "CMAC name");
BIO_snprintf(evp_cmac_name, len, "cmac(%s)", evp_mac_ciphername);
names[D_EVP_CMAC] = evp_cmac_name;
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
evp_mac_ciphername, 0);
params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(char *)key32, keylen);
params[2] = OSSL_PARAM_construct_end();
if (mac_setup("CMAC", &mac, params, loopargs, loopargs_len) < 1)
goto end;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP_CMAC], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, CMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP_CMAC, testnum, count, d);
if (count < 0)
break;
}
mac_teardown(&mac, loopargs, loopargs_len);
}
if (doit[D_KMAC128]) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(void *)key32, 16);
params[1] = OSSL_PARAM_construct_end();
if (mac_setup("KMAC-128", &mac, params, loopargs, loopargs_len) < 1)
goto end;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_KMAC128], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, KMAC128_loop, loopargs);
d = Time_F(STOP);
print_result(D_KMAC128, testnum, count, d);
if (count < 0)
break;
}
mac_teardown(&mac, loopargs, loopargs_len);
}
if (doit[D_KMAC256]) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(void *)key32, 32);
params[1] = OSSL_PARAM_construct_end();
if (mac_setup("KMAC-256", &mac, params, loopargs, loopargs_len) < 1)
goto end;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_KMAC256], lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, KMAC256_loop, loopargs);
d = Time_F(STOP);
print_result(D_KMAC256, testnum, count, d);
if (count < 0)
break;
}
mac_teardown(&mac, loopargs, loopargs_len);
}
for (i = 0; i < loopargs_len; i++)
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
goto end;
for (testnum = 0; testnum < RSA_NUM; testnum++) {
EVP_PKEY *rsa_key = NULL;
int st = 0;
if (!rsa_doit[testnum])
continue;
if (primes > RSA_DEFAULT_PRIME_NUM) {
/* we haven't set keys yet, generate multi-prime RSA keys */
bn = BN_new();
st = bn != NULL
&& BN_set_word(bn, RSA_F4)
&& init_gen_str(&genctx, "RSA", NULL, 0, NULL, NULL)
&& EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, rsa_keys[testnum].bits) > 0
&& EVP_PKEY_CTX_set1_rsa_keygen_pubexp(genctx, bn) > 0
&& EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) > 0
&& EVP_PKEY_keygen(genctx, &rsa_key) > 0;
BN_free(bn);
bn = NULL;
EVP_PKEY_CTX_free(genctx);
genctx = NULL;
} else {
const unsigned char *p = rsa_keys[testnum].data;
st = (rsa_key = d2i_PrivateKey(EVP_PKEY_RSA, NULL, &p,
rsa_keys[testnum].length)) != NULL;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].rsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
loopargs[i].sigsize = loopargs[i].buflen;
if (loopargs[i].rsa_sign_ctx[testnum] == NULL
|| EVP_PKEY_sign_init(loopargs[i].rsa_sign_ctx[testnum]) <= 0
|| EVP_PKEY_sign(loopargs[i].rsa_sign_ctx[testnum],
loopargs[i].buf2,
&loopargs[i].sigsize,
loopargs[i].buf, 36) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"RSA sign setup failure. No RSA sign will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("private", "rsa sign",
rsa_keys[testnum].bits, seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %u bits private RSA sign ops in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][0] = (double)count / d;
op_count = count;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].rsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key,
NULL);
if (loopargs[i].rsa_verify_ctx[testnum] == NULL
|| EVP_PKEY_verify_init(loopargs[i].rsa_verify_ctx[testnum]) <= 0
|| EVP_PKEY_verify(loopargs[i].rsa_verify_ctx[testnum],
loopargs[i].buf2,
loopargs[i].sigsize,
loopargs[i].buf, 36) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"RSA verify setup failure. No RSA verify will be done.\n");
dofail();
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa verify",
rsa_keys[testnum].bits, seconds.rsa);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %u bits public RSA verify ops in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][1] = (double)count / d;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].rsa_encrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
loopargs[i].encsize = loopargs[i].buflen;
if (loopargs[i].rsa_encrypt_ctx[testnum] == NULL
|| EVP_PKEY_encrypt_init(loopargs[i].rsa_encrypt_ctx[testnum]) <= 0
|| EVP_PKEY_encrypt(loopargs[i].rsa_encrypt_ctx[testnum],
loopargs[i].buf2,
&loopargs[i].encsize,
loopargs[i].buf, 36) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"RSA encrypt setup failure. No RSA encrypt will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("public", "rsa encrypt",
rsa_keys[testnum].bits, seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_encrypt_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %u bits public RSA encrypt ops in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][2] = (double)count / d;
op_count = count;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].rsa_decrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
declen = loopargs[i].buflen;
if (loopargs[i].rsa_decrypt_ctx[testnum] == NULL
|| EVP_PKEY_decrypt_init(loopargs[i].rsa_decrypt_ctx[testnum]) <= 0
|| EVP_PKEY_decrypt(loopargs[i].rsa_decrypt_ctx[testnum],
loopargs[i].buf,
&declen,
loopargs[i].buf2,
loopargs[i].encsize) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"RSA decrypt setup failure. No RSA decrypt will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("private", "rsa decrypt",
rsa_keys[testnum].bits, seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_decrypt_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %u bits private RSA decrypt ops in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][3] = (double)count / d;
op_count = count;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(rsa_doit, testnum);
}
EVP_PKEY_free(rsa_key);
}
#ifndef OPENSSL_NO_DSA
for (testnum = 0; testnum < DSA_NUM; testnum++) {
EVP_PKEY *dsa_key = NULL;
int st;
if (!dsa_doit[testnum])
continue;
st = (dsa_key = get_dsa(dsa_bits[testnum])) != NULL;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].dsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
NULL);
loopargs[i].sigsize = loopargs[i].buflen;
if (loopargs[i].dsa_sign_ctx[testnum] == NULL
|| EVP_PKEY_sign_init(loopargs[i].dsa_sign_ctx[testnum]) <= 0
|| EVP_PKEY_sign(loopargs[i].dsa_sign_ctx[testnum],
loopargs[i].buf2,
&loopargs[i].sigsize,
loopargs[i].buf, 20) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"DSA sign setup failure. No DSA sign will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_bits[testnum], seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%u:%.2f\n"
: "%ld %u bits DSA sign ops in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][0] = (double)count / d;
op_count = count;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].dsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
NULL);
if (loopargs[i].dsa_verify_ctx[testnum] == NULL
|| EVP_PKEY_verify_init(loopargs[i].dsa_verify_ctx[testnum]) <= 0
|| EVP_PKEY_verify(loopargs[i].dsa_verify_ctx[testnum],
loopargs[i].buf2,
loopargs[i].sigsize,
loopargs[i].buf, 36) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"DSA verify setup failure. No DSA verify will be done.\n");
dofail();
dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_bits[testnum], seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%u:%.2f\n"
: "%ld %u bits DSA verify ops in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][1] = (double)count / d;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(dsa_doit, testnum);
}
EVP_PKEY_free(dsa_key);
}
#endif /* OPENSSL_NO_DSA */
for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
EVP_PKEY *ecdsa_key = NULL;
int st;
if (!ecdsa_doit[testnum])
continue;
st = (ecdsa_key = get_ecdsa(&ec_curves[testnum])) != NULL;
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ecdsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
NULL);
loopargs[i].sigsize = loopargs[i].buflen;
if (loopargs[i].ecdsa_sign_ctx[testnum] == NULL
|| EVP_PKEY_sign_init(loopargs[i].ecdsa_sign_ctx[testnum]) <= 0
|| EVP_PKEY_sign(loopargs[i].ecdsa_sign_ctx[testnum],
loopargs[i].buf2,
&loopargs[i].sigsize,
loopargs[i].buf, 20) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"ECDSA sign setup failure. No ECDSA sign will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%u:%.2f\n"
: "%ld %u bits ECDSA sign ops in %.2fs\n",
count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][0] = (double)count / d;
op_count = count;
}
for (i = 0; st && i < loopargs_len; i++) {
loopargs[i].ecdsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
NULL);
if (loopargs[i].ecdsa_verify_ctx[testnum] == NULL
|| EVP_PKEY_verify_init(loopargs[i].ecdsa_verify_ctx[testnum]) <= 0
|| EVP_PKEY_verify(loopargs[i].ecdsa_verify_ctx[testnum],
loopargs[i].buf2,
loopargs[i].sigsize,
loopargs[i].buf, 20) <= 0)
st = 0;
}
if (!st) {
BIO_printf(bio_err,
"ECDSA verify setup failure. No ECDSA verify will be done.\n");
dofail();
ecdsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R8:%ld:%u:%.2f\n"
: "%ld %u bits ECDSA verify ops in %.2fs\n",
count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][1] = (double)count / d;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ecdsa_doit, testnum);
}
EVP_PKEY_free(ecdsa_key);
}
for (testnum = 0; testnum < EC_NUM; testnum++) {
int ecdh_checks = 1;
if (!ecdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY_CTX *test_ctx = NULL;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *key_A = NULL;
EVP_PKEY *key_B = NULL;
size_t outlen;
size_t test_outlen;
if ((key_A = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key A */
|| (key_B = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key B */
|| (ctx = EVP_PKEY_CTX_new(key_A, NULL)) == NULL /* derivation ctx from skeyA */
|| EVP_PKEY_derive_init(ctx) <= 0 /* init derivation ctx */
|| EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 /* set peer pubkey in ctx */
|| EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 /* determine max length */
|| outlen == 0 /* ensure outlen is a valid size */
|| outlen > MAX_ECDH_SIZE /* avoid buffer overflow */) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH key generation failure.\n");
dofail();
op_count = 1;
break;
}
/*
* Here we perform a test run, comparing the output of a*B and b*A;
* we try this here and assume that further EVP_PKEY_derive calls
* never fail, so we can skip checks in the actually benchmarked
* code, for maximum performance.
*/
if ((test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) == NULL /* test ctx from skeyB */
|| EVP_PKEY_derive_init(test_ctx) <= 0 /* init derivation test_ctx */
|| EVP_PKEY_derive_set_peer(test_ctx, key_A) <= 0 /* set peer pubkey in test_ctx */
|| EVP_PKEY_derive(test_ctx, NULL, &test_outlen) <= 0 /* determine max length */
|| EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) <= 0 /* compute a*B */
|| EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) <= 0 /* compute b*A */
|| test_outlen != outlen /* compare output length */) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computation failure.\n");
dofail();
op_count = 1;
break;
}
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
if (CRYPTO_memcmp(loopargs[i].secret_a,
loopargs[i].secret_b, outlen)) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computations don't match.\n");
dofail();
op_count = 1;
break;
}
loopargs[i].ecdh_ctx[testnum] = ctx;
loopargs[i].outlen[testnum] = outlen;
EVP_PKEY_free(key_A);
EVP_PKEY_free(key_B);
EVP_PKEY_CTX_free(test_ctx);
test_ctx = NULL;
}
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
ec_curves[testnum].bits, seconds.ecdh);
Time_F(START);
count =
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R9:%ld:%d:%.2f\n" :
"%ld %u-bits ECDH ops in %.2fs\n", count,
ec_curves[testnum].bits, d);
ecdh_results[testnum][0] = (double)count / d;
op_count = count;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ecdh_doit, testnum);
}
}
#ifndef OPENSSL_NO_ECX
for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
int st = 1;
EVP_PKEY *ed_pkey = NULL;
EVP_PKEY_CTX *ed_pctx = NULL;
if (!eddsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
if (loopargs[i].eddsa_ctx[testnum] == NULL) {
st = 0;
break;
}
loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new();
if (loopargs[i].eddsa_ctx2[testnum] == NULL) {
st = 0;
break;
}
if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid,
NULL)) == NULL
|| EVP_PKEY_keygen_init(ed_pctx) <= 0
|| EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
st = 0;
EVP_PKEY_CTX_free(ed_pctx);
break;
}
EVP_PKEY_CTX_free(ed_pctx);
if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
NULL, ed_pkey)) {
st = 0;
EVP_PKEY_free(ed_pkey);
break;
}
if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL,
NULL, NULL, ed_pkey)) {
st = 0;
EVP_PKEY_free(ed_pkey);
break;
}
EVP_PKEY_free(ed_pkey);
ed_pkey = NULL;
}
if (st == 0) {
BIO_printf(bio_err, "EdDSA failure.\n");
dofail();
op_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform EdDSA signature test */
loopargs[i].sigsize = ed_curves[testnum].sigsize;
st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
loopargs[i].buf2, &loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"EdDSA sign failure. No EdDSA sign will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("sign", ed_curves[testnum].name,
ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R10:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s sign ops in %.2fs \n",
count, ed_curves[testnum].bits,
ed_curves[testnum].name, d);
eddsa_results[testnum][0] = (double)count / d;
op_count = count;
}
/* Perform EdDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum],
loopargs[i].buf2, loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"EdDSA verify failure. No EdDSA verify will be done.\n");
dofail();
eddsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", ed_curves[testnum].name,
ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R11:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify ops in %.2fs\n",
count, ed_curves[testnum].bits,
ed_curves[testnum].name, d);
eddsa_results[testnum][1] = (double)count / d;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(eddsa_doit, testnum);
}
}
}
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
for (testnum = 0; testnum < SM2_NUM; testnum++) {
int st = 1;
EVP_PKEY *sm2_pkey = NULL;
if (!sm2_doit[testnum])
continue; /* Ignore Curve */
/* Init signing and verification */
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY_CTX *sm2_pctx = NULL;
EVP_PKEY_CTX *sm2_vfy_pctx = NULL;
EVP_PKEY_CTX *pctx = NULL;
st = 0;
loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new();
loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new();
if (loopargs[i].sm2_ctx[testnum] == NULL
|| loopargs[i].sm2_vfy_ctx[testnum] == NULL)
break;
sm2_pkey = NULL;
st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SM2, NULL)) == NULL
|| EVP_PKEY_keygen_init(pctx) <= 0
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
sm2_curves[testnum].nid) <= 0
|| EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
EVP_PKEY_CTX_free(pctx);
if (st == 0)
break;
st = 0; /* set back to zero */
/* attach it sooner to rely on main final cleanup */
loopargs[i].sm2_pkey[testnum] = sm2_pkey;
loopargs[i].sigsize = EVP_PKEY_get_size(sm2_pkey);
sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) {
EVP_PKEY_CTX_free(sm2_vfy_pctx);
break;
}
/* attach them directly to respective ctx */
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx);
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx);
/*
* No need to allow user to set an explicit ID here, just use
* the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D.
*/
if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1
|| EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1)
break;
if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL,
EVP_sm3(), NULL, sm2_pkey))
break;
if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL,
EVP_sm3(), NULL, sm2_pkey))
break;
st = 1; /* mark loop as succeeded */
}
if (st == 0) {
BIO_printf(bio_err, "SM2 init failure.\n");
dofail();
op_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform SM2 signature test */
st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum],
loopargs[i].buf2, &loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"SM2 sign failure. No SM2 sign will be done.\n");
dofail();
op_count = 1;
} else {
pkey_print_message("sign", sm2_curves[testnum].name,
sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R12:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s sign ops in %.2fs \n",
count, sm2_curves[testnum].bits,
sm2_curves[testnum].name, d);
sm2_results[testnum][0] = (double)count / d;
op_count = count;
}
/* Perform SM2 verification test */
for (i = 0; i < loopargs_len; i++) {
st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum],
loopargs[i].buf2, loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"SM2 verify failure. No SM2 verify will be done.\n");
dofail();
sm2_doit[testnum] = 0;
} else {
pkey_print_message("verify", sm2_curves[testnum].name,
sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R13:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify ops in %.2fs\n",
count, sm2_curves[testnum].bits,
sm2_curves[testnum].name, d);
sm2_results[testnum][1] = (double)count / d;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < SM2_NUM; testnum++)
sm2_doit[testnum] = 0;
}
}
}
#endif /* OPENSSL_NO_SM2 */
#ifndef OPENSSL_NO_DH
for (testnum = 0; testnum < FFDH_NUM; testnum++) {
int ffdh_checks = 1;
if (!ffdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY *pkey_A = NULL;
EVP_PKEY *pkey_B = NULL;
EVP_PKEY_CTX *ffdh_ctx = NULL;
EVP_PKEY_CTX *test_ctx = NULL;
size_t secret_size;
size_t test_out;
/* Ensure that the error queue is empty */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
dofail();
}
pkey_A = EVP_PKEY_new();
if (!pkey_A) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
pkey_B = EVP_PKEY_new();
if (!pkey_B) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL);
if (!ffdh_ctx) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) {
BIO_printf(bio_err, "Error setting DH key size for keygen.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 ||
EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) {
BIO_printf(bio_err, "FFDH key generation failure.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
EVP_PKEY_CTX_free(ffdh_ctx);
/*
* check if the derivation works correctly both ways so that
* we know if future derive calls will fail, and we can skip
* error checking in benchmarked code
*/
ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL);
if (ffdh_ctx == NULL) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) {
BIO_printf(bio_err, "FFDH derivation context init failure.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) {
BIO_printf(bio_err, "Assigning peer key for derivation failed.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) {
BIO_printf(bio_err, "Checking size of shared secret failed.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (secret_size > MAX_FFDH_SIZE) {
BIO_printf(bio_err, "Assertion failure: shared secret too large.\n");
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive(ffdh_ctx,
loopargs[i].secret_ff_a,
&secret_size) <= 0) {
BIO_printf(bio_err, "Shared secret derive failure.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
/* Now check from side B */
test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL);
if (!test_ctx) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive_init(test_ctx) <= 0 ||
EVP_PKEY_derive_set_peer(test_ctx, pkey_A) <= 0 ||
EVP_PKEY_derive(test_ctx, NULL, &test_out) <= 0 ||
EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) <= 0 ||
test_out != secret_size) {
BIO_printf(bio_err, "FFDH computation failure.\n");
op_count = 1;
ffdh_checks = 0;
break;
}
/* compare the computed secrets */
if (CRYPTO_memcmp(loopargs[i].secret_ff_a,
loopargs[i].secret_ff_b, secret_size)) {
BIO_printf(bio_err, "FFDH computations don't match.\n");
dofail();
op_count = 1;
ffdh_checks = 0;
break;
}
loopargs[i].ffdh_ctx[testnum] = ffdh_ctx;
EVP_PKEY_free(pkey_A);
pkey_A = NULL;
EVP_PKEY_free(pkey_B);
pkey_B = NULL;
EVP_PKEY_CTX_free(test_ctx);
test_ctx = NULL;
}
if (ffdh_checks != 0) {
pkey_print_message("", "ffdh",
ffdh_params[testnum].bits, seconds.ffdh);
Time_F(START);
count =
run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R14:%ld:%d:%.2f\n" :
"%ld %u-bits FFDH ops in %.2fs\n", count,
ffdh_params[testnum].bits, d);
ffdh_results[testnum][0] = (double)count / d;
op_count = count;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ffdh_doit, testnum);
}
}
#endif /* OPENSSL_NO_DH */
for (testnum = 0; testnum < kems_algs_len; testnum++) {
int kem_checks = 1;
const char *kem_name = kems_algname[testnum];
if (!kems_doit[testnum] || !do_kems)
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY *pkey = NULL;
EVP_PKEY_CTX *kem_gen_ctx = NULL;
EVP_PKEY_CTX *kem_encaps_ctx = NULL;
EVP_PKEY_CTX *kem_decaps_ctx = NULL;
size_t send_secret_len, out_len;
size_t rcv_secret_len;
unsigned char *out = NULL, *send_secret = NULL, *rcv_secret;
unsigned int bits;
char *name;
char sfx[MAX_ALGNAME_SUFFIX];
OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END };
int use_params = 0;
enum kem_type_t { KEM_RSA = 1, KEM_EC, KEM_X25519, KEM_X448 } kem_type;
/* no string after rsa<bitcnt> permitted: */
if (strlen(kem_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */
&& sscanf(kem_name, "rsa%u%s", &bits, sfx) == 1)
kem_type = KEM_RSA;
else if (strncmp(kem_name, "EC", 2) == 0)
kem_type = KEM_EC;
else if (strcmp(kem_name, "X25519") == 0)
kem_type = KEM_X25519;
else if (strcmp(kem_name, "X448") == 0)
kem_type = KEM_X448;
else kem_type = 0;
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
dofail();
}
if (kem_type == KEM_RSA) {
params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS,
&bits);
use_params = 1;
} else if (kem_type == KEM_EC) {
name = (char *)(kem_name + 2);
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
name, 0);
use_params = 1;
}
kem_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(),
(kem_type == KEM_RSA) ? "RSA":
(kem_type == KEM_EC) ? "EC":
kem_name,
app_get0_propq());
if ((!kem_gen_ctx || EVP_PKEY_keygen_init(kem_gen_ctx) <= 0)
|| (use_params
&& EVP_PKEY_CTX_set_params(kem_gen_ctx, params) <= 0)) {
BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n",
kem_name);
goto kem_err_break;
}
if (EVP_PKEY_keygen(kem_gen_ctx, &pkey) <= 0) {
BIO_printf(bio_err, "Error while generating KEM EVP_PKEY.\n");
goto kem_err_break;
}
/* Now prepare encaps data structs */
kem_encaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
pkey,
app_get0_propq());
if (kem_encaps_ctx == NULL
|| EVP_PKEY_encapsulate_init(kem_encaps_ctx, NULL) <= 0
|| (kem_type == KEM_RSA
&& EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "RSASVE") <= 0)
|| ((kem_type == KEM_EC
|| kem_type == KEM_X25519
|| kem_type == KEM_X448)
&& EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "DHKEM") <= 0)
|| EVP_PKEY_encapsulate(kem_encaps_ctx, NULL, &out_len,
NULL, &send_secret_len) <= 0) {
BIO_printf(bio_err,
"Error while initializing encaps data structs for %s.\n",
kem_name);
goto kem_err_break;
}
out = app_malloc(out_len, "encaps result");
send_secret = app_malloc(send_secret_len, "encaps secret");
if (out == NULL || send_secret == NULL) {
BIO_printf(bio_err, "MemAlloc error in encaps for %s.\n", kem_name);
goto kem_err_break;
}
if (EVP_PKEY_encapsulate(kem_encaps_ctx, out, &out_len,
send_secret, &send_secret_len) <= 0) {
BIO_printf(bio_err, "Encaps error for %s.\n", kem_name);
goto kem_err_break;
}
/* Now prepare decaps data structs */
kem_decaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
pkey,
app_get0_propq());
if (kem_decaps_ctx == NULL
|| EVP_PKEY_decapsulate_init(kem_decaps_ctx, NULL) <= 0
|| (kem_type == KEM_RSA
&& EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "RSASVE") <= 0)
|| ((kem_type == KEM_EC
|| kem_type == KEM_X25519
|| kem_type == KEM_X448)
&& EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "DHKEM") <= 0)
|| EVP_PKEY_decapsulate(kem_decaps_ctx, NULL, &rcv_secret_len,
out, out_len) <= 0) {
BIO_printf(bio_err,
"Error while initializing decaps data structs for %s.\n",
kem_name);
goto kem_err_break;
}
rcv_secret = app_malloc(rcv_secret_len, "KEM decaps secret");
if (rcv_secret == NULL) {
BIO_printf(bio_err, "MemAlloc failure in decaps for %s.\n",
kem_name);
goto kem_err_break;
}
if (EVP_PKEY_decapsulate(kem_decaps_ctx, rcv_secret,
&rcv_secret_len, out, out_len) <= 0
|| rcv_secret_len != send_secret_len
|| memcmp(send_secret, rcv_secret, send_secret_len)) {
BIO_printf(bio_err, "Decaps error for %s.\n", kem_name);
goto kem_err_break;
}
loopargs[i].kem_gen_ctx[testnum] = kem_gen_ctx;
loopargs[i].kem_encaps_ctx[testnum] = kem_encaps_ctx;
loopargs[i].kem_decaps_ctx[testnum] = kem_decaps_ctx;
loopargs[i].kem_out_len[testnum] = out_len;
loopargs[i].kem_secret_len[testnum] = send_secret_len;
loopargs[i].kem_out[testnum] = out;
loopargs[i].kem_send_secret[testnum] = send_secret;
loopargs[i].kem_rcv_secret[testnum] = rcv_secret;
EVP_PKEY_free(pkey);
pkey = NULL;
continue;
kem_err_break:
dofail();
EVP_PKEY_free(pkey);
op_count = 1;
kem_checks = 0;
break;
}
if (kem_checks != 0) {
kskey_print_message(kem_name, "keygen", seconds.kem);
Time_F(START);
count =
run_benchmark(async_jobs, KEM_keygen_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R15:%ld:%s:%.2f\n" :
"%ld %s KEM keygen ops in %.2fs\n", count,
kem_name, d);
kems_results[testnum][0] = (double)count / d;
op_count = count;
kskey_print_message(kem_name, "encaps", seconds.kem);
Time_F(START);
count =
run_benchmark(async_jobs, KEM_encaps_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R16:%ld:%s:%.2f\n" :
"%ld %s KEM encaps ops in %.2fs\n", count,
kem_name, d);
kems_results[testnum][1] = (double)count / d;
op_count = count;
kskey_print_message(kem_name, "decaps", seconds.kem);
Time_F(START);
count =
run_benchmark(async_jobs, KEM_decaps_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R17:%ld:%s:%.2f\n" :
"%ld %s KEM decaps ops in %.2fs\n", count,
kem_name, d);
kems_results[testnum][2] = (double)count / d;
op_count = count;
}
if (op_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(kems_doit, testnum);
}
}
for (testnum = 0; testnum < sigs_algs_len; testnum++) {
int sig_checks = 1;
const char *sig_name = sigs_algname[testnum];
if (!sigs_doit[testnum] || !do_sigs)
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY *pkey = NULL;
EVP_PKEY_CTX *ctx_params = NULL;
EVP_PKEY* pkey_params = NULL;
EVP_PKEY_CTX *sig_gen_ctx = NULL;
EVP_PKEY_CTX *sig_sign_ctx = NULL;
EVP_PKEY_CTX *sig_verify_ctx = NULL;
unsigned char md[SHA256_DIGEST_LENGTH];
unsigned char *sig;
char sfx[MAX_ALGNAME_SUFFIX];
size_t md_len = SHA256_DIGEST_LENGTH;
size_t max_sig_len, sig_len;
unsigned int bits;
OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END };
int use_params = 0;
/* only sign little data to avoid measuring digest performance */
memset(md, 0, SHA256_DIGEST_LENGTH);
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
dofail();
}
/* no string after rsa<bitcnt> permitted: */
if (strlen(sig_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */
&& sscanf(sig_name, "rsa%u%s", &bits, sfx) == 1) {
params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS,
&bits);
use_params = 1;
}
if (strncmp(sig_name, "dsa", 3) == 0) {
ctx_params = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);
if (ctx_params == NULL
|| EVP_PKEY_paramgen_init(ctx_params) <= 0
|| EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx_params,
atoi(sig_name + 3)) <= 0
|| EVP_PKEY_paramgen(ctx_params, &pkey_params) <= 0
|| (sig_gen_ctx = EVP_PKEY_CTX_new(pkey_params, NULL)) == NULL
|| EVP_PKEY_keygen_init(sig_gen_ctx) <= 0) {
BIO_printf(bio_err,
"Error initializing classic keygen ctx for %s.\n",
sig_name);
goto sig_err_break;
}
}
if (sig_gen_ctx == NULL)
sig_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(),
use_params == 1 ? "RSA" : sig_name,
app_get0_propq());
if (!sig_gen_ctx || EVP_PKEY_keygen_init(sig_gen_ctx) <= 0
|| (use_params &&
EVP_PKEY_CTX_set_params(sig_gen_ctx, params) <= 0)) {
BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n",
sig_name);
goto sig_err_break;
}
if (EVP_PKEY_keygen(sig_gen_ctx, &pkey) <= 0) {
BIO_printf(bio_err,
"Error while generating signature EVP_PKEY for %s.\n",
sig_name);
goto sig_err_break;
}
/* Now prepare signature data structs */
sig_sign_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
pkey,
app_get0_propq());
if (sig_sign_ctx == NULL
|| EVP_PKEY_sign_init(sig_sign_ctx) <= 0
|| (use_params == 1
&& (EVP_PKEY_CTX_set_rsa_padding(sig_sign_ctx,
RSA_PKCS1_PADDING) <= 0))
|| EVP_PKEY_sign(sig_sign_ctx, NULL, &max_sig_len,
md, md_len) <= 0) {
BIO_printf(bio_err,
"Error while initializing signing data structs for %s.\n",
sig_name);
goto sig_err_break;
}
sig = app_malloc(sig_len = max_sig_len, "signature buffer");
if (sig == NULL) {
BIO_printf(bio_err, "MemAlloc error in sign for %s.\n", sig_name);
goto sig_err_break;
}
if (EVP_PKEY_sign(sig_sign_ctx, sig, &sig_len, md, md_len) <= 0) {
BIO_printf(bio_err, "Signing error for %s.\n", sig_name);
goto sig_err_break;
}
/* Now prepare verify data structs */
memset(md, 0, SHA256_DIGEST_LENGTH);
sig_verify_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
pkey,
app_get0_propq());
if (sig_verify_ctx == NULL
|| EVP_PKEY_verify_init(sig_verify_ctx) <= 0
|| (use_params == 1
&& (EVP_PKEY_CTX_set_rsa_padding(sig_verify_ctx,
RSA_PKCS1_PADDING) <= 0))) {
BIO_printf(bio_err,
"Error while initializing verify data structs for %s.\n",
sig_name);
goto sig_err_break;
}
if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) {
BIO_printf(bio_err, "Verify error for %s.\n", sig_name);
goto sig_err_break;
}
if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) {
BIO_printf(bio_err, "Verify 2 error for %s.\n", sig_name);
goto sig_err_break;
}
loopargs[i].sig_gen_ctx[testnum] = sig_gen_ctx;
loopargs[i].sig_sign_ctx[testnum] = sig_sign_ctx;
loopargs[i].sig_verify_ctx[testnum] = sig_verify_ctx;
loopargs[i].sig_max_sig_len[testnum] = max_sig_len;
loopargs[i].sig_act_sig_len[testnum] = sig_len;
loopargs[i].sig_sig[testnum] = sig;
EVP_PKEY_free(pkey);
pkey = NULL;
continue;
sig_err_break:
dofail();
EVP_PKEY_free(pkey);
op_count = 1;
sig_checks = 0;
break;
}
if (sig_checks != 0) {
kskey_print_message(sig_name, "keygen", seconds.sig);
Time_F(START);
count = run_benchmark(async_jobs, SIG_keygen_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R18:%ld:%s:%.2f\n" :
"%ld %s signature keygen ops in %.2fs\n", count,
sig_name, d);
sigs_results[testnum][0] = (double)count / d;
op_count = count;
kskey_print_message(sig_name, "signs", seconds.sig);
Time_F(START);
count =
run_benchmark(async_jobs, SIG_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R19:%ld:%s:%.2f\n" :
"%ld %s signature sign ops in %.2fs\n", count,
sig_name, d);
sigs_results[testnum][1] = (double)count / d;
op_count = count;
kskey_print_message(sig_name, "verify", seconds.sig);
Time_F(START);
count =
run_benchmark(async_jobs, SIG_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R20:%ld:%s:%.2f\n" :
"%ld %s signature verify ops in %.2fs\n", count,
sig_name, d);
sigs_results[testnum][2] = (double)count / d;
op_count = count;
}
if (op_count <= 1)
stop_it(sigs_doit, testnum);
}
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING));
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
printf("options: %s\n", BN_options());
printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS));
printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO));
}
if (pr_header) {
if (mr) {
printf("+H");
} else {
printf("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (testnum = 0; testnum < size_num; testnum++)
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
const char *alg_name = names[k];
if (!doit[k])
continue;
if (k == D_EVP) {
if (evp_cipher == NULL)
alg_name = evp_md_name;
else if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
app_bail_out("failed to get name of cipher '%s'\n", evp_cipher);
}
if (mr)
printf("+F:%u:%s", k, alg_name);
else
printf("%-13s", alg_name);
for (testnum = 0; testnum < size_num; testnum++) {
if (results[k][testnum] > 10000 && !mr)
printf(" %11.2fk", results[k][testnum] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
}
printf("\n");
}
testnum = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (testnum && !mr) {
printf("%19ssign verify encrypt decrypt sign/s verify/s encr./s decr./s\n", " ");
testnum = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f:%f:%f\n",
k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1],
rsa_results[k][2], rsa_results[k][3]);
else
printf("rsa %5u bits %8.6fs %8.6fs %8.6fs %8.6fs %8.1f %8.1f %8.1f %8.1f\n",
rsa_keys[k].bits, 1.0 / rsa_results[k][0],
1.0 / rsa_results[k][1], 1.0 / rsa_results[k][2],
1.0 / rsa_results[k][3],
rsa_results[k][0], rsa_results[k][1],
rsa_results[k][2], rsa_results[k][3]);
}
testnum = 1;
#ifndef OPENSSL_NO_DSA
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
dsa_results[k][0], dsa_results[k][1]);
}
#endif /* OPENSSL_NO_DSA */
testnum = 1;
for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
if (!ecdsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, ec_curves[k].bits,
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
ecdsa_results[k][0], ecdsa_results[k][1]);
}
testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (testnum && !mr) {
printf("%30sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, ec_curves[k].bits,
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
}
#ifndef OPENSSL_NO_ECX
testnum = 1;
for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
if (!eddsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F6:%u:%u:%s:%f:%f\n",
k, ed_curves[k].bits, ed_curves[k].name,
eddsa_results[k][0], eddsa_results[k][1]);
else
printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
ed_curves[k].bits, ed_curves[k].name,
1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
eddsa_results[k][0], eddsa_results[k][1]);
}
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
testnum = 1;
for (k = 0; k < OSSL_NELEM(sm2_doit); k++) {
if (!sm2_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F7:%u:%u:%s:%f:%f\n",
k, sm2_curves[k].bits, sm2_curves[k].name,
sm2_results[k][0], sm2_results[k][1]);
else
printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
sm2_curves[k].bits, sm2_curves[k].name,
1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
sm2_results[k][0], sm2_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DH
testnum = 1;
for (k = 0; k < FFDH_NUM; k++) {
if (!ffdh_doit[k])
continue;
if (testnum && !mr) {
printf("%23sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F8:%u:%u:%f:%f\n",
k, ffdh_params[k].bits,
ffdh_results[k][0], 1.0 / ffdh_results[k][0]);
else
printf("%4u bits ffdh %8.4fs %8.1f\n",
ffdh_params[k].bits,
1.0 / ffdh_results[k][0], ffdh_results[k][0]);
}
#endif /* OPENSSL_NO_DH */
testnum = 1;
for (k = 0; k < kems_algs_len; k++) {
const char *kem_name = kems_algname[k];
if (!kems_doit[k] || !do_kems)
continue;
if (testnum && !mr) {
printf("%31skeygen encaps decaps keygens/s encaps/s decaps/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F9:%u:%f:%f:%f\n",
k, kems_results[k][0], kems_results[k][1],
kems_results[k][2]);
else
printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", kem_name,
1.0 / kems_results[k][0],
1.0 / kems_results[k][1], 1.0 / kems_results[k][2],
kems_results[k][0], kems_results[k][1], kems_results[k][2]);
}
ret = 0;
testnum = 1;
for (k = 0; k < sigs_algs_len; k++) {
const char *sig_name = sigs_algname[k];
if (!sigs_doit[k] || !do_sigs)
continue;
if (testnum && !mr) {
printf("%31skeygen signs verify keygens/s sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F10:%u:%f:%f:%f\n",
k, sigs_results[k][0], sigs_results[k][1],
sigs_results[k][2]);
else
printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", sig_name,
1.0 / sigs_results[k][0], 1.0 / sigs_results[k][1],
1.0 / sigs_results[k][2], sigs_results[k][0],
sigs_results[k][1], sigs_results[k][2]);
}
ret = 0;
end:
if (ret == 0 && testmode)
ret = testmoderesult;
ERR_print_errors(bio_err);
for (i = 0; i < loopargs_len; i++) {
OPENSSL_free(loopargs[i].buf_malloc);
OPENSSL_free(loopargs[i].buf2_malloc);
BN_free(bn);
EVP_PKEY_CTX_free(genctx);
for (k = 0; k < RSA_NUM; k++) {
EVP_PKEY_CTX_free(loopargs[i].rsa_sign_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].rsa_verify_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].rsa_encrypt_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].rsa_decrypt_ctx[k]);
}
#ifndef OPENSSL_NO_DH
OPENSSL_free(loopargs[i].secret_ff_a);
OPENSSL_free(loopargs[i].secret_ff_b);
for (k = 0; k < FFDH_NUM; k++)
EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]);
#endif
#ifndef OPENSSL_NO_DSA
for (k = 0; k < DSA_NUM; k++) {
EVP_PKEY_CTX_free(loopargs[i].dsa_sign_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].dsa_verify_ctx[k]);
}
#endif
for (k = 0; k < ECDSA_NUM; k++) {
EVP_PKEY_CTX_free(loopargs[i].ecdsa_sign_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].ecdsa_verify_ctx[k]);
}
for (k = 0; k < EC_NUM; k++)
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
#ifndef OPENSSL_NO_ECX
for (k = 0; k < EdDSA_NUM; k++) {
EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]);
}
#endif /* OPENSSL_NO_ECX */
#ifndef OPENSSL_NO_SM2
for (k = 0; k < SM2_NUM; k++) {
EVP_PKEY_CTX *pctx = NULL;
/* free signing ctx */
if (loopargs[i].sm2_ctx[k] != NULL
&& (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL)
EVP_PKEY_CTX_free(pctx);
EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]);
/* free verification ctx */
if (loopargs[i].sm2_vfy_ctx[k] != NULL
&& (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL)
EVP_PKEY_CTX_free(pctx);
EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]);
/* free pkey */
EVP_PKEY_free(loopargs[i].sm2_pkey[k]);
}
#endif
for (k = 0; k < kems_algs_len; k++) {
EVP_PKEY_CTX_free(loopargs[i].kem_gen_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].kem_encaps_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].kem_decaps_ctx[k]);
OPENSSL_free(loopargs[i].kem_out[k]);
OPENSSL_free(loopargs[i].kem_send_secret[k]);
OPENSSL_free(loopargs[i].kem_rcv_secret[k]);
}
for (k = 0; k < sigs_algs_len; k++) {
EVP_PKEY_CTX_free(loopargs[i].sig_gen_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].sig_sign_ctx[k]);
EVP_PKEY_CTX_free(loopargs[i].sig_verify_ctx[k]);
OPENSSL_free(loopargs[i].sig_sig[k]);
}
OPENSSL_free(loopargs[i].secret_a);
OPENSSL_free(loopargs[i].secret_b);
}
OPENSSL_free(evp_hmac_name);
OPENSSL_free(evp_cmac_name);
for (k = 0; k < kems_algs_len; k++)
OPENSSL_free(kems_algname[k]);
if (kem_stack != NULL)
sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
for (k = 0; k < sigs_algs_len; k++)
OPENSSL_free(sigs_algname[k]);
if (sig_stack != NULL)
sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
if (async_jobs > 0) {
for (i = 0; i < loopargs_len; i++)
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
}
if (async_init) {
ASYNC_cleanup_thread();
}
OPENSSL_free(loopargs);
release_engine(e);
EVP_CIPHER_free(evp_cipher);
EVP_MAC_free(mac);
NCONF_free(conf);
return ret;
}
static void print_message(const char *s, int length, int tm)
{
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s ops for %ds on %d size blocks: ", s, tm, length);
(void)BIO_flush(bio_err);
run = 1;
alarm(tm);
}
static void pkey_print_message(const char *str, const char *str2, unsigned int bits,
int tm)
{
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %u bits %s %s ops for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
run = 1;
alarm(tm);
}
static void kskey_print_message(const char *str, const char *str2, int tm)
{
BIO_printf(bio_err,
mr ? "+DTP:%s:%s:%d\n"
: "Doing %s %s ops for %ds: ", str, str2, tm);
(void)BIO_flush(bio_err);
run = 1;
alarm(tm);
}
static void print_result(int alg, int run_no, int count, double time_used)
{
if (count == -1) {
BIO_printf(bio_err, "%s error!\n", names[alg]);
dofail();
return;
}
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s ops in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
memset(isdelim, 0, sizeof(isdelim));
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)])
(*string)++;
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int strtoint(const char *str, const int min_val, const int upper_val,
int *res)
{
char *end = NULL;
long int val = 0;
errno = 0;
val = strtol(str, &end, 10);
if (errno == 0 && end != str && *end == 0
&& min_val <= val && val < upper_val) {
*res = (int)val;
return 1;
} else {
return 0;
}
}
static int do_multi(int multi, int size_num)
{
int n;
int fd[2];
int *fds;
int status;
static char sep[] = ":";
fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
OPENSSL_free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
char *tk;
int k;
double d;
if ((f = fdopen(fds[n], "r")) == NULL) {
BIO_printf(bio_err, "fdopen failure with 0x%x\n",
errno);
OPENSSL_free(fds);
return 1;
}
while (fgets(buf, sizeof(buf), f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err,
"Don't understand line '%s' from child %d\n", buf,
n);
continue;
}
printf("Got: %s from %d\n", buf, n);
p = buf;
if (CHECK_AND_SKIP_PREFIX(p, "+F:")) {
int alg;
int j;
if (strtoint(sstrsep(&p, sep), 0, ALGOR_NUM, &alg)) {
sstrsep(&p, sep);
for (j = 0; j < size_num; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
}
} else if (CHECK_AND_SKIP_PREFIX(p, "+F2:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(rsa_results), &k)) {
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
rsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
rsa_results[k][1] += d;
d = atof(sstrsep(&p, sep));
rsa_results[k][2] += d;
d = atof(sstrsep(&p, sep));
rsa_results[k][3] += d;
}
# ifndef OPENSSL_NO_DSA
} else if (CHECK_AND_SKIP_PREFIX(p, "+F3:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(dsa_results), &k)) {
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
dsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
dsa_results[k][1] += d;
}
# endif /* OPENSSL_NO_DSA */
} else if (CHECK_AND_SKIP_PREFIX(p, "+F4:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(ecdsa_results), &k)) {
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
ecdsa_results[k][1] += d;
}
} else if (CHECK_AND_SKIP_PREFIX(p, "+F5:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(ecdh_results), &k)) {
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdh_results[k][0] += d;
}
# ifndef OPENSSL_NO_ECX
} else if (CHECK_AND_SKIP_PREFIX(p, "+F6:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(eddsa_results), &k)) {
sstrsep(&p, sep);
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
eddsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
eddsa_results[k][1] += d;
}
# endif /* OPENSSL_NO_ECX */
# ifndef OPENSSL_NO_SM2
} else if (CHECK_AND_SKIP_PREFIX(p, "+F7:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(sm2_results), &k)) {
sstrsep(&p, sep);
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
sm2_results[k][0] += d;
d = atof(sstrsep(&p, sep));
sm2_results[k][1] += d;
}
# endif /* OPENSSL_NO_SM2 */
# ifndef OPENSSL_NO_DH
} else if (CHECK_AND_SKIP_PREFIX(p, "+F8:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(ffdh_results), &k)) {
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ffdh_results[k][0] += d;
}
# endif /* OPENSSL_NO_DH */
} else if (CHECK_AND_SKIP_PREFIX(p, "+F9:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(kems_results), &k)) {
d = atof(sstrsep(&p, sep));
kems_results[k][0] += d;
d = atof(sstrsep(&p, sep));
kems_results[k][1] += d;
d = atof(sstrsep(&p, sep));
kems_results[k][2] += d;
}
} else if (CHECK_AND_SKIP_PREFIX(p, "+F10:")) {
tk = sstrsep(&p, sep);
if (strtoint(tk, 0, OSSL_NELEM(sigs_results), &k)) {
d = atof(sstrsep(&p, sep));
sigs_results[k][0] += d;
d = atof(sstrsep(&p, sep));
sigs_results[k][1] += d;
d = atof(sstrsep(&p, sep));
sigs_results[k][2] += d;
}
} else if (!HAS_PREFIX(buf, "+H:")) {
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
n);
}
}
fclose(f);
}
OPENSSL_free(fds);
for (n = 0; n < multi; ++n) {
while (wait(&status) == -1)
if (errno != EINTR) {
BIO_printf(bio_err, "Waitng for child failed with 0x%x\n",
errno);
return 1;
}
if (WIFEXITED(status) && WEXITSTATUS(status)) {
BIO_printf(bio_err, "Child exited with %d\n", WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
BIO_printf(bio_err, "Child terminated by signal %d\n",
WTERMSIG(status));
}
}
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds)
{
static const int mblengths_list[] = {
8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024
};
const int *mblengths = mblengths_list;
int j, count, keylen, num = OSSL_NELEM(mblengths_list), ciph_success = 1;
const char *alg_name;
unsigned char *inp = NULL, *out = NULL, *key, no_key[32], no_iv[16];
EVP_CIPHER_CTX *ctx = NULL;
double d = 0.0;
if (lengths_single) {
mblengths = &lengths_single;
num = 1;
}
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
app_bail_out("failed to allocate cipher context\n");
if (!EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv))
app_bail_out("failed to initialise cipher context\n");
if ((keylen = EVP_CIPHER_CTX_get_key_length(ctx)) < 0) {
BIO_printf(bio_err, "Impossible negative key length: %d\n", keylen);
goto err;
}
key = app_malloc(keylen, "evp_cipher key");
if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0)
app_bail_out("failed to generate random cipher key\n");
if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
app_bail_out("failed to set cipher key\n");
OPENSSL_clear_free(key, keylen);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
sizeof(no_key), no_key) <= 0)
app_bail_out("failed to set AEAD key\n");
if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
app_bail_out("failed to get cipher name\n");
for (j = 0; j < num; j++) {
print_message(alg_name, mblengths[j], seconds->sym);
Time_F(START);
for (count = 0; run && COND(count); count++) {
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
(void)EVP_CIPHER_CTX_ctrl(ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
if (RAND_bytes(inp, 16) <= 0)
app_bail_out("error setting random bytes\n");
len += 16;
aad[11] = (unsigned char)(len >> 8);
aad[12] = (unsigned char)(len);
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
ciph_success = EVP_Cipher(ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s ops in %.2fs\n", count, "evp", d);
if ((ciph_success <= 0) && (mr == 0))
BIO_printf(bio_err, "Error performing cipher op\n");
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
err:
OPENSSL_free(inp);
OPENSSL_free(out);
EVP_CIPHER_CTX_free(ctx);
}