mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
8baf61d51b
- in particular in use of X509_LOOKUP_load_file, EVP_PKEY_print_params, EVP_PKEY_keygen, X509_CRL_add1_ext_i2d, EVP_PKEY_keygen_init Reviewed-by: Paul Dale <ppzgs1@gmail.com> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/25811)
5173 lines
178 KiB
C
5173 lines
178 KiB
C
/*
|
|
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#undef SECONDS
|
|
#define SECONDS 3
|
|
#define PKEY_SECONDS 10
|
|
|
|
#define RSA_SECONDS PKEY_SECONDS
|
|
#define DSA_SECONDS PKEY_SECONDS
|
|
#define ECDSA_SECONDS PKEY_SECONDS
|
|
#define ECDH_SECONDS PKEY_SECONDS
|
|
#define EdDSA_SECONDS PKEY_SECONDS
|
|
#define SM2_SECONDS PKEY_SECONDS
|
|
#define FFDH_SECONDS PKEY_SECONDS
|
|
#define KEM_SECONDS PKEY_SECONDS
|
|
#define SIG_SECONDS PKEY_SECONDS
|
|
|
|
#define MAX_ALGNAME_SUFFIX 100
|
|
|
|
/* We need to use some deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
#include "internal/e_os.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "apps.h"
|
|
#include "progs.h"
|
|
#include "internal/nelem.h"
|
|
#include "internal/numbers.h"
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/async.h>
|
|
#include <openssl/provider.h>
|
|
#if !defined(OPENSSL_SYS_MSDOS)
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
/*
|
|
* While VirtualLock is available under the app partition (e.g. UWP),
|
|
* the headers do not define the API. Define it ourselves instead.
|
|
*/
|
|
WINBASEAPI
|
|
BOOL
|
|
WINAPI
|
|
VirtualLock(
|
|
_In_ LPVOID lpAddress,
|
|
_In_ SIZE_T dwSize
|
|
);
|
|
#endif
|
|
|
|
#if defined(OPENSSL_SYS_LINUX)
|
|
# include <sys/mman.h>
|
|
#endif
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/rsa.h>
|
|
#include "./testrsa.h"
|
|
#ifndef OPENSSL_NO_DH
|
|
# include <openssl/dh.h>
|
|
#endif
|
|
#include <openssl/x509.h>
|
|
#include <openssl/dsa.h>
|
|
#include "./testdsa.h"
|
|
#include <openssl/modes.h>
|
|
|
|
#ifndef HAVE_FORK
|
|
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
|
|
# define HAVE_FORK 0
|
|
# else
|
|
# define HAVE_FORK 1
|
|
# include <sys/wait.h>
|
|
# endif
|
|
#endif
|
|
|
|
#if HAVE_FORK
|
|
# undef NO_FORK
|
|
#else
|
|
# define NO_FORK
|
|
#endif
|
|
|
|
#define MAX_MISALIGNMENT 63
|
|
#define MAX_ECDH_SIZE 256
|
|
#define MISALIGN 64
|
|
#define MAX_FFDH_SIZE 1024
|
|
|
|
#ifndef RSA_DEFAULT_PRIME_NUM
|
|
# define RSA_DEFAULT_PRIME_NUM 2
|
|
#endif
|
|
|
|
typedef struct openssl_speed_sec_st {
|
|
int sym;
|
|
int rsa;
|
|
int dsa;
|
|
int ecdsa;
|
|
int ecdh;
|
|
int eddsa;
|
|
int sm2;
|
|
int ffdh;
|
|
int kem;
|
|
int sig;
|
|
} openssl_speed_sec_t;
|
|
|
|
static volatile int run = 0;
|
|
|
|
static int mr = 0; /* machine-readeable output format to merge fork results */
|
|
static int usertime = 1;
|
|
|
|
static double Time_F(int s);
|
|
static void print_message(const char *s, int length, int tm);
|
|
static void pkey_print_message(const char *str, const char *str2,
|
|
unsigned int bits, int sec);
|
|
static void kskey_print_message(const char *str, const char *str2, int tm);
|
|
static void print_result(int alg, int run_no, int count, double time_used);
|
|
#ifndef NO_FORK
|
|
static int do_multi(int multi, int size_num);
|
|
#endif
|
|
|
|
static int domlock = 0;
|
|
static int testmode = 0;
|
|
static int testmoderesult = 0;
|
|
|
|
static const int lengths_list[] = {
|
|
16, 64, 256, 1024, 8 * 1024, 16 * 1024
|
|
};
|
|
#define SIZE_NUM OSSL_NELEM(lengths_list)
|
|
static const int *lengths = lengths_list;
|
|
|
|
static const int aead_lengths_list[] = {
|
|
2, 31, 136, 1024, 8 * 1024, 16 * 1024
|
|
};
|
|
|
|
#define START 0
|
|
#define STOP 1
|
|
|
|
#ifdef SIGALRM
|
|
|
|
static void alarmed(ossl_unused int sig)
|
|
{
|
|
signal(SIGALRM, alarmed);
|
|
run = 0;
|
|
}
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret = app_tminterval(s, usertime);
|
|
if (s == STOP)
|
|
alarm(0);
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(_WIN32)
|
|
|
|
# define SIGALRM -1
|
|
|
|
static unsigned int lapse;
|
|
static volatile unsigned int schlock;
|
|
static void alarm_win32(unsigned int secs)
|
|
{
|
|
lapse = secs * 1000;
|
|
}
|
|
|
|
# define alarm alarm_win32
|
|
|
|
static DWORD WINAPI sleepy(VOID * arg)
|
|
{
|
|
schlock = 1;
|
|
Sleep(lapse);
|
|
run = 0;
|
|
return 0;
|
|
}
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret;
|
|
static HANDLE thr;
|
|
|
|
if (s == START) {
|
|
schlock = 0;
|
|
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
|
|
if (thr == NULL) {
|
|
DWORD err = GetLastError();
|
|
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
|
|
ExitProcess(err);
|
|
}
|
|
while (!schlock)
|
|
Sleep(0); /* scheduler spinlock */
|
|
ret = app_tminterval(s, usertime);
|
|
} else {
|
|
ret = app_tminterval(s, usertime);
|
|
if (run)
|
|
TerminateThread(thr, 0);
|
|
CloseHandle(thr);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
# error "SIGALRM not defined and the platform is not Windows"
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
|
|
const openssl_speed_sec_t *seconds);
|
|
|
|
static int opt_found(const char *name, unsigned int *result,
|
|
const OPT_PAIR pairs[], unsigned int nbelem)
|
|
{
|
|
unsigned int idx;
|
|
|
|
for (idx = 0; idx < nbelem; ++idx, pairs++)
|
|
if (strcmp(name, pairs->name) == 0) {
|
|
*result = pairs->retval;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#define opt_found(value, pairs, result)\
|
|
opt_found(value, result, pairs, OSSL_NELEM(pairs))
|
|
|
|
typedef enum OPTION_choice {
|
|
OPT_COMMON,
|
|
OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
|
|
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM,
|
|
OPT_CONFIG, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC,
|
|
OPT_MLOCK, OPT_TESTMODE, OPT_KEM, OPT_SIG
|
|
} OPTION_CHOICE;
|
|
|
|
const OPTIONS speed_options[] = {
|
|
{OPT_HELP_STR, 1, '-',
|
|
"Usage: %s [options] [algorithm...]\n"
|
|
"All +int options consider prefix '0' as base-8 input, "
|
|
"prefix '0x'/'0X' as base-16 input.\n"
|
|
},
|
|
|
|
OPT_SECTION("General"),
|
|
{"help", OPT_HELP, '-', "Display this summary"},
|
|
{"mb", OPT_MB, '-',
|
|
"Enable (tls1>=1) multi-block mode on EVP-named cipher"},
|
|
{"mr", OPT_MR, '-', "Produce machine readable output"},
|
|
#ifndef NO_FORK
|
|
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
|
|
#endif
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
{"async_jobs", OPT_ASYNCJOBS, 'p',
|
|
"Enable async mode and start specified number of jobs"},
|
|
#endif
|
|
#ifndef OPENSSL_NO_ENGINE
|
|
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
|
|
#endif
|
|
{"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
|
|
{"mlock", OPT_MLOCK, '-', "Lock memory for better result determinism"},
|
|
{"testmode", OPT_TESTMODE, '-', "Run the speed command in test mode"},
|
|
OPT_CONFIG_OPTION,
|
|
|
|
OPT_SECTION("Selection"),
|
|
{"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
|
|
{"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"},
|
|
{"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"},
|
|
{"decrypt", OPT_DECRYPT, '-',
|
|
"Time decryption instead of encryption (only EVP)"},
|
|
{"aead", OPT_AEAD, '-',
|
|
"Benchmark EVP-named AEAD cipher in TLS-like sequence"},
|
|
{"kem-algorithms", OPT_KEM, '-',
|
|
"Benchmark KEM algorithms"},
|
|
{"signature-algorithms", OPT_SIG, '-',
|
|
"Benchmark signature algorithms"},
|
|
|
|
OPT_SECTION("Timing"),
|
|
{"elapsed", OPT_ELAPSED, '-',
|
|
"Use wall-clock time instead of CPU user time as divisor"},
|
|
{"seconds", OPT_SECONDS, 'p',
|
|
"Run benchmarks for specified amount of seconds"},
|
|
{"bytes", OPT_BYTES, 'p',
|
|
"Run [non-PKI] benchmarks on custom-sized buffer"},
|
|
{"misalign", OPT_MISALIGN, 'p',
|
|
"Use specified offset to mis-align buffers"},
|
|
|
|
OPT_R_OPTIONS,
|
|
OPT_PROV_OPTIONS,
|
|
|
|
OPT_PARAMETERS(),
|
|
{"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"},
|
|
{NULL}
|
|
};
|
|
|
|
enum {
|
|
D_MD2, D_MDC2, D_MD4, D_MD5, D_SHA1, D_RMD160,
|
|
D_SHA256, D_SHA512, D_WHIRLPOOL, D_HMAC,
|
|
D_CBC_DES, D_EDE3_DES, D_RC4, D_CBC_IDEA, D_CBC_SEED,
|
|
D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST,
|
|
D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES,
|
|
D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML,
|
|
D_EVP, D_GHASH, D_RAND, D_EVP_CMAC, D_KMAC128, D_KMAC256,
|
|
ALGOR_NUM
|
|
};
|
|
/* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */
|
|
static const char *names[ALGOR_NUM] = {
|
|
"md2", "mdc2", "md4", "md5", "sha1", "rmd160",
|
|
"sha256", "sha512", "whirlpool", "hmac(sha256)",
|
|
"des-cbc", "des-ede3", "rc4", "idea-cbc", "seed-cbc",
|
|
"rc2-cbc", "rc5-cbc", "blowfish", "cast-cbc",
|
|
"aes-128-cbc", "aes-192-cbc", "aes-256-cbc",
|
|
"camellia-128-cbc", "camellia-192-cbc", "camellia-256-cbc",
|
|
"evp", "ghash", "rand", "cmac", "kmac128", "kmac256"
|
|
};
|
|
|
|
/* list of configured algorithm (remaining), with some few alias */
|
|
static const OPT_PAIR doit_choices[] = {
|
|
{"md2", D_MD2},
|
|
{"mdc2", D_MDC2},
|
|
{"md4", D_MD4},
|
|
{"md5", D_MD5},
|
|
{"hmac", D_HMAC},
|
|
{"sha1", D_SHA1},
|
|
{"sha256", D_SHA256},
|
|
{"sha512", D_SHA512},
|
|
{"whirlpool", D_WHIRLPOOL},
|
|
{"ripemd", D_RMD160},
|
|
{"rmd160", D_RMD160},
|
|
{"ripemd160", D_RMD160},
|
|
{"rc4", D_RC4},
|
|
{"des-cbc", D_CBC_DES},
|
|
{"des-ede3", D_EDE3_DES},
|
|
{"aes-128-cbc", D_CBC_128_AES},
|
|
{"aes-192-cbc", D_CBC_192_AES},
|
|
{"aes-256-cbc", D_CBC_256_AES},
|
|
{"camellia-128-cbc", D_CBC_128_CML},
|
|
{"camellia-192-cbc", D_CBC_192_CML},
|
|
{"camellia-256-cbc", D_CBC_256_CML},
|
|
{"rc2-cbc", D_CBC_RC2},
|
|
{"rc2", D_CBC_RC2},
|
|
{"rc5-cbc", D_CBC_RC5},
|
|
{"rc5", D_CBC_RC5},
|
|
{"idea-cbc", D_CBC_IDEA},
|
|
{"idea", D_CBC_IDEA},
|
|
{"seed-cbc", D_CBC_SEED},
|
|
{"seed", D_CBC_SEED},
|
|
{"bf-cbc", D_CBC_BF},
|
|
{"blowfish", D_CBC_BF},
|
|
{"bf", D_CBC_BF},
|
|
{"cast-cbc", D_CBC_CAST},
|
|
{"cast", D_CBC_CAST},
|
|
{"cast5", D_CBC_CAST},
|
|
{"ghash", D_GHASH},
|
|
{"rand", D_RAND},
|
|
{"kmac128", D_KMAC128},
|
|
{"kmac256", D_KMAC256},
|
|
};
|
|
|
|
static double results[ALGOR_NUM][SIZE_NUM];
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
enum { R_DSA_1024, R_DSA_2048, DSA_NUM };
|
|
static const OPT_PAIR dsa_choices[DSA_NUM] = {
|
|
{"dsa1024", R_DSA_1024},
|
|
{"dsa2048", R_DSA_2048}
|
|
};
|
|
static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
|
|
#endif /* OPENSSL_NO_DSA */
|
|
|
|
enum {
|
|
R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680,
|
|
R_RSA_15360, RSA_NUM
|
|
};
|
|
static const OPT_PAIR rsa_choices[RSA_NUM] = {
|
|
{"rsa512", R_RSA_512},
|
|
{"rsa1024", R_RSA_1024},
|
|
{"rsa2048", R_RSA_2048},
|
|
{"rsa3072", R_RSA_3072},
|
|
{"rsa4096", R_RSA_4096},
|
|
{"rsa7680", R_RSA_7680},
|
|
{"rsa15360", R_RSA_15360}
|
|
};
|
|
|
|
static double rsa_results[RSA_NUM][4]; /* 4 ops: sign, verify, encrypt, decrypt */
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
enum ff_params_t {
|
|
R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM
|
|
};
|
|
|
|
static const OPT_PAIR ffdh_choices[FFDH_NUM] = {
|
|
{"ffdh2048", R_FFDH_2048},
|
|
{"ffdh3072", R_FFDH_3072},
|
|
{"ffdh4096", R_FFDH_4096},
|
|
{"ffdh6144", R_FFDH_6144},
|
|
{"ffdh8192", R_FFDH_8192},
|
|
};
|
|
|
|
static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */
|
|
#endif /* OPENSSL_NO_DH */
|
|
|
|
enum ec_curves_t {
|
|
R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
|
|
#ifndef OPENSSL_NO_EC2M
|
|
R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
|
|
R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
|
|
#endif
|
|
R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1,
|
|
R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM
|
|
};
|
|
/* list of ecdsa curves */
|
|
static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
|
|
{"ecdsap160", R_EC_P160},
|
|
{"ecdsap192", R_EC_P192},
|
|
{"ecdsap224", R_EC_P224},
|
|
{"ecdsap256", R_EC_P256},
|
|
{"ecdsap384", R_EC_P384},
|
|
{"ecdsap521", R_EC_P521},
|
|
#ifndef OPENSSL_NO_EC2M
|
|
{"ecdsak163", R_EC_K163},
|
|
{"ecdsak233", R_EC_K233},
|
|
{"ecdsak283", R_EC_K283},
|
|
{"ecdsak409", R_EC_K409},
|
|
{"ecdsak571", R_EC_K571},
|
|
{"ecdsab163", R_EC_B163},
|
|
{"ecdsab233", R_EC_B233},
|
|
{"ecdsab283", R_EC_B283},
|
|
{"ecdsab409", R_EC_B409},
|
|
{"ecdsab571", R_EC_B571},
|
|
#endif
|
|
{"ecdsabrp256r1", R_EC_BRP256R1},
|
|
{"ecdsabrp256t1", R_EC_BRP256T1},
|
|
{"ecdsabrp384r1", R_EC_BRP384R1},
|
|
{"ecdsabrp384t1", R_EC_BRP384T1},
|
|
{"ecdsabrp512r1", R_EC_BRP512R1},
|
|
{"ecdsabrp512t1", R_EC_BRP512T1}
|
|
};
|
|
enum {
|
|
#ifndef OPENSSL_NO_ECX
|
|
R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM
|
|
#else
|
|
EC_NUM = ECDSA_NUM
|
|
#endif
|
|
};
|
|
/* list of ecdh curves, extension of |ecdsa_choices| list above */
|
|
static const OPT_PAIR ecdh_choices[EC_NUM] = {
|
|
{"ecdhp160", R_EC_P160},
|
|
{"ecdhp192", R_EC_P192},
|
|
{"ecdhp224", R_EC_P224},
|
|
{"ecdhp256", R_EC_P256},
|
|
{"ecdhp384", R_EC_P384},
|
|
{"ecdhp521", R_EC_P521},
|
|
#ifndef OPENSSL_NO_EC2M
|
|
{"ecdhk163", R_EC_K163},
|
|
{"ecdhk233", R_EC_K233},
|
|
{"ecdhk283", R_EC_K283},
|
|
{"ecdhk409", R_EC_K409},
|
|
{"ecdhk571", R_EC_K571},
|
|
{"ecdhb163", R_EC_B163},
|
|
{"ecdhb233", R_EC_B233},
|
|
{"ecdhb283", R_EC_B283},
|
|
{"ecdhb409", R_EC_B409},
|
|
{"ecdhb571", R_EC_B571},
|
|
#endif
|
|
{"ecdhbrp256r1", R_EC_BRP256R1},
|
|
{"ecdhbrp256t1", R_EC_BRP256T1},
|
|
{"ecdhbrp384r1", R_EC_BRP384R1},
|
|
{"ecdhbrp384t1", R_EC_BRP384T1},
|
|
{"ecdhbrp512r1", R_EC_BRP512R1},
|
|
{"ecdhbrp512t1", R_EC_BRP512T1},
|
|
#ifndef OPENSSL_NO_ECX
|
|
{"ecdhx25519", R_EC_X25519},
|
|
{"ecdhx448", R_EC_X448}
|
|
#endif
|
|
};
|
|
|
|
static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
|
|
static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
|
|
|
|
#ifndef OPENSSL_NO_ECX
|
|
enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM };
|
|
static const OPT_PAIR eddsa_choices[EdDSA_NUM] = {
|
|
{"ed25519", R_EC_Ed25519},
|
|
{"ed448", R_EC_Ed448}
|
|
|
|
};
|
|
static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
#ifndef OPENSSL_NO_SM2
|
|
enum { R_EC_CURVESM2, SM2_NUM };
|
|
static const OPT_PAIR sm2_choices[SM2_NUM] = {
|
|
{"curveSM2", R_EC_CURVESM2}
|
|
};
|
|
# define SM2_ID "TLSv1.3+GM+Cipher+Suite"
|
|
# define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1
|
|
static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */
|
|
#endif /* OPENSSL_NO_SM2 */
|
|
|
|
#define MAX_KEM_NUM 111
|
|
static size_t kems_algs_len = 0;
|
|
static char *kems_algname[MAX_KEM_NUM] = { NULL };
|
|
static double kems_results[MAX_KEM_NUM][3]; /* keygen, encaps, decaps */
|
|
|
|
#define MAX_SIG_NUM 111
|
|
static size_t sigs_algs_len = 0;
|
|
static char *sigs_algname[MAX_SIG_NUM] = { NULL };
|
|
static double sigs_results[MAX_SIG_NUM][3]; /* keygen, sign, verify */
|
|
|
|
#define COND(unused_cond) (run && count < (testmode ? 1 : INT_MAX))
|
|
#define COUNT(d) (count)
|
|
|
|
#define TAG_LEN 16
|
|
|
|
static unsigned int mode_op; /* AE Mode of operation */
|
|
static unsigned int aead = 0; /* AEAD flag */
|
|
static unsigned char aead_iv[12]; /* For AEAD modes */
|
|
static unsigned char aad[EVP_AEAD_TLS1_AAD_LEN] = { 0xcc };
|
|
static int aead_ivlen = sizeof(aead_iv);
|
|
|
|
typedef struct loopargs_st {
|
|
ASYNC_JOB *inprogress_job;
|
|
ASYNC_WAIT_CTX *wait_ctx;
|
|
unsigned char *buf;
|
|
unsigned char *buf2;
|
|
unsigned char *buf_malloc;
|
|
unsigned char *buf2_malloc;
|
|
unsigned char *key;
|
|
unsigned char tag[TAG_LEN];
|
|
size_t buflen;
|
|
size_t sigsize;
|
|
size_t encsize;
|
|
EVP_PKEY_CTX *rsa_sign_ctx[RSA_NUM];
|
|
EVP_PKEY_CTX *rsa_verify_ctx[RSA_NUM];
|
|
EVP_PKEY_CTX *rsa_encrypt_ctx[RSA_NUM];
|
|
EVP_PKEY_CTX *rsa_decrypt_ctx[RSA_NUM];
|
|
#ifndef OPENSSL_NO_DSA
|
|
EVP_PKEY_CTX *dsa_sign_ctx[DSA_NUM];
|
|
EVP_PKEY_CTX *dsa_verify_ctx[DSA_NUM];
|
|
#endif
|
|
EVP_PKEY_CTX *ecdsa_sign_ctx[ECDSA_NUM];
|
|
EVP_PKEY_CTX *ecdsa_verify_ctx[ECDSA_NUM];
|
|
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
|
|
#ifndef OPENSSL_NO_ECX
|
|
EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
|
|
EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM];
|
|
#endif /* OPENSSL_NO_ECX */
|
|
#ifndef OPENSSL_NO_SM2
|
|
EVP_MD_CTX *sm2_ctx[SM2_NUM];
|
|
EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM];
|
|
EVP_PKEY *sm2_pkey[SM2_NUM];
|
|
#endif
|
|
unsigned char *secret_a;
|
|
unsigned char *secret_b;
|
|
size_t outlen[EC_NUM];
|
|
#ifndef OPENSSL_NO_DH
|
|
EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM];
|
|
unsigned char *secret_ff_a;
|
|
unsigned char *secret_ff_b;
|
|
#endif
|
|
EVP_CIPHER_CTX *ctx;
|
|
EVP_MAC_CTX *mctx;
|
|
EVP_PKEY_CTX *kem_gen_ctx[MAX_KEM_NUM];
|
|
EVP_PKEY_CTX *kem_encaps_ctx[MAX_KEM_NUM];
|
|
EVP_PKEY_CTX *kem_decaps_ctx[MAX_KEM_NUM];
|
|
size_t kem_out_len[MAX_KEM_NUM];
|
|
size_t kem_secret_len[MAX_KEM_NUM];
|
|
unsigned char *kem_out[MAX_KEM_NUM];
|
|
unsigned char *kem_send_secret[MAX_KEM_NUM];
|
|
unsigned char *kem_rcv_secret[MAX_KEM_NUM];
|
|
EVP_PKEY_CTX *sig_gen_ctx[MAX_KEM_NUM];
|
|
EVP_PKEY_CTX *sig_sign_ctx[MAX_KEM_NUM];
|
|
EVP_PKEY_CTX *sig_verify_ctx[MAX_KEM_NUM];
|
|
size_t sig_max_sig_len[MAX_KEM_NUM];
|
|
size_t sig_act_sig_len[MAX_KEM_NUM];
|
|
unsigned char *sig_sig[MAX_KEM_NUM];
|
|
} loopargs_t;
|
|
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
|
|
loopargs_t *loopargs);
|
|
|
|
static unsigned int testnum;
|
|
|
|
static char *evp_mac_mdname = "sha256";
|
|
static char *evp_hmac_name = NULL;
|
|
static const char *evp_md_name = NULL;
|
|
static char *evp_mac_ciphername = "aes-128-cbc";
|
|
static char *evp_cmac_name = NULL;
|
|
|
|
static void dofail(void)
|
|
{
|
|
ERR_print_errors(bio_err);
|
|
testmoderesult = 1;
|
|
}
|
|
|
|
static int have_md(const char *name)
|
|
{
|
|
int ret = 0;
|
|
EVP_MD *md = NULL;
|
|
|
|
if (opt_md_silent(name, &md)) {
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
|
|
|
if (ctx != NULL && EVP_DigestInit(ctx, md) > 0)
|
|
ret = 1;
|
|
EVP_MD_CTX_free(ctx);
|
|
EVP_MD_free(md);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int have_cipher(const char *name)
|
|
{
|
|
int ret = 0;
|
|
EVP_CIPHER *cipher = NULL;
|
|
|
|
if (opt_cipher_silent(name, &cipher)) {
|
|
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
|
|
|
|
if (ctx != NULL
|
|
&& EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1) > 0)
|
|
ret = 1;
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
EVP_CIPHER_free(cipher);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int EVP_Digest_loop(const char *mdname, ossl_unused int algindex, void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char digest[EVP_MAX_MD_SIZE];
|
|
int count;
|
|
EVP_MD *md = NULL;
|
|
EVP_MD_CTX *ctx = NULL;
|
|
|
|
if (!opt_md_silent(mdname, &md))
|
|
return -1;
|
|
if (EVP_MD_xof(md)) {
|
|
ctx = EVP_MD_CTX_new();
|
|
if (ctx == NULL) {
|
|
count = -1;
|
|
goto out;
|
|
}
|
|
|
|
for (count = 0; COND(c[algindex][testnum]); count++) {
|
|
if (!EVP_DigestInit_ex2(ctx, md, NULL)
|
|
|| !EVP_DigestUpdate(ctx, buf, (size_t)lengths[testnum])
|
|
|| !EVP_DigestFinalXOF(ctx, digest, sizeof(digest))) {
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (count = 0; COND(c[algindex][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], digest, NULL, md,
|
|
NULL)) {
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
EVP_MD_free(md);
|
|
EVP_MD_CTX_free(ctx);
|
|
return count;
|
|
}
|
|
|
|
static int EVP_Digest_md_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop(evp_md_name, D_EVP, args);
|
|
}
|
|
|
|
static int EVP_Digest_MD2_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("md2", D_MD2, args);
|
|
}
|
|
|
|
static int EVP_Digest_MDC2_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("mdc2", D_MDC2, args);
|
|
}
|
|
|
|
static int EVP_Digest_MD4_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("md4", D_MD4, args);
|
|
}
|
|
|
|
static int MD5_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("md5", D_MD5, args);
|
|
}
|
|
|
|
static int mac_setup(const char *name,
|
|
EVP_MAC **mac, OSSL_PARAM params[],
|
|
loopargs_t *loopargs, unsigned int loopargs_len)
|
|
{
|
|
unsigned int i;
|
|
|
|
*mac = EVP_MAC_fetch(app_get0_libctx(), name, app_get0_propq());
|
|
if (*mac == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].mctx = EVP_MAC_CTX_new(*mac);
|
|
if (loopargs[i].mctx == NULL)
|
|
return 0;
|
|
|
|
if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void mac_teardown(EVP_MAC **mac,
|
|
loopargs_t *loopargs, unsigned int loopargs_len)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_MAC_CTX_free(loopargs[i].mctx);
|
|
EVP_MAC_free(*mac);
|
|
*mac = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
static int EVP_MAC_loop(ossl_unused int algindex, void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MAC_CTX *mctx = tempargs->mctx;
|
|
unsigned char mac[EVP_MAX_MD_SIZE];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[algindex][testnum]); count++) {
|
|
size_t outl;
|
|
|
|
if (!EVP_MAC_init(mctx, NULL, 0, NULL)
|
|
|| !EVP_MAC_update(mctx, buf, lengths[testnum])
|
|
|| !EVP_MAC_final(mctx, mac, &outl, sizeof(mac)))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int HMAC_loop(void *args)
|
|
{
|
|
return EVP_MAC_loop(D_HMAC, args);
|
|
}
|
|
|
|
static int CMAC_loop(void *args)
|
|
{
|
|
return EVP_MAC_loop(D_EVP_CMAC, args);
|
|
}
|
|
|
|
static int KMAC128_loop(void *args)
|
|
{
|
|
return EVP_MAC_loop(D_KMAC128, args);
|
|
}
|
|
|
|
static int KMAC256_loop(void *args)
|
|
{
|
|
return EVP_MAC_loop(D_KMAC256, args);
|
|
}
|
|
|
|
static int SHA1_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("sha1", D_SHA1, args);
|
|
}
|
|
|
|
static int SHA256_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("sha256", D_SHA256, args);
|
|
}
|
|
|
|
static int SHA512_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("sha512", D_SHA512, args);
|
|
}
|
|
|
|
static int WHIRLPOOL_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("whirlpool", D_WHIRLPOOL, args);
|
|
}
|
|
|
|
static int EVP_Digest_RMD160_loop(void *args)
|
|
{
|
|
return EVP_Digest_loop("ripemd160", D_RMD160, args);
|
|
}
|
|
|
|
static int algindex;
|
|
|
|
static int EVP_Cipher_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
|
|
if (tempargs->ctx == NULL)
|
|
return -1;
|
|
for (count = 0; COND(c[algindex][testnum]); count++)
|
|
if (EVP_Cipher(tempargs->ctx, buf, buf, (size_t)lengths[testnum]) <= 0)
|
|
return -1;
|
|
return count;
|
|
}
|
|
|
|
static int GHASH_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MAC_CTX *mctx = tempargs->mctx;
|
|
int count;
|
|
|
|
/* just do the update in the loop to be comparable with 1.1.1 */
|
|
for (count = 0; COND(c[D_GHASH][testnum]); count++) {
|
|
if (!EVP_MAC_update(mctx, buf, lengths[testnum]))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define MAX_BLOCK_SIZE 128
|
|
|
|
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
|
|
|
|
static EVP_CIPHER_CTX *init_evp_cipher_ctx(const char *ciphername,
|
|
const unsigned char *key,
|
|
int keylen)
|
|
{
|
|
EVP_CIPHER_CTX *ctx = NULL;
|
|
EVP_CIPHER *cipher = NULL;
|
|
|
|
if (!opt_cipher_silent(ciphername, &cipher))
|
|
return NULL;
|
|
|
|
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
|
|
goto end;
|
|
|
|
if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1)) {
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
ctx = NULL;
|
|
goto end;
|
|
}
|
|
|
|
if (EVP_CIPHER_CTX_set_key_length(ctx, keylen) <= 0) {
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
ctx = NULL;
|
|
goto end;
|
|
}
|
|
|
|
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1)) {
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
ctx = NULL;
|
|
goto end;
|
|
}
|
|
|
|
end:
|
|
EVP_CIPHER_free(cipher);
|
|
return ctx;
|
|
}
|
|
|
|
static int RAND_bytes_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_RAND][testnum]); count++)
|
|
RAND_bytes(buf, lengths[testnum]);
|
|
return count;
|
|
}
|
|
|
|
static int decrypt = 0;
|
|
static int EVP_Update_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count, rc;
|
|
|
|
if (decrypt) {
|
|
for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
|
rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
if (rc != 1) {
|
|
/* reset iv in case of counter overflow */
|
|
rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
|
}
|
|
}
|
|
} else {
|
|
for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
|
rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
if (rc != 1) {
|
|
/* reset iv in case of counter overflow */
|
|
rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
|
}
|
|
}
|
|
}
|
|
if (decrypt)
|
|
rc = EVP_DecryptFinal_ex(ctx, buf, &outl);
|
|
else
|
|
rc = EVP_EncryptFinal_ex(ctx, buf, &outl);
|
|
|
|
if (rc == 0)
|
|
BIO_printf(bio_err, "Error finalizing cipher loop\n");
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* To make AEAD benchmarking more relevant perform TLS-like operations,
|
|
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
|
|
* payload length is not actually limited by 16KB...
|
|
* CCM does not support streaming. For the purpose of performance measurement,
|
|
* each message is encrypted using the same (key,iv)-pair. Do not use this
|
|
* code in your application.
|
|
*/
|
|
static int EVP_Update_loop_aead_enc(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *key = tempargs->key;
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count, realcount = 0;
|
|
|
|
for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
|
/* Set length of iv (Doesn't apply to SIV mode) */
|
|
if (mode_op != EVP_CIPH_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
|
|
aead_ivlen, NULL)) {
|
|
BIO_printf(bio_err, "\nFailed to set iv length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
/* Set tag_len (Not for GCM/SIV at encryption stage) */
|
|
if (mode_op != EVP_CIPH_GCM_MODE
|
|
&& mode_op != EVP_CIPH_SIV_MODE
|
|
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
TAG_LEN, NULL)) {
|
|
BIO_printf(bio_err, "\nFailed to set tag length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, aead_iv, -1)) {
|
|
BIO_printf(bio_err, "\nFailed to set key and iv\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
/* Set total length of input. Only required for CCM */
|
|
if (mode_op == EVP_CIPH_CCM_MODE) {
|
|
if (!EVP_EncryptUpdate(ctx, NULL, &outl,
|
|
NULL, lengths[testnum])) {
|
|
BIO_printf(bio_err, "\nCouldn't set input text length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (aead) {
|
|
if (!EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad))) {
|
|
BIO_printf(bio_err, "\nCouldn't insert AAD when encrypting\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum])) {
|
|
BIO_printf(bio_err, "\nFailed to encrypt the data\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
if (EVP_EncryptFinal_ex(ctx, buf, &outl))
|
|
realcount++;
|
|
}
|
|
return realcount;
|
|
}
|
|
|
|
/*
|
|
* To make AEAD benchmarking more relevant perform TLS-like operations,
|
|
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
|
|
* payload length is not actually limited by 16KB...
|
|
* CCM does not support streaming. For the purpose of performance measurement,
|
|
* each message is decrypted using the same (key,iv)-pair. Do not use this
|
|
* code in your application.
|
|
* For decryption, we will use buf2 to preserve the input text in buf.
|
|
*/
|
|
static int EVP_Update_loop_aead_dec(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *outbuf = tempargs->buf2;
|
|
unsigned char *key = tempargs->key;
|
|
unsigned char tag[TAG_LEN];
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count, realcount = 0;
|
|
|
|
for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
|
/* Set the length of iv (Doesn't apply to SIV mode) */
|
|
if (mode_op != EVP_CIPH_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
|
|
aead_ivlen, NULL)) {
|
|
BIO_printf(bio_err, "\nFailed to set iv length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Set the tag length (Doesn't apply to SIV mode) */
|
|
if (mode_op != EVP_CIPH_SIV_MODE
|
|
&& mode_op != EVP_CIPH_GCM_MODE
|
|
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
TAG_LEN, NULL)) {
|
|
BIO_printf(bio_err, "\nFailed to set tag length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, aead_iv, -1)) {
|
|
BIO_printf(bio_err, "\nFailed to set key and iv\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
/* Set iv before decryption (Doesn't apply to SIV mode) */
|
|
if (mode_op != EVP_CIPH_SIV_MODE) {
|
|
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, aead_iv)) {
|
|
BIO_printf(bio_err, "\nFailed to set iv\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
memcpy(tag, tempargs->tag, TAG_LEN);
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
TAG_LEN, tag)) {
|
|
BIO_printf(bio_err, "\nFailed to set tag\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
/* Set the total length of cipher text. Only required for CCM */
|
|
if (mode_op == EVP_CIPH_CCM_MODE) {
|
|
if (!EVP_DecryptUpdate(ctx, NULL, &outl,
|
|
NULL, lengths[testnum])) {
|
|
BIO_printf(bio_err, "\nCouldn't set cipher text length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (aead) {
|
|
if (!EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad))) {
|
|
BIO_printf(bio_err, "\nCouldn't insert AAD when decrypting\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_DecryptUpdate(ctx, outbuf, &outl, buf, lengths[testnum])) {
|
|
BIO_printf(bio_err, "\nFailed to decrypt the data\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
if (EVP_DecryptFinal_ex(ctx, outbuf, &outl))
|
|
realcount++;
|
|
}
|
|
return realcount;
|
|
}
|
|
|
|
static int RSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t *rsa_num = &tempargs->sigsize;
|
|
EVP_PKEY_CTX **rsa_sign_ctx = tempargs->rsa_sign_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(rsa_c[testnum][0]); count++) {
|
|
*rsa_num = tempargs->buflen;
|
|
ret = EVP_PKEY_sign(rsa_sign_ctx[testnum], buf2, rsa_num, buf, 36);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int RSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t rsa_num = tempargs->sigsize;
|
|
EVP_PKEY_CTX **rsa_verify_ctx = tempargs->rsa_verify_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(rsa_c[testnum][1]); count++) {
|
|
ret = EVP_PKEY_verify(rsa_verify_ctx[testnum], buf2, rsa_num, buf, 36);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA verify failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int RSA_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t *rsa_num = &tempargs->encsize;
|
|
EVP_PKEY_CTX **rsa_encrypt_ctx = tempargs->rsa_encrypt_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(rsa_c[testnum][2]); count++) {
|
|
*rsa_num = tempargs->buflen;
|
|
ret = EVP_PKEY_encrypt(rsa_encrypt_ctx[testnum], buf2, rsa_num, buf, 36);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA encrypt failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int RSA_decrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t rsa_num;
|
|
EVP_PKEY_CTX **rsa_decrypt_ctx = tempargs->rsa_decrypt_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(rsa_c[testnum][3]); count++) {
|
|
rsa_num = tempargs->buflen;
|
|
ret = EVP_PKEY_decrypt(rsa_decrypt_ctx[testnum], buf, &rsa_num, buf2, tempargs->encsize);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA decrypt failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
|
|
static int FFDH_derive_key_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum];
|
|
unsigned char *derived_secret = tempargs->secret_ff_a;
|
|
int count;
|
|
|
|
for (count = 0; COND(ffdh_c[testnum][0]); count++) {
|
|
/* outlen can be overwritten with a too small value (no padding used) */
|
|
size_t outlen = MAX_FFDH_SIZE;
|
|
|
|
EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen);
|
|
}
|
|
return count;
|
|
}
|
|
#endif /* OPENSSL_NO_DH */
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
static int DSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t *dsa_num = &tempargs->sigsize;
|
|
EVP_PKEY_CTX **dsa_sign_ctx = tempargs->dsa_sign_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(dsa_c[testnum][0]); count++) {
|
|
*dsa_num = tempargs->buflen;
|
|
ret = EVP_PKEY_sign(dsa_sign_ctx[testnum], buf2, dsa_num, buf, 20);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "DSA sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int DSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t dsa_num = tempargs->sigsize;
|
|
EVP_PKEY_CTX **dsa_verify_ctx = tempargs->dsa_verify_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(dsa_c[testnum][1]); count++) {
|
|
ret = EVP_PKEY_verify(dsa_verify_ctx[testnum], buf2, dsa_num, buf, 20);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "DSA verify failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
|
|
static int ECDSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t *ecdsa_num = &tempargs->sigsize;
|
|
EVP_PKEY_CTX **ecdsa_sign_ctx = tempargs->ecdsa_sign_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
|
|
*ecdsa_num = tempargs->buflen;
|
|
ret = EVP_PKEY_sign(ecdsa_sign_ctx[testnum], buf2, ecdsa_num, buf, 20);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "ECDSA sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int ECDSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
size_t ecdsa_num = tempargs->sigsize;
|
|
EVP_PKEY_CTX **ecdsa_verify_ctx = tempargs->ecdsa_verify_ctx;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
|
|
ret = EVP_PKEY_verify(ecdsa_verify_ctx[testnum], buf2, ecdsa_num,
|
|
buf, 20);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "ECDSA verify failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* ******************************************************************** */
|
|
|
|
static int ECDH_EVP_derive_key_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
|
|
unsigned char *derived_secret = tempargs->secret_a;
|
|
int count;
|
|
size_t *outlen = &(tempargs->outlen[testnum]);
|
|
|
|
for (count = 0; COND(ecdh_c[testnum][0]); count++)
|
|
EVP_PKEY_derive(ctx, derived_secret, outlen);
|
|
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_ECX
|
|
static int EdDSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
|
|
unsigned char *eddsasig = tempargs->buf2;
|
|
size_t *eddsasigsize = &tempargs->sigsize;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(eddsa_c[testnum][0]); count++) {
|
|
ret = EVP_DigestSignInit(edctx[testnum], NULL, NULL, NULL, NULL);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "EdDSA sign init failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "EdDSA sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int EdDSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MD_CTX **edctx = tempargs->eddsa_ctx2;
|
|
unsigned char *eddsasig = tempargs->buf2;
|
|
size_t eddsasigsize = tempargs->sigsize;
|
|
int ret, count;
|
|
|
|
for (count = 0; COND(eddsa_c[testnum][1]); count++) {
|
|
ret = EVP_DigestVerifyInit(edctx[testnum], NULL, NULL, NULL, NULL);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "EdDSA verify init failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
|
|
if (ret != 1) {
|
|
BIO_printf(bio_err, "EdDSA verify failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
#ifndef OPENSSL_NO_SM2
|
|
static int SM2_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx;
|
|
unsigned char *sm2sig = tempargs->buf2;
|
|
size_t sm2sigsize;
|
|
int ret, count;
|
|
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
|
|
const size_t max_size = EVP_PKEY_get_size(sm2_pkey[testnum]);
|
|
|
|
for (count = 0; COND(sm2_c[testnum][0]); count++) {
|
|
sm2sigsize = max_size;
|
|
|
|
if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(),
|
|
NULL, sm2_pkey[testnum])) {
|
|
BIO_printf(bio_err, "SM2 init sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize,
|
|
buf, 20);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "SM2 sign failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
/* update the latest returned size and always use the fixed buffer size */
|
|
tempargs->sigsize = sm2sigsize;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int SM2_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx;
|
|
unsigned char *sm2sig = tempargs->buf2;
|
|
size_t sm2sigsize = tempargs->sigsize;
|
|
int ret, count;
|
|
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
|
|
|
|
for (count = 0; COND(sm2_c[testnum][1]); count++) {
|
|
if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(),
|
|
NULL, sm2_pkey[testnum])) {
|
|
BIO_printf(bio_err, "SM2 verify init failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize,
|
|
buf, 20);
|
|
if (ret != 1) {
|
|
BIO_printf(bio_err, "SM2 verify failure\n");
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif /* OPENSSL_NO_SM2 */
|
|
|
|
static int KEM_keygen_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->kem_gen_ctx[testnum];
|
|
EVP_PKEY *pkey = NULL;
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][0]); count++) {
|
|
if (EVP_PKEY_keygen(ctx, &pkey) <= 0)
|
|
return -1;
|
|
/*
|
|
* runtime defined to quite some degree by randomness,
|
|
* so performance overhead of _free doesn't impact
|
|
* results significantly. In any case this test is
|
|
* meant to permit relative algorithm performance
|
|
* comparison.
|
|
*/
|
|
EVP_PKEY_free(pkey);
|
|
pkey = NULL;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int KEM_encaps_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->kem_encaps_ctx[testnum];
|
|
size_t out_len = tempargs->kem_out_len[testnum];
|
|
size_t secret_len = tempargs->kem_secret_len[testnum];
|
|
unsigned char *out = tempargs->kem_out[testnum];
|
|
unsigned char *secret = tempargs->kem_send_secret[testnum];
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][1]); count++) {
|
|
if (EVP_PKEY_encapsulate(ctx, out, &out_len, secret, &secret_len) <= 0)
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int KEM_decaps_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->kem_decaps_ctx[testnum];
|
|
size_t out_len = tempargs->kem_out_len[testnum];
|
|
size_t secret_len = tempargs->kem_secret_len[testnum];
|
|
unsigned char *out = tempargs->kem_out[testnum];
|
|
unsigned char *secret = tempargs->kem_send_secret[testnum];
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][2]); count++) {
|
|
if (EVP_PKEY_decapsulate(ctx, secret, &secret_len, out, out_len) <= 0)
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int SIG_keygen_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->sig_gen_ctx[testnum];
|
|
EVP_PKEY *pkey = NULL;
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][0]); count++) {
|
|
EVP_PKEY_keygen(ctx, &pkey);
|
|
/* TBD: How much does free influence runtime? */
|
|
EVP_PKEY_free(pkey);
|
|
pkey = NULL;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int SIG_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->sig_sign_ctx[testnum];
|
|
/* be sure to not change stored sig: */
|
|
unsigned char *sig = app_malloc(tempargs->sig_max_sig_len[testnum],
|
|
"sig sign loop");
|
|
unsigned char md[SHA256_DIGEST_LENGTH] = { 0 };
|
|
size_t md_len = SHA256_DIGEST_LENGTH;
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][1]); count++) {
|
|
size_t sig_len = tempargs->sig_max_sig_len[testnum];
|
|
int ret = EVP_PKEY_sign(ctx, sig, &sig_len, md, md_len);
|
|
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "SIG sign failure at count %d\n", count);
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
OPENSSL_free(sig);
|
|
return count;
|
|
}
|
|
|
|
static int SIG_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->sig_verify_ctx[testnum];
|
|
size_t sig_len = tempargs->sig_act_sig_len[testnum];
|
|
unsigned char *sig = tempargs->sig_sig[testnum];
|
|
unsigned char md[SHA256_DIGEST_LENGTH] = { 0 };
|
|
size_t md_len = SHA256_DIGEST_LENGTH;
|
|
int count;
|
|
|
|
for (count = 0; COND(kems_c[testnum][2]); count++) {
|
|
int ret = EVP_PKEY_verify(ctx, sig, sig_len, md, md_len);
|
|
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "SIG verify failure at count %d\n", count);
|
|
dofail();
|
|
count = -1;
|
|
break;
|
|
}
|
|
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int check_block_size(EVP_CIPHER_CTX *ctx, int length)
|
|
{
|
|
const EVP_CIPHER *ciph = EVP_CIPHER_CTX_get0_cipher(ctx);
|
|
int blocksize = EVP_CIPHER_CTX_get_block_size(ctx);
|
|
|
|
if (ciph == NULL || blocksize <= 0) {
|
|
BIO_printf(bio_err, "\nInvalid cipher!\n");
|
|
return 0;
|
|
}
|
|
if (length % blocksize != 0) {
|
|
BIO_printf(bio_err,
|
|
"\nRequested encryption length not a multiple of block size for %s!\n",
|
|
EVP_CIPHER_get0_name(ciph));
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int run_benchmark(int async_jobs,
|
|
int (*loop_function) (void *), loopargs_t *loopargs)
|
|
{
|
|
int job_op_count = 0;
|
|
int total_op_count = 0;
|
|
int num_inprogress = 0;
|
|
int error = 0, i = 0, ret = 0;
|
|
OSSL_ASYNC_FD job_fd = 0;
|
|
size_t num_job_fds = 0;
|
|
|
|
if (async_jobs == 0) {
|
|
return loop_function((void *)&loopargs);
|
|
}
|
|
|
|
for (i = 0; i < async_jobs && !error; i++) {
|
|
loopargs_t *looparg_item = loopargs + i;
|
|
|
|
/* Copy pointer content (looparg_t item address) into async context */
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
|
|
&job_op_count, loop_function,
|
|
(void *)&looparg_item, sizeof(looparg_item));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
++num_inprogress;
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
while (num_inprogress > 0) {
|
|
#if defined(OPENSSL_SYS_WINDOWS)
|
|
DWORD avail = 0;
|
|
#elif defined(OPENSSL_SYS_UNIX)
|
|
int select_result = 0;
|
|
OSSL_ASYNC_FD max_fd = 0;
|
|
fd_set waitfdset;
|
|
|
|
FD_ZERO(&waitfdset);
|
|
|
|
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
FD_SET(job_fd, &waitfdset);
|
|
if (job_fd > max_fd)
|
|
max_fd = job_fd;
|
|
}
|
|
|
|
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
|
|
BIO_printf(bio_err,
|
|
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
|
|
"Decrease the value of async_jobs\n",
|
|
max_fd, FD_SETSIZE);
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
|
|
if (select_result == -1 && errno == EINTR)
|
|
continue;
|
|
|
|
if (select_result == -1) {
|
|
BIO_printf(bio_err, "Failure in the select\n");
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
if (select_result == 0)
|
|
continue;
|
|
#endif
|
|
|
|
for (i = 0; i < async_jobs; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
|
|
#if defined(OPENSSL_SYS_UNIX)
|
|
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
|
|
continue;
|
|
#elif defined(OPENSSL_SYS_WINDOWS)
|
|
if (num_job_fds == 1
|
|
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
|
|
&& avail > 0)
|
|
continue;
|
|
#endif
|
|
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
|
|
loopargs[i].wait_ctx, &job_op_count,
|
|
loop_function, (void *)(loopargs + i),
|
|
sizeof(loopargs_t));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
dofail();
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error ? -1 : total_op_count;
|
|
}
|
|
|
|
typedef struct ec_curve_st {
|
|
const char *name;
|
|
unsigned int nid;
|
|
unsigned int bits;
|
|
size_t sigsize; /* only used for EdDSA curves */
|
|
} EC_CURVE;
|
|
|
|
static EVP_PKEY *get_ecdsa(const EC_CURVE *curve)
|
|
{
|
|
EVP_PKEY_CTX *kctx = NULL;
|
|
EVP_PKEY *key = NULL;
|
|
|
|
/* Ensure that the error queue is empty */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
dofail();
|
|
}
|
|
|
|
/*
|
|
* Let's try to create a ctx directly from the NID: this works for
|
|
* curves like Curve25519 that are not implemented through the low
|
|
* level EC interface.
|
|
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
|
|
* then we set the curve by NID before deriving the actual keygen
|
|
* ctx for that specific curve.
|
|
*/
|
|
kctx = EVP_PKEY_CTX_new_id(curve->nid, NULL);
|
|
if (kctx == NULL) {
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
EVP_PKEY *params = NULL;
|
|
/*
|
|
* If we reach this code EVP_PKEY_CTX_new_id() failed and a
|
|
* "int_ctx_new:unsupported algorithm" error was added to the
|
|
* error queue.
|
|
* We remove it from the error queue as we are handling it.
|
|
*/
|
|
unsigned long error = ERR_peek_error();
|
|
|
|
if (error == ERR_peek_last_error() /* oldest and latest errors match */
|
|
/* check that the error origin matches */
|
|
&& ERR_GET_LIB(error) == ERR_LIB_EVP
|
|
&& (ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM
|
|
|| ERR_GET_REASON(error) == ERR_R_UNSUPPORTED))
|
|
ERR_get_error(); /* pop error from queue */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"Unhandled error in the error queue during EC key setup.\n");
|
|
dofail();
|
|
return NULL;
|
|
}
|
|
|
|
/* Create the context for parameter generation */
|
|
if ((pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL)) == NULL
|
|
|| EVP_PKEY_paramgen_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
|
curve->nid) <= 0
|
|
|| EVP_PKEY_paramgen(pctx, ¶ms) <= 0) {
|
|
BIO_printf(bio_err, "EC params init failure.\n");
|
|
dofail();
|
|
EVP_PKEY_CTX_free(pctx);
|
|
return NULL;
|
|
}
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
/* Create the context for the key generation */
|
|
kctx = EVP_PKEY_CTX_new(params, NULL);
|
|
EVP_PKEY_free(params);
|
|
}
|
|
if (kctx == NULL
|
|
|| EVP_PKEY_keygen_init(kctx) <= 0
|
|
|| EVP_PKEY_keygen(kctx, &key) <= 0) {
|
|
BIO_printf(bio_err, "EC key generation failure.\n");
|
|
dofail();
|
|
key = NULL;
|
|
}
|
|
EVP_PKEY_CTX_free(kctx);
|
|
return key;
|
|
}
|
|
|
|
#define stop_it(do_it, test_num)\
|
|
memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num);
|
|
|
|
/* Checks to see if algorithms are fetchable */
|
|
#define IS_FETCHABLE(type, TYPE) \
|
|
static int is_ ## type ## _fetchable(const TYPE *alg) \
|
|
{ \
|
|
TYPE *impl; \
|
|
const char *propq = app_get0_propq(); \
|
|
OSSL_LIB_CTX *libctx = app_get0_libctx(); \
|
|
const char *name = TYPE ## _get0_name(alg); \
|
|
\
|
|
ERR_set_mark(); \
|
|
impl = TYPE ## _fetch(libctx, name, propq); \
|
|
ERR_pop_to_mark(); \
|
|
if (impl == NULL) \
|
|
return 0; \
|
|
TYPE ## _free(impl); \
|
|
return 1; \
|
|
}
|
|
|
|
IS_FETCHABLE(signature, EVP_SIGNATURE)
|
|
IS_FETCHABLE(kem, EVP_KEM)
|
|
|
|
DEFINE_STACK_OF(EVP_KEM)
|
|
|
|
static int kems_cmp(const EVP_KEM * const *a,
|
|
const EVP_KEM * const *b)
|
|
{
|
|
return strcmp(OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*a)),
|
|
OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*b)));
|
|
}
|
|
|
|
static void collect_kem(EVP_KEM *kem, void *stack)
|
|
{
|
|
STACK_OF(EVP_KEM) *kem_stack = stack;
|
|
|
|
if (is_kem_fetchable(kem)
|
|
&& sk_EVP_KEM_push(kem_stack, kem) > 0) {
|
|
EVP_KEM_up_ref(kem);
|
|
}
|
|
}
|
|
|
|
static int kem_locate(const char *algo, unsigned int *idx)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < kems_algs_len; i++) {
|
|
if (strcmp(kems_algname[i], algo) == 0) {
|
|
*idx = i;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_STACK_OF(EVP_SIGNATURE)
|
|
|
|
static int signatures_cmp(const EVP_SIGNATURE * const *a,
|
|
const EVP_SIGNATURE * const *b)
|
|
{
|
|
return strcmp(OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*a)),
|
|
OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*b)));
|
|
}
|
|
|
|
static void collect_signatures(EVP_SIGNATURE *sig, void *stack)
|
|
{
|
|
STACK_OF(EVP_SIGNATURE) *sig_stack = stack;
|
|
|
|
if (is_signature_fetchable(sig)
|
|
&& sk_EVP_SIGNATURE_push(sig_stack, sig) > 0)
|
|
EVP_SIGNATURE_up_ref(sig);
|
|
}
|
|
|
|
static int sig_locate(const char *algo, unsigned int *idx)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sigs_algs_len; i++) {
|
|
if (strcmp(sigs_algname[i], algo) == 0) {
|
|
*idx = i;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int get_max(const uint8_t doit[], size_t algs_len) {
|
|
size_t i = 0;
|
|
int maxcnt = 0;
|
|
|
|
for (i = 0; i < algs_len; i++)
|
|
if (maxcnt < doit[i]) maxcnt = doit[i];
|
|
return maxcnt;
|
|
}
|
|
|
|
int speed_main(int argc, char **argv)
|
|
{
|
|
CONF *conf = NULL;
|
|
ENGINE *e = NULL;
|
|
loopargs_t *loopargs = NULL;
|
|
const char *prog;
|
|
const char *engine_id = NULL;
|
|
EVP_CIPHER *evp_cipher = NULL;
|
|
EVP_MAC *mac = NULL;
|
|
double d = 0.0;
|
|
OPTION_CHOICE o;
|
|
int async_init = 0, multiblock = 0, pr_header = 0;
|
|
uint8_t doit[ALGOR_NUM] = { 0 };
|
|
int ret = 1, misalign = 0, lengths_single = 0;
|
|
STACK_OF(EVP_KEM) *kem_stack = NULL;
|
|
STACK_OF(EVP_SIGNATURE) *sig_stack = NULL;
|
|
long count = 0;
|
|
unsigned int size_num = SIZE_NUM;
|
|
unsigned int i, k, loopargs_len = 0, async_jobs = 0;
|
|
unsigned int idx;
|
|
int keylen = 0;
|
|
int buflen;
|
|
size_t declen;
|
|
BIGNUM *bn = NULL;
|
|
EVP_PKEY_CTX *genctx = NULL;
|
|
#ifndef NO_FORK
|
|
int multi = 0;
|
|
#endif
|
|
long op_count = 1;
|
|
openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
|
|
ECDSA_SECONDS, ECDH_SECONDS,
|
|
EdDSA_SECONDS, SM2_SECONDS,
|
|
FFDH_SECONDS, KEM_SECONDS,
|
|
SIG_SECONDS };
|
|
|
|
static const unsigned char key32[32] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
|
};
|
|
static const unsigned char deskey[] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, /* key1 */
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, /* key2 */
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 /* key3 */
|
|
};
|
|
static const struct {
|
|
const unsigned char *data;
|
|
unsigned int length;
|
|
unsigned int bits;
|
|
} rsa_keys[] = {
|
|
{ test512, sizeof(test512), 512 },
|
|
{ test1024, sizeof(test1024), 1024 },
|
|
{ test2048, sizeof(test2048), 2048 },
|
|
{ test3072, sizeof(test3072), 3072 },
|
|
{ test4096, sizeof(test4096), 4096 },
|
|
{ test7680, sizeof(test7680), 7680 },
|
|
{ test15360, sizeof(test15360), 15360 }
|
|
};
|
|
uint8_t rsa_doit[RSA_NUM] = { 0 };
|
|
int primes = RSA_DEFAULT_PRIME_NUM;
|
|
#ifndef OPENSSL_NO_DH
|
|
typedef struct ffdh_params_st {
|
|
const char *name;
|
|
unsigned int nid;
|
|
unsigned int bits;
|
|
} FFDH_PARAMS;
|
|
|
|
static const FFDH_PARAMS ffdh_params[FFDH_NUM] = {
|
|
{"ffdh2048", NID_ffdhe2048, 2048},
|
|
{"ffdh3072", NID_ffdhe3072, 3072},
|
|
{"ffdh4096", NID_ffdhe4096, 4096},
|
|
{"ffdh6144", NID_ffdhe6144, 6144},
|
|
{"ffdh8192", NID_ffdhe8192, 8192}
|
|
};
|
|
uint8_t ffdh_doit[FFDH_NUM] = { 0 };
|
|
|
|
#endif /* OPENSSL_NO_DH */
|
|
#ifndef OPENSSL_NO_DSA
|
|
static const unsigned int dsa_bits[DSA_NUM] = { 1024, 2048 };
|
|
uint8_t dsa_doit[DSA_NUM] = { 0 };
|
|
#endif /* OPENSSL_NO_DSA */
|
|
/*
|
|
* We only test over the following curves as they are representative, To
|
|
* add tests over more curves, simply add the curve NID and curve name to
|
|
* the following arrays and increase the |ecdh_choices| and |ecdsa_choices|
|
|
* lists accordingly.
|
|
*/
|
|
static const EC_CURVE ec_curves[EC_NUM] = {
|
|
/* Prime Curves */
|
|
{"secp160r1", NID_secp160r1, 160},
|
|
{"nistp192", NID_X9_62_prime192v1, 192},
|
|
{"nistp224", NID_secp224r1, 224},
|
|
{"nistp256", NID_X9_62_prime256v1, 256},
|
|
{"nistp384", NID_secp384r1, 384},
|
|
{"nistp521", NID_secp521r1, 521},
|
|
#ifndef OPENSSL_NO_EC2M
|
|
/* Binary Curves */
|
|
{"nistk163", NID_sect163k1, 163},
|
|
{"nistk233", NID_sect233k1, 233},
|
|
{"nistk283", NID_sect283k1, 283},
|
|
{"nistk409", NID_sect409k1, 409},
|
|
{"nistk571", NID_sect571k1, 571},
|
|
{"nistb163", NID_sect163r2, 163},
|
|
{"nistb233", NID_sect233r1, 233},
|
|
{"nistb283", NID_sect283r1, 283},
|
|
{"nistb409", NID_sect409r1, 409},
|
|
{"nistb571", NID_sect571r1, 571},
|
|
#endif
|
|
{"brainpoolP256r1", NID_brainpoolP256r1, 256},
|
|
{"brainpoolP256t1", NID_brainpoolP256t1, 256},
|
|
{"brainpoolP384r1", NID_brainpoolP384r1, 384},
|
|
{"brainpoolP384t1", NID_brainpoolP384t1, 384},
|
|
{"brainpoolP512r1", NID_brainpoolP512r1, 512},
|
|
{"brainpoolP512t1", NID_brainpoolP512t1, 512},
|
|
#ifndef OPENSSL_NO_ECX
|
|
/* Other and ECDH only ones */
|
|
{"X25519", NID_X25519, 253},
|
|
{"X448", NID_X448, 448}
|
|
#endif
|
|
};
|
|
#ifndef OPENSSL_NO_ECX
|
|
static const EC_CURVE ed_curves[EdDSA_NUM] = {
|
|
/* EdDSA */
|
|
{"Ed25519", NID_ED25519, 253, 64},
|
|
{"Ed448", NID_ED448, 456, 114}
|
|
};
|
|
#endif /* OPENSSL_NO_ECX */
|
|
#ifndef OPENSSL_NO_SM2
|
|
static const EC_CURVE sm2_curves[SM2_NUM] = {
|
|
/* SM2 */
|
|
{"CurveSM2", NID_sm2, 256}
|
|
};
|
|
uint8_t sm2_doit[SM2_NUM] = { 0 };
|
|
#endif
|
|
uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
|
|
uint8_t ecdh_doit[EC_NUM] = { 0 };
|
|
#ifndef OPENSSL_NO_ECX
|
|
uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
uint8_t kems_doit[MAX_KEM_NUM] = { 0 };
|
|
uint8_t sigs_doit[MAX_SIG_NUM] = { 0 };
|
|
|
|
uint8_t do_kems = 0;
|
|
uint8_t do_sigs = 0;
|
|
|
|
/* checks declared curves against choices list. */
|
|
#ifndef OPENSSL_NO_ECX
|
|
OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448);
|
|
OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0);
|
|
|
|
OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448);
|
|
OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0);
|
|
|
|
OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1);
|
|
OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0);
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
#ifndef OPENSSL_NO_SM2
|
|
OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2);
|
|
OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0);
|
|
#endif
|
|
|
|
prog = opt_init(argc, argv, speed_options);
|
|
while ((o = opt_next()) != OPT_EOF) {
|
|
switch (o) {
|
|
case OPT_EOF:
|
|
case OPT_ERR:
|
|
opterr:
|
|
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
|
|
goto end;
|
|
case OPT_HELP:
|
|
opt_help(speed_options);
|
|
ret = 0;
|
|
goto end;
|
|
case OPT_ELAPSED:
|
|
usertime = 0;
|
|
break;
|
|
case OPT_EVP:
|
|
if (doit[D_EVP]) {
|
|
BIO_printf(bio_err, "%s: -evp option cannot be used more than once\n", prog);
|
|
goto opterr;
|
|
}
|
|
ERR_set_mark();
|
|
if (!opt_cipher_silent(opt_arg(), &evp_cipher)) {
|
|
if (have_md(opt_arg()))
|
|
evp_md_name = opt_arg();
|
|
}
|
|
if (evp_cipher == NULL && evp_md_name == NULL) {
|
|
ERR_clear_last_mark();
|
|
BIO_printf(bio_err,
|
|
"%s: %s is an unknown cipher or digest\n",
|
|
prog, opt_arg());
|
|
goto end;
|
|
}
|
|
ERR_pop_to_mark();
|
|
doit[D_EVP] = 1;
|
|
break;
|
|
case OPT_HMAC:
|
|
if (!have_md(opt_arg())) {
|
|
BIO_printf(bio_err, "%s: %s is an unknown digest\n",
|
|
prog, opt_arg());
|
|
goto end;
|
|
}
|
|
evp_mac_mdname = opt_arg();
|
|
doit[D_HMAC] = 1;
|
|
break;
|
|
case OPT_CMAC:
|
|
if (!have_cipher(opt_arg())) {
|
|
BIO_printf(bio_err, "%s: %s is an unknown cipher\n",
|
|
prog, opt_arg());
|
|
goto end;
|
|
}
|
|
evp_mac_ciphername = opt_arg();
|
|
doit[D_EVP_CMAC] = 1;
|
|
break;
|
|
case OPT_DECRYPT:
|
|
decrypt = 1;
|
|
break;
|
|
case OPT_ENGINE:
|
|
/*
|
|
* In a forked execution, an engine might need to be
|
|
* initialised by each child process, not by the parent.
|
|
* So store the name here and run setup_engine() later on.
|
|
*/
|
|
engine_id = opt_arg();
|
|
break;
|
|
case OPT_MULTI:
|
|
#ifndef NO_FORK
|
|
multi = opt_int_arg();
|
|
if ((size_t)multi >= SIZE_MAX / sizeof(int)) {
|
|
BIO_printf(bio_err, "%s: multi argument too large\n", prog);
|
|
return 0;
|
|
}
|
|
#endif
|
|
break;
|
|
case OPT_ASYNCJOBS:
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
async_jobs = opt_int_arg();
|
|
if (async_jobs > 99999) {
|
|
BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
|
|
goto opterr;
|
|
}
|
|
if (!ASYNC_is_capable()) {
|
|
BIO_printf(bio_err,
|
|
"%s: async_jobs specified but async not supported\n",
|
|
prog);
|
|
if (testmode)
|
|
/* Return success in the testmode. */
|
|
return 0;
|
|
goto opterr;
|
|
}
|
|
#endif
|
|
break;
|
|
case OPT_MISALIGN:
|
|
misalign = opt_int_arg();
|
|
if (misalign > MISALIGN) {
|
|
BIO_printf(bio_err,
|
|
"%s: Maximum offset is %d\n", prog, MISALIGN);
|
|
goto opterr;
|
|
}
|
|
break;
|
|
case OPT_MR:
|
|
mr = 1;
|
|
break;
|
|
case OPT_MB:
|
|
multiblock = 1;
|
|
#ifdef OPENSSL_NO_MULTIBLOCK
|
|
BIO_printf(bio_err,
|
|
"%s: -mb specified but multi-block support is disabled\n",
|
|
prog);
|
|
goto end;
|
|
#endif
|
|
break;
|
|
case OPT_R_CASES:
|
|
if (!opt_rand(o))
|
|
goto end;
|
|
break;
|
|
case OPT_PROV_CASES:
|
|
if (!opt_provider(o))
|
|
goto end;
|
|
break;
|
|
case OPT_CONFIG:
|
|
conf = app_load_config_modules(opt_arg());
|
|
if (conf == NULL)
|
|
goto end;
|
|
break;
|
|
case OPT_PRIMES:
|
|
primes = opt_int_arg();
|
|
break;
|
|
case OPT_SECONDS:
|
|
seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
|
|
= seconds.ecdh = seconds.eddsa
|
|
= seconds.sm2 = seconds.ffdh
|
|
= seconds.kem = seconds.sig = opt_int_arg();
|
|
break;
|
|
case OPT_BYTES:
|
|
lengths_single = opt_int_arg();
|
|
lengths = &lengths_single;
|
|
size_num = 1;
|
|
break;
|
|
case OPT_AEAD:
|
|
aead = 1;
|
|
break;
|
|
case OPT_KEM:
|
|
do_kems = 1;
|
|
break;
|
|
case OPT_SIG:
|
|
do_sigs = 1;
|
|
break;
|
|
case OPT_MLOCK:
|
|
domlock = 1;
|
|
#if !defined(_WIN32) && !defined(OPENSSL_SYS_LINUX)
|
|
BIO_printf(bio_err,
|
|
"%s: -mlock not supported on this platform\n",
|
|
prog);
|
|
goto end;
|
|
#endif
|
|
break;
|
|
case OPT_TESTMODE:
|
|
testmode = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* find all KEMs currently available */
|
|
kem_stack = sk_EVP_KEM_new(kems_cmp);
|
|
EVP_KEM_do_all_provided(app_get0_libctx(), collect_kem, kem_stack);
|
|
|
|
kems_algs_len = 0;
|
|
|
|
for (idx = 0; idx < (unsigned int)sk_EVP_KEM_num(kem_stack); idx++) {
|
|
EVP_KEM *kem = sk_EVP_KEM_value(kem_stack, idx);
|
|
|
|
if (strcmp(EVP_KEM_get0_name(kem), "RSA") == 0) {
|
|
if (kems_algs_len + OSSL_NELEM(rsa_choices) >= MAX_KEM_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
|
|
goto end;
|
|
}
|
|
for (i = 0; i < OSSL_NELEM(rsa_choices); i++) {
|
|
kems_doit[kems_algs_len] = 1;
|
|
kems_algname[kems_algs_len++] = OPENSSL_strdup(rsa_choices[i].name);
|
|
}
|
|
} else if (strcmp(EVP_KEM_get0_name(kem), "EC") == 0) {
|
|
if (kems_algs_len + 3 >= MAX_KEM_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
|
|
goto end;
|
|
}
|
|
kems_doit[kems_algs_len] = 1;
|
|
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-256");
|
|
kems_doit[kems_algs_len] = 1;
|
|
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-384");
|
|
kems_doit[kems_algs_len] = 1;
|
|
kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-521");
|
|
} else {
|
|
if (kems_algs_len + 1 >= MAX_KEM_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many KEMs registered. Change MAX_KEM_NUM.\n");
|
|
goto end;
|
|
}
|
|
kems_doit[kems_algs_len] = 1;
|
|
kems_algname[kems_algs_len++] = OPENSSL_strdup(EVP_KEM_get0_name(kem));
|
|
}
|
|
}
|
|
sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
|
|
kem_stack = NULL;
|
|
|
|
/* find all SIGNATUREs currently available */
|
|
sig_stack = sk_EVP_SIGNATURE_new(signatures_cmp);
|
|
EVP_SIGNATURE_do_all_provided(app_get0_libctx(), collect_signatures, sig_stack);
|
|
|
|
sigs_algs_len = 0;
|
|
|
|
for (idx = 0; idx < (unsigned int)sk_EVP_SIGNATURE_num(sig_stack); idx++) {
|
|
EVP_SIGNATURE *s = sk_EVP_SIGNATURE_value(sig_stack, idx);
|
|
const char *sig_name = EVP_SIGNATURE_get0_name(s);
|
|
|
|
if (strcmp(sig_name, "RSA") == 0) {
|
|
if (sigs_algs_len + OSSL_NELEM(rsa_choices) >= MAX_SIG_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many signatures registered. Change MAX_SIG_NUM.\n");
|
|
goto end;
|
|
}
|
|
for (i = 0; i < OSSL_NELEM(rsa_choices); i++) {
|
|
sigs_doit[sigs_algs_len] = 1;
|
|
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(rsa_choices[i].name);
|
|
}
|
|
}
|
|
#ifndef OPENSSL_NO_DSA
|
|
else if (strcmp(sig_name, "DSA") == 0) {
|
|
if (sigs_algs_len + DSA_NUM >= MAX_SIG_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many signatures registered. Change MAX_SIG_NUM.\n");
|
|
goto end;
|
|
}
|
|
for (i = 0; i < DSA_NUM; i++) {
|
|
sigs_doit[sigs_algs_len] = 1;
|
|
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(dsa_choices[i].name);
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
/* skipping these algs as tested elsewhere - and b/o setup is a pain */
|
|
else if (strcmp(sig_name, "ED25519") &&
|
|
strcmp(sig_name, "ED448") &&
|
|
strcmp(sig_name, "ECDSA") &&
|
|
strcmp(sig_name, "HMAC") &&
|
|
strcmp(sig_name, "SIPHASH") &&
|
|
strcmp(sig_name, "POLY1305") &&
|
|
strcmp(sig_name, "CMAC") &&
|
|
strcmp(sig_name, "SM2")) { /* skip alg */
|
|
if (sigs_algs_len + 1 >= MAX_SIG_NUM) {
|
|
BIO_printf(bio_err,
|
|
"Too many signatures registered. Change MAX_SIG_NUM.\n");
|
|
goto end;
|
|
}
|
|
/* activate this provider algorithm */
|
|
sigs_doit[sigs_algs_len] = 1;
|
|
sigs_algname[sigs_algs_len++] = OPENSSL_strdup(sig_name);
|
|
}
|
|
}
|
|
sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
|
|
sig_stack = NULL;
|
|
|
|
/* Remaining arguments are algorithms. */
|
|
argc = opt_num_rest();
|
|
argv = opt_rest();
|
|
|
|
if (!app_RAND_load())
|
|
goto end;
|
|
|
|
for (; *argv; argv++) {
|
|
const char *algo = *argv;
|
|
int algo_found = 0;
|
|
|
|
if (opt_found(algo, doit_choices, &i)) {
|
|
doit[i] = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (strcmp(algo, "des") == 0) {
|
|
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (strcmp(algo, "sha") == 0) {
|
|
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
|
|
algo_found = 1;
|
|
}
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
if (strcmp(algo, "openssl") == 0) /* just for compatibility */
|
|
algo_found = 1;
|
|
#endif
|
|
if (HAS_PREFIX(algo, "rsa")) {
|
|
if (algo[sizeof("rsa") - 1] == '\0') {
|
|
memset(rsa_doit, 1, sizeof(rsa_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, rsa_choices, &i)) {
|
|
rsa_doit[i] = 1;
|
|
algo_found = 1;
|
|
}
|
|
}
|
|
#ifndef OPENSSL_NO_DH
|
|
if (HAS_PREFIX(algo, "ffdh")) {
|
|
if (algo[sizeof("ffdh") - 1] == '\0') {
|
|
memset(ffdh_doit, 1, sizeof(ffdh_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, ffdh_choices, &i)) {
|
|
ffdh_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
if (HAS_PREFIX(algo, "dsa")) {
|
|
if (algo[sizeof("dsa") - 1] == '\0') {
|
|
memset(dsa_doit, 1, sizeof(dsa_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, dsa_choices, &i)) {
|
|
dsa_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
}
|
|
#endif
|
|
if (strcmp(algo, "aes") == 0) {
|
|
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (strcmp(algo, "camellia") == 0) {
|
|
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (HAS_PREFIX(algo, "ecdsa")) {
|
|
if (algo[sizeof("ecdsa") - 1] == '\0') {
|
|
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, ecdsa_choices, &i)) {
|
|
ecdsa_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
}
|
|
if (HAS_PREFIX(algo, "ecdh")) {
|
|
if (algo[sizeof("ecdh") - 1] == '\0') {
|
|
memset(ecdh_doit, 1, sizeof(ecdh_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, ecdh_choices, &i)) {
|
|
ecdh_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
}
|
|
#ifndef OPENSSL_NO_ECX
|
|
if (strcmp(algo, "eddsa") == 0) {
|
|
memset(eddsa_doit, 1, sizeof(eddsa_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, eddsa_choices, &i)) {
|
|
eddsa_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
#endif /* OPENSSL_NO_ECX */
|
|
#ifndef OPENSSL_NO_SM2
|
|
if (strcmp(algo, "sm2") == 0) {
|
|
memset(sm2_doit, 1, sizeof(sm2_doit));
|
|
algo_found = 1;
|
|
}
|
|
if (opt_found(algo, sm2_choices, &i)) {
|
|
sm2_doit[i] = 2;
|
|
algo_found = 1;
|
|
}
|
|
#endif
|
|
if (kem_locate(algo, &idx)) {
|
|
kems_doit[idx]++;
|
|
do_kems = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (sig_locate(algo, &idx)) {
|
|
sigs_doit[idx]++;
|
|
do_sigs = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (strcmp(algo, "kmac") == 0) {
|
|
doit[D_KMAC128] = doit[D_KMAC256] = 1;
|
|
algo_found = 1;
|
|
}
|
|
if (strcmp(algo, "cmac") == 0) {
|
|
doit[D_EVP_CMAC] = 1;
|
|
algo_found = 1;
|
|
}
|
|
|
|
if (!algo_found) {
|
|
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo);
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* Sanity checks */
|
|
if (aead) {
|
|
if (evp_cipher == NULL) {
|
|
BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
|
|
goto end;
|
|
} else if (!(EVP_CIPHER_get_flags(evp_cipher) &
|
|
EVP_CIPH_FLAG_AEAD_CIPHER)) {
|
|
BIO_printf(bio_err, "%s is not an AEAD cipher\n",
|
|
EVP_CIPHER_get0_name(evp_cipher));
|
|
goto end;
|
|
}
|
|
}
|
|
if (kems_algs_len > 0) {
|
|
int maxcnt = get_max(kems_doit, kems_algs_len);
|
|
|
|
if (maxcnt > 1) {
|
|
/* some algs explicitly selected */
|
|
for (i = 0; i < kems_algs_len; i++) {
|
|
/* disable the rest */
|
|
kems_doit[i]--;
|
|
}
|
|
}
|
|
}
|
|
if (sigs_algs_len > 0) {
|
|
int maxcnt = get_max(sigs_doit, sigs_algs_len);
|
|
|
|
if (maxcnt > 1) {
|
|
/* some algs explicitly selected */
|
|
for (i = 0; i < sigs_algs_len; i++) {
|
|
/* disable the rest */
|
|
sigs_doit[i]--;
|
|
}
|
|
}
|
|
}
|
|
if (multiblock) {
|
|
if (evp_cipher == NULL) {
|
|
BIO_printf(bio_err, "-mb can be used only with a multi-block"
|
|
" capable cipher\n");
|
|
goto end;
|
|
} else if (!(EVP_CIPHER_get_flags(evp_cipher) &
|
|
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
|
BIO_printf(bio_err, "%s is not a multi-block capable\n",
|
|
EVP_CIPHER_get0_name(evp_cipher));
|
|
goto end;
|
|
} else if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with -mb");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* Initialize the job pool if async mode is enabled */
|
|
if (async_jobs > 0) {
|
|
async_init = ASYNC_init_thread(async_jobs, async_jobs);
|
|
if (!async_init) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
|
|
loopargs =
|
|
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
|
|
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
|
|
|
|
buflen = lengths[size_num - 1];
|
|
if (buflen < 36) /* size of random vector in RSA benchmark */
|
|
buflen = 36;
|
|
if (INT_MAX - (MAX_MISALIGNMENT + 1) < buflen) {
|
|
BIO_printf(bio_err, "Error: buffer size too large\n");
|
|
goto end;
|
|
}
|
|
buflen += MAX_MISALIGNMENT + 1;
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (async_jobs > 0) {
|
|
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
|
|
if (loopargs[i].wait_ctx == NULL) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
|
|
loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
|
|
|
|
/* Align the start of buffers on a 64 byte boundary */
|
|
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
|
|
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
|
|
loopargs[i].buflen = buflen - misalign;
|
|
loopargs[i].sigsize = buflen - misalign;
|
|
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
|
|
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
|
|
#ifndef OPENSSL_NO_DH
|
|
loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a");
|
|
loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b");
|
|
#endif
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
if (multi && do_multi(multi, size_num))
|
|
goto show_res;
|
|
#endif
|
|
|
|
for (i = 0; i < loopargs_len; ++i) {
|
|
if (domlock) {
|
|
#if defined(_WIN32)
|
|
(void)VirtualLock(loopargs[i].buf_malloc, buflen);
|
|
(void)VirtualLock(loopargs[i].buf2_malloc, buflen);
|
|
#elif defined(OPENSSL_SYS_LINUX)
|
|
(void)mlock(loopargs[i].buf_malloc, buflen);
|
|
(void)mlock(loopargs[i].buf_malloc, buflen);
|
|
#endif
|
|
}
|
|
memset(loopargs[i].buf_malloc, 0, buflen);
|
|
memset(loopargs[i].buf2_malloc, 0, buflen);
|
|
}
|
|
|
|
/* Initialize the engine after the fork */
|
|
e = setup_engine(engine_id, 0);
|
|
|
|
/* No parameters; turn on everything. */
|
|
if (argc == 0 && !doit[D_EVP] && !doit[D_HMAC]
|
|
&& !doit[D_EVP_CMAC] && !do_kems && !do_sigs) {
|
|
memset(doit, 1, sizeof(doit));
|
|
doit[D_EVP] = doit[D_EVP_CMAC] = 0;
|
|
ERR_set_mark();
|
|
for (i = D_MD2; i <= D_WHIRLPOOL; i++) {
|
|
if (!have_md(names[i]))
|
|
doit[i] = 0;
|
|
}
|
|
for (i = D_CBC_DES; i <= D_CBC_256_CML; i++) {
|
|
if (!have_cipher(names[i]))
|
|
doit[i] = 0;
|
|
}
|
|
if ((mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC",
|
|
app_get0_propq())) != NULL) {
|
|
EVP_MAC_free(mac);
|
|
mac = NULL;
|
|
} else {
|
|
doit[D_GHASH] = 0;
|
|
}
|
|
if ((mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC",
|
|
app_get0_propq())) != NULL) {
|
|
EVP_MAC_free(mac);
|
|
mac = NULL;
|
|
} else {
|
|
doit[D_HMAC] = 0;
|
|
}
|
|
ERR_pop_to_mark();
|
|
memset(rsa_doit, 1, sizeof(rsa_doit));
|
|
#ifndef OPENSSL_NO_DH
|
|
memset(ffdh_doit, 1, sizeof(ffdh_doit));
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
memset(dsa_doit, 1, sizeof(dsa_doit));
|
|
#endif
|
|
#ifndef OPENSSL_NO_ECX
|
|
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
|
|
memset(ecdh_doit, 1, sizeof(ecdh_doit));
|
|
memset(eddsa_doit, 1, sizeof(eddsa_doit));
|
|
#endif /* OPENSSL_NO_ECX */
|
|
#ifndef OPENSSL_NO_SM2
|
|
memset(sm2_doit, 1, sizeof(sm2_doit));
|
|
#endif
|
|
memset(kems_doit, 1, sizeof(kems_doit));
|
|
do_kems = 1;
|
|
memset(sigs_doit, 1, sizeof(sigs_doit));
|
|
do_sigs = 1;
|
|
}
|
|
for (i = 0; i < ALGOR_NUM; i++)
|
|
if (doit[i])
|
|
pr_header++;
|
|
|
|
if (usertime == 0 && !mr)
|
|
BIO_printf(bio_err,
|
|
"You have chosen to measure elapsed time "
|
|
"instead of user CPU time.\n");
|
|
|
|
#if SIGALRM > 0
|
|
signal(SIGALRM, alarmed);
|
|
#endif
|
|
|
|
if (doit[D_MD2]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD2], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD2, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_MDC2]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MDC2], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MDC2, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_MD4]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD4], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD4, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_MD5]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD5], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, MD5_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD5, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_SHA1]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA1], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA1, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_SHA256]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA256], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA256, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_SHA512]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA512], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA512, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_WHIRLPOOL]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_WHIRLPOOL], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_WHIRLPOOL, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_RMD160]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_RMD160], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RMD160, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (doit[D_HMAC]) {
|
|
static const char hmac_key[] = "This is a key...";
|
|
int len = strlen(hmac_key);
|
|
size_t hmac_name_len = sizeof("hmac()") + strlen(evp_mac_mdname);
|
|
OSSL_PARAM params[3];
|
|
|
|
if (evp_mac_mdname == NULL)
|
|
goto end;
|
|
evp_hmac_name = app_malloc(hmac_name_len, "HMAC name");
|
|
BIO_snprintf(evp_hmac_name, hmac_name_len, "hmac(%s)", evp_mac_mdname);
|
|
names[D_HMAC] = evp_hmac_name;
|
|
|
|
params[0] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
|
|
evp_mac_mdname, 0);
|
|
params[1] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(char *)hmac_key, len);
|
|
params[2] = OSSL_PARAM_construct_end();
|
|
|
|
if (mac_setup("HMAC", &mac, params, loopargs, loopargs_len) < 1)
|
|
goto end;
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_HMAC], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_HMAC, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
mac_teardown(&mac, loopargs, loopargs_len);
|
|
}
|
|
|
|
if (doit[D_CBC_DES]) {
|
|
int st = 1;
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ctx = init_evp_cipher_ctx("des-cbc", deskey,
|
|
sizeof(deskey) / 3);
|
|
st = loopargs[i].ctx != NULL;
|
|
}
|
|
algindex = D_CBC_DES;
|
|
for (testnum = 0; st && testnum < size_num; testnum++) {
|
|
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
|
|
break;
|
|
print_message(names[D_CBC_DES], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_DES, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
|
}
|
|
|
|
if (doit[D_EDE3_DES]) {
|
|
int st = 1;
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ctx = init_evp_cipher_ctx("des-ede3-cbc", deskey,
|
|
sizeof(deskey));
|
|
st = loopargs[i].ctx != NULL;
|
|
}
|
|
algindex = D_EDE3_DES;
|
|
for (testnum = 0; st && testnum < size_num; testnum++) {
|
|
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
|
|
break;
|
|
print_message(names[D_EDE3_DES], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_EDE3_DES, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
|
}
|
|
|
|
for (k = 0; k < 3; k++) {
|
|
algindex = D_CBC_128_AES + k;
|
|
if (doit[algindex]) {
|
|
int st = 1;
|
|
|
|
keylen = 16 + k * 8;
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
|
key32, keylen);
|
|
st = loopargs[i].ctx != NULL;
|
|
}
|
|
|
|
for (testnum = 0; st && testnum < size_num; testnum++) {
|
|
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
|
|
break;
|
|
print_message(names[algindex], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(algindex, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < 3; k++) {
|
|
algindex = D_CBC_128_CML + k;
|
|
if (doit[algindex]) {
|
|
int st = 1;
|
|
|
|
keylen = 16 + k * 8;
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
|
key32, keylen);
|
|
st = loopargs[i].ctx != NULL;
|
|
}
|
|
|
|
for (testnum = 0; st && testnum < size_num; testnum++) {
|
|
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
|
|
break;
|
|
print_message(names[algindex], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(algindex, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
|
}
|
|
}
|
|
|
|
for (algindex = D_RC4; algindex <= D_CBC_CAST; algindex++) {
|
|
if (doit[algindex]) {
|
|
int st = 1;
|
|
|
|
keylen = 16;
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
|
key32, keylen);
|
|
st = loopargs[i].ctx != NULL;
|
|
}
|
|
|
|
for (testnum = 0; st && testnum < size_num; testnum++) {
|
|
if (!check_block_size(loopargs[0].ctx, lengths[testnum]))
|
|
break;
|
|
print_message(names[algindex], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(algindex, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
|
}
|
|
}
|
|
if (doit[D_GHASH]) {
|
|
static const char gmac_iv[] = "0123456789ab";
|
|
OSSL_PARAM params[4];
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
|
|
"aes-128-gcm", 0);
|
|
params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
|
|
(char *)gmac_iv,
|
|
sizeof(gmac_iv) - 1);
|
|
params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(void *)key32, 16);
|
|
params[3] = OSSL_PARAM_construct_end();
|
|
|
|
if (mac_setup("GMAC", &mac, params, loopargs, loopargs_len) < 1)
|
|
goto end;
|
|
/* b/c of the definition of GHASH_loop(), init() calls are needed here */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (!EVP_MAC_init(loopargs[i].mctx, NULL, 0, NULL))
|
|
goto end;
|
|
}
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_GHASH], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, GHASH_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_GHASH, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
mac_teardown(&mac, loopargs, loopargs_len);
|
|
}
|
|
|
|
if (doit[D_RAND]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_RAND], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RAND, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* There are three scenarios for D_EVP:
|
|
* 1- Using authenticated encryption (AE) e.g. CCM, GCM, OCB etc.
|
|
* 2- Using AE + associated data (AD) i.e. AEAD using CCM, GCM, OCB etc.
|
|
* 3- Not using AE or AD e.g. ECB, CBC, CFB etc.
|
|
*/
|
|
if (doit[D_EVP]) {
|
|
if (evp_cipher != NULL) {
|
|
int (*loopfunc) (void *);
|
|
int outlen = 0;
|
|
unsigned int ae_mode = 0;
|
|
|
|
if (multiblock && (EVP_CIPHER_get_flags(evp_cipher)
|
|
& EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
|
multiblock_speed(evp_cipher, lengths_single, &seconds);
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
|
|
names[D_EVP] = EVP_CIPHER_get0_name(evp_cipher);
|
|
|
|
mode_op = EVP_CIPHER_get_mode(evp_cipher);
|
|
|
|
if (aead) {
|
|
if (lengths == lengths_list) {
|
|
lengths = aead_lengths_list;
|
|
size_num = OSSL_NELEM(aead_lengths_list);
|
|
}
|
|
}
|
|
if (mode_op == EVP_CIPH_GCM_MODE
|
|
|| mode_op == EVP_CIPH_CCM_MODE
|
|
|| mode_op == EVP_CIPH_OCB_MODE
|
|
|| mode_op == EVP_CIPH_SIV_MODE
|
|
|| mode_op == EVP_CIPH_GCM_SIV_MODE) {
|
|
ae_mode = 1;
|
|
if (decrypt)
|
|
loopfunc = EVP_Update_loop_aead_dec;
|
|
else
|
|
loopfunc = EVP_Update_loop_aead_enc;
|
|
} else {
|
|
loopfunc = EVP_Update_loop;
|
|
}
|
|
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_EVP], lengths[testnum], seconds.sym);
|
|
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
loopargs[k].ctx = EVP_CIPHER_CTX_new();
|
|
if (loopargs[k].ctx == NULL) {
|
|
BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n");
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* For AE modes, we must first encrypt the data to get
|
|
* a valid tag that enables us to decrypt. If we don't
|
|
* encrypt first, we won't have a valid tag that enables
|
|
* authenticity and hence decryption will fail.
|
|
*/
|
|
if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL,
|
|
NULL, NULL, ae_mode ? 1 : !decrypt)) {
|
|
BIO_printf(bio_err, "\nCouldn't init the context\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
|
|
/* Padding isn't needed */
|
|
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
|
|
|
|
keylen = EVP_CIPHER_CTX_get_key_length(loopargs[k].ctx);
|
|
loopargs[k].key = app_malloc(keylen, "evp_cipher key");
|
|
EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
|
|
|
|
if (!ae_mode) {
|
|
if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
|
|
loopargs[k].key, NULL, -1)) {
|
|
BIO_printf(bio_err, "\nFailed to set the key\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
} else if (mode_op == EVP_CIPH_SIV_MODE
|
|
|| mode_op == EVP_CIPH_GCM_SIV_MODE) {
|
|
EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
|
|
EVP_CTRL_SET_SPEED, 1, NULL);
|
|
}
|
|
if (ae_mode && decrypt) {
|
|
/* Set length of iv (Doesn't apply to SIV mode) */
|
|
if (mode_op != EVP_CIPH_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
|
|
EVP_CTRL_AEAD_SET_IVLEN,
|
|
aead_ivlen, NULL)) {
|
|
BIO_printf(bio_err, "\nFailed to set iv length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
/* Set tag_len (Not for GCM/SIV at encryption stage) */
|
|
if (mode_op != EVP_CIPH_GCM_MODE
|
|
&& mode_op != EVP_CIPH_SIV_MODE
|
|
&& mode_op != EVP_CIPH_GCM_SIV_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
|
|
EVP_CTRL_AEAD_SET_TAG,
|
|
TAG_LEN, NULL)) {
|
|
BIO_printf(bio_err,
|
|
"\nFailed to set tag length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
|
|
loopargs[k].key, aead_iv, -1)) {
|
|
BIO_printf(bio_err, "\nFailed to set the key\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
/* Set total length of input. Only required for CCM */
|
|
if (mode_op == EVP_CIPH_CCM_MODE) {
|
|
if (!EVP_EncryptUpdate(loopargs[k].ctx, NULL,
|
|
&outlen, NULL,
|
|
lengths[testnum])) {
|
|
BIO_printf(bio_err,
|
|
"\nCouldn't set input text length\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (aead) {
|
|
if (!EVP_EncryptUpdate(loopargs[k].ctx, NULL,
|
|
&outlen, aad, sizeof(aad))) {
|
|
BIO_printf(bio_err,
|
|
"\nCouldn't insert AAD when encrypting\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
}
|
|
if (!EVP_EncryptUpdate(loopargs[k].ctx, loopargs[k].buf,
|
|
&outlen, loopargs[k].buf,
|
|
lengths[testnum])) {
|
|
BIO_printf(bio_err,
|
|
"\nFailed to to encrypt the data\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
|
|
if (!EVP_EncryptFinal_ex(loopargs[k].ctx,
|
|
loopargs[k].buf, &outlen)) {
|
|
BIO_printf(bio_err,
|
|
"\nFailed finalize the encryption\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_AEAD_GET_TAG,
|
|
TAG_LEN, &loopargs[k].tag)) {
|
|
BIO_printf(bio_err, "\nFailed to get the tag\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
|
|
EVP_CIPHER_CTX_free(loopargs[k].ctx);
|
|
loopargs[k].ctx = EVP_CIPHER_CTX_new();
|
|
if (loopargs[k].ctx == NULL) {
|
|
BIO_printf(bio_err,
|
|
"\nEVP_CIPHER_CTX_new failure\n");
|
|
exit(1);
|
|
}
|
|
if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher,
|
|
NULL, NULL, NULL, 0)) {
|
|
BIO_printf(bio_err,
|
|
"\nFailed initializing the context\n");
|
|
dofail();
|
|
exit(1);
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
|
|
|
|
/* GCM-SIV/SIV only allows for a single Update operation */
|
|
if (mode_op == EVP_CIPH_SIV_MODE
|
|
|| mode_op == EVP_CIPH_GCM_SIV_MODE)
|
|
EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
|
|
EVP_CTRL_SET_SPEED, 1, NULL);
|
|
}
|
|
}
|
|
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, loopfunc, loopargs);
|
|
d = Time_F(STOP);
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
OPENSSL_clear_free(loopargs[k].key, keylen);
|
|
EVP_CIPHER_CTX_free(loopargs[k].ctx);
|
|
}
|
|
print_result(D_EVP, testnum, count, d);
|
|
}
|
|
} else if (evp_md_name != NULL) {
|
|
names[D_EVP] = evp_md_name;
|
|
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_EVP], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_md_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_EVP, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (doit[D_EVP_CMAC]) {
|
|
size_t len = sizeof("cmac()") + strlen(evp_mac_ciphername);
|
|
OSSL_PARAM params[3];
|
|
EVP_CIPHER *cipher = NULL;
|
|
|
|
if (!opt_cipher(evp_mac_ciphername, &cipher))
|
|
goto end;
|
|
|
|
keylen = EVP_CIPHER_get_key_length(cipher);
|
|
EVP_CIPHER_free(cipher);
|
|
if (keylen <= 0 || keylen > (int)sizeof(key32)) {
|
|
BIO_printf(bio_err, "\nRequested CMAC cipher with unsupported key length.\n");
|
|
goto end;
|
|
}
|
|
evp_cmac_name = app_malloc(len, "CMAC name");
|
|
BIO_snprintf(evp_cmac_name, len, "cmac(%s)", evp_mac_ciphername);
|
|
names[D_EVP_CMAC] = evp_cmac_name;
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
|
|
evp_mac_ciphername, 0);
|
|
params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(char *)key32, keylen);
|
|
params[2] = OSSL_PARAM_construct_end();
|
|
|
|
if (mac_setup("CMAC", &mac, params, loopargs, loopargs_len) < 1)
|
|
goto end;
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_EVP_CMAC], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, CMAC_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_EVP_CMAC, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
mac_teardown(&mac, loopargs, loopargs_len);
|
|
}
|
|
|
|
if (doit[D_KMAC128]) {
|
|
OSSL_PARAM params[2];
|
|
|
|
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(void *)key32, 16);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
|
|
if (mac_setup("KMAC-128", &mac, params, loopargs, loopargs_len) < 1)
|
|
goto end;
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_KMAC128], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, KMAC128_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_KMAC128, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
mac_teardown(&mac, loopargs, loopargs_len);
|
|
}
|
|
|
|
if (doit[D_KMAC256]) {
|
|
OSSL_PARAM params[2];
|
|
|
|
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(void *)key32, 32);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
|
|
if (mac_setup("KMAC-256", &mac, params, loopargs, loopargs_len) < 1)
|
|
goto end;
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_KMAC256], lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, KMAC256_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_KMAC256, testnum, count, d);
|
|
if (count < 0)
|
|
break;
|
|
}
|
|
mac_teardown(&mac, loopargs, loopargs_len);
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
|
|
goto end;
|
|
|
|
for (testnum = 0; testnum < RSA_NUM; testnum++) {
|
|
EVP_PKEY *rsa_key = NULL;
|
|
int st = 0;
|
|
|
|
if (!rsa_doit[testnum])
|
|
continue;
|
|
|
|
if (primes > RSA_DEFAULT_PRIME_NUM) {
|
|
/* we haven't set keys yet, generate multi-prime RSA keys */
|
|
bn = BN_new();
|
|
st = bn != NULL
|
|
&& BN_set_word(bn, RSA_F4)
|
|
&& init_gen_str(&genctx, "RSA", NULL, 0, NULL, NULL)
|
|
&& EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, rsa_keys[testnum].bits) > 0
|
|
&& EVP_PKEY_CTX_set1_rsa_keygen_pubexp(genctx, bn) > 0
|
|
&& EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) > 0
|
|
&& EVP_PKEY_keygen(genctx, &rsa_key) > 0;
|
|
BN_free(bn);
|
|
bn = NULL;
|
|
EVP_PKEY_CTX_free(genctx);
|
|
genctx = NULL;
|
|
} else {
|
|
const unsigned char *p = rsa_keys[testnum].data;
|
|
|
|
st = (rsa_key = d2i_PrivateKey(EVP_PKEY_RSA, NULL, &p,
|
|
rsa_keys[testnum].length)) != NULL;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].rsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
|
|
loopargs[i].sigsize = loopargs[i].buflen;
|
|
if (loopargs[i].rsa_sign_ctx[testnum] == NULL
|
|
|| EVP_PKEY_sign_init(loopargs[i].rsa_sign_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_sign(loopargs[i].rsa_sign_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
&loopargs[i].sigsize,
|
|
loopargs[i].buf, 36) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"RSA sign setup failure. No RSA sign will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("private", "rsa sign",
|
|
rsa_keys[testnum].bits, seconds.rsa);
|
|
/* RSA_blinding_on(rsa_key[testnum],NULL); */
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R1:%ld:%d:%.2f\n"
|
|
: "%ld %u bits private RSA sign ops in %.2fs\n",
|
|
count, rsa_keys[testnum].bits, d);
|
|
rsa_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].rsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key,
|
|
NULL);
|
|
if (loopargs[i].rsa_verify_ctx[testnum] == NULL
|
|
|| EVP_PKEY_verify_init(loopargs[i].rsa_verify_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_verify(loopargs[i].rsa_verify_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
loopargs[i].sigsize,
|
|
loopargs[i].buf, 36) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"RSA verify setup failure. No RSA verify will be done.\n");
|
|
dofail();
|
|
rsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("public", "rsa verify",
|
|
rsa_keys[testnum].bits, seconds.rsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R2:%ld:%d:%.2f\n"
|
|
: "%ld %u bits public RSA verify ops in %.2fs\n",
|
|
count, rsa_keys[testnum].bits, d);
|
|
rsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].rsa_encrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
|
|
loopargs[i].encsize = loopargs[i].buflen;
|
|
if (loopargs[i].rsa_encrypt_ctx[testnum] == NULL
|
|
|| EVP_PKEY_encrypt_init(loopargs[i].rsa_encrypt_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_encrypt(loopargs[i].rsa_encrypt_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
&loopargs[i].encsize,
|
|
loopargs[i].buf, 36) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"RSA encrypt setup failure. No RSA encrypt will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("public", "rsa encrypt",
|
|
rsa_keys[testnum].bits, seconds.rsa);
|
|
/* RSA_blinding_on(rsa_key[testnum],NULL); */
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R3:%ld:%d:%.2f\n"
|
|
: "%ld %u bits public RSA encrypt ops in %.2fs\n",
|
|
count, rsa_keys[testnum].bits, d);
|
|
rsa_results[testnum][2] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].rsa_decrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
|
|
declen = loopargs[i].buflen;
|
|
if (loopargs[i].rsa_decrypt_ctx[testnum] == NULL
|
|
|| EVP_PKEY_decrypt_init(loopargs[i].rsa_decrypt_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_decrypt(loopargs[i].rsa_decrypt_ctx[testnum],
|
|
loopargs[i].buf,
|
|
&declen,
|
|
loopargs[i].buf2,
|
|
loopargs[i].encsize) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"RSA decrypt setup failure. No RSA decrypt will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("private", "rsa decrypt",
|
|
rsa_keys[testnum].bits, seconds.rsa);
|
|
/* RSA_blinding_on(rsa_key[testnum],NULL); */
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_decrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R4:%ld:%d:%.2f\n"
|
|
: "%ld %u bits private RSA decrypt ops in %.2fs\n",
|
|
count, rsa_keys[testnum].bits, d);
|
|
rsa_results[testnum][3] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(rsa_doit, testnum);
|
|
}
|
|
EVP_PKEY_free(rsa_key);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (testnum = 0; testnum < DSA_NUM; testnum++) {
|
|
EVP_PKEY *dsa_key = NULL;
|
|
int st;
|
|
|
|
if (!dsa_doit[testnum])
|
|
continue;
|
|
|
|
st = (dsa_key = get_dsa(dsa_bits[testnum])) != NULL;
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].dsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
|
|
NULL);
|
|
loopargs[i].sigsize = loopargs[i].buflen;
|
|
if (loopargs[i].dsa_sign_ctx[testnum] == NULL
|
|
|| EVP_PKEY_sign_init(loopargs[i].dsa_sign_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_sign(loopargs[i].dsa_sign_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
&loopargs[i].sigsize,
|
|
loopargs[i].buf, 20) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"DSA sign setup failure. No DSA sign will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "dsa",
|
|
dsa_bits[testnum], seconds.dsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R5:%ld:%u:%.2f\n"
|
|
: "%ld %u bits DSA sign ops in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].dsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
|
|
NULL);
|
|
if (loopargs[i].dsa_verify_ctx[testnum] == NULL
|
|
|| EVP_PKEY_verify_init(loopargs[i].dsa_verify_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_verify(loopargs[i].dsa_verify_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
loopargs[i].sigsize,
|
|
loopargs[i].buf, 36) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"DSA verify setup failure. No DSA verify will be done.\n");
|
|
dofail();
|
|
dsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "dsa",
|
|
dsa_bits[testnum], seconds.dsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R6:%ld:%u:%.2f\n"
|
|
: "%ld %u bits DSA verify ops in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(dsa_doit, testnum);
|
|
}
|
|
EVP_PKEY_free(dsa_key);
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
|
|
for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
|
|
EVP_PKEY *ecdsa_key = NULL;
|
|
int st;
|
|
|
|
if (!ecdsa_doit[testnum])
|
|
continue;
|
|
|
|
st = (ecdsa_key = get_ecdsa(&ec_curves[testnum])) != NULL;
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ecdsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
|
|
NULL);
|
|
loopargs[i].sigsize = loopargs[i].buflen;
|
|
if (loopargs[i].ecdsa_sign_ctx[testnum] == NULL
|
|
|| EVP_PKEY_sign_init(loopargs[i].ecdsa_sign_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_sign(loopargs[i].ecdsa_sign_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
&loopargs[i].sigsize,
|
|
loopargs[i].buf, 20) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA sign setup failure. No ECDSA sign will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "ecdsa",
|
|
ec_curves[testnum].bits, seconds.ecdsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R7:%ld:%u:%.2f\n"
|
|
: "%ld %u bits ECDSA sign ops in %.2fs\n",
|
|
count, ec_curves[testnum].bits, d);
|
|
ecdsa_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
for (i = 0; st && i < loopargs_len; i++) {
|
|
loopargs[i].ecdsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
|
|
NULL);
|
|
if (loopargs[i].ecdsa_verify_ctx[testnum] == NULL
|
|
|| EVP_PKEY_verify_init(loopargs[i].ecdsa_verify_ctx[testnum]) <= 0
|
|
|| EVP_PKEY_verify(loopargs[i].ecdsa_verify_ctx[testnum],
|
|
loopargs[i].buf2,
|
|
loopargs[i].sigsize,
|
|
loopargs[i].buf, 20) <= 0)
|
|
st = 0;
|
|
}
|
|
if (!st) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA verify setup failure. No ECDSA verify will be done.\n");
|
|
dofail();
|
|
ecdsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "ecdsa",
|
|
ec_curves[testnum].bits, seconds.ecdsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R8:%ld:%u:%.2f\n"
|
|
: "%ld %u bits ECDSA verify ops in %.2fs\n",
|
|
count, ec_curves[testnum].bits, d);
|
|
ecdsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(ecdsa_doit, testnum);
|
|
}
|
|
EVP_PKEY_free(ecdsa_key);
|
|
}
|
|
|
|
for (testnum = 0; testnum < EC_NUM; testnum++) {
|
|
int ecdh_checks = 1;
|
|
|
|
if (!ecdh_doit[testnum])
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY_CTX *test_ctx = NULL;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
EVP_PKEY *key_A = NULL;
|
|
EVP_PKEY *key_B = NULL;
|
|
size_t outlen;
|
|
size_t test_outlen;
|
|
|
|
if ((key_A = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key A */
|
|
|| (key_B = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key B */
|
|
|| (ctx = EVP_PKEY_CTX_new(key_A, NULL)) == NULL /* derivation ctx from skeyA */
|
|
|| EVP_PKEY_derive_init(ctx) <= 0 /* init derivation ctx */
|
|
|| EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 /* set peer pubkey in ctx */
|
|
|| EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 /* determine max length */
|
|
|| outlen == 0 /* ensure outlen is a valid size */
|
|
|| outlen > MAX_ECDH_SIZE /* avoid buffer overflow */) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH key generation failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Here we perform a test run, comparing the output of a*B and b*A;
|
|
* we try this here and assume that further EVP_PKEY_derive calls
|
|
* never fail, so we can skip checks in the actually benchmarked
|
|
* code, for maximum performance.
|
|
*/
|
|
if ((test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) == NULL /* test ctx from skeyB */
|
|
|| EVP_PKEY_derive_init(test_ctx) <= 0 /* init derivation test_ctx */
|
|
|| EVP_PKEY_derive_set_peer(test_ctx, key_A) <= 0 /* set peer pubkey in test_ctx */
|
|
|| EVP_PKEY_derive(test_ctx, NULL, &test_outlen) <= 0 /* determine max length */
|
|
|| EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) <= 0 /* compute a*B */
|
|
|| EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) <= 0 /* compute b*A */
|
|
|| test_outlen != outlen /* compare output length */) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computation failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
break;
|
|
}
|
|
|
|
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
|
|
if (CRYPTO_memcmp(loopargs[i].secret_a,
|
|
loopargs[i].secret_b, outlen)) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computations don't match.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
break;
|
|
}
|
|
|
|
loopargs[i].ecdh_ctx[testnum] = ctx;
|
|
loopargs[i].outlen[testnum] = outlen;
|
|
|
|
EVP_PKEY_free(key_A);
|
|
EVP_PKEY_free(key_B);
|
|
EVP_PKEY_CTX_free(test_ctx);
|
|
test_ctx = NULL;
|
|
}
|
|
if (ecdh_checks != 0) {
|
|
pkey_print_message("", "ecdh",
|
|
ec_curves[testnum].bits, seconds.ecdh);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R9:%ld:%d:%.2f\n" :
|
|
"%ld %u-bits ECDH ops in %.2fs\n", count,
|
|
ec_curves[testnum].bits, d);
|
|
ecdh_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(ecdh_doit, testnum);
|
|
}
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_ECX
|
|
for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
|
|
int st = 1;
|
|
EVP_PKEY *ed_pkey = NULL;
|
|
EVP_PKEY_CTX *ed_pctx = NULL;
|
|
|
|
if (!eddsa_doit[testnum])
|
|
continue; /* Ignore Curve */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
|
|
if (loopargs[i].eddsa_ctx[testnum] == NULL) {
|
|
st = 0;
|
|
break;
|
|
}
|
|
loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new();
|
|
if (loopargs[i].eddsa_ctx2[testnum] == NULL) {
|
|
st = 0;
|
|
break;
|
|
}
|
|
|
|
if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid,
|
|
NULL)) == NULL
|
|
|| EVP_PKEY_keygen_init(ed_pctx) <= 0
|
|
|| EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
|
|
st = 0;
|
|
EVP_PKEY_CTX_free(ed_pctx);
|
|
break;
|
|
}
|
|
EVP_PKEY_CTX_free(ed_pctx);
|
|
|
|
if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
|
|
NULL, ed_pkey)) {
|
|
st = 0;
|
|
EVP_PKEY_free(ed_pkey);
|
|
break;
|
|
}
|
|
if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL,
|
|
NULL, NULL, ed_pkey)) {
|
|
st = 0;
|
|
EVP_PKEY_free(ed_pkey);
|
|
break;
|
|
}
|
|
|
|
EVP_PKEY_free(ed_pkey);
|
|
ed_pkey = NULL;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err, "EdDSA failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
/* Perform EdDSA signature test */
|
|
loopargs[i].sigsize = ed_curves[testnum].sigsize;
|
|
st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
|
|
loopargs[i].buf2, &loopargs[i].sigsize,
|
|
loopargs[i].buf, 20);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"EdDSA sign failure. No EdDSA sign will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", ed_curves[testnum].name,
|
|
ed_curves[testnum].bits, seconds.eddsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
|
|
BIO_printf(bio_err,
|
|
mr ? "+R10:%ld:%u:%s:%.2f\n" :
|
|
"%ld %u bits %s sign ops in %.2fs \n",
|
|
count, ed_curves[testnum].bits,
|
|
ed_curves[testnum].name, d);
|
|
eddsa_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
/* Perform EdDSA verification test */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum],
|
|
loopargs[i].buf2, loopargs[i].sigsize,
|
|
loopargs[i].buf, 20);
|
|
if (st != 1)
|
|
break;
|
|
}
|
|
if (st != 1) {
|
|
BIO_printf(bio_err,
|
|
"EdDSA verify failure. No EdDSA verify will be done.\n");
|
|
dofail();
|
|
eddsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", ed_curves[testnum].name,
|
|
ed_curves[testnum].bits, seconds.eddsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R11:%ld:%u:%s:%.2f\n"
|
|
: "%ld %u bits %s verify ops in %.2fs\n",
|
|
count, ed_curves[testnum].bits,
|
|
ed_curves[testnum].name, d);
|
|
eddsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(eddsa_doit, testnum);
|
|
}
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
#ifndef OPENSSL_NO_SM2
|
|
for (testnum = 0; testnum < SM2_NUM; testnum++) {
|
|
int st = 1;
|
|
EVP_PKEY *sm2_pkey = NULL;
|
|
|
|
if (!sm2_doit[testnum])
|
|
continue; /* Ignore Curve */
|
|
/* Init signing and verification */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY_CTX *sm2_pctx = NULL;
|
|
EVP_PKEY_CTX *sm2_vfy_pctx = NULL;
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
st = 0;
|
|
|
|
loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new();
|
|
loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new();
|
|
if (loopargs[i].sm2_ctx[testnum] == NULL
|
|
|| loopargs[i].sm2_vfy_ctx[testnum] == NULL)
|
|
break;
|
|
|
|
sm2_pkey = NULL;
|
|
|
|
st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SM2, NULL)) == NULL
|
|
|| EVP_PKEY_keygen_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
|
sm2_curves[testnum].nid) <= 0
|
|
|| EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
|
|
EVP_PKEY_CTX_free(pctx);
|
|
if (st == 0)
|
|
break;
|
|
|
|
st = 0; /* set back to zero */
|
|
/* attach it sooner to rely on main final cleanup */
|
|
loopargs[i].sm2_pkey[testnum] = sm2_pkey;
|
|
loopargs[i].sigsize = EVP_PKEY_get_size(sm2_pkey);
|
|
|
|
sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
|
|
sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
|
|
if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) {
|
|
EVP_PKEY_CTX_free(sm2_vfy_pctx);
|
|
break;
|
|
}
|
|
|
|
/* attach them directly to respective ctx */
|
|
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx);
|
|
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx);
|
|
|
|
/*
|
|
* No need to allow user to set an explicit ID here, just use
|
|
* the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D.
|
|
*/
|
|
if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1
|
|
|| EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1)
|
|
break;
|
|
|
|
if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL,
|
|
EVP_sm3(), NULL, sm2_pkey))
|
|
break;
|
|
if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL,
|
|
EVP_sm3(), NULL, sm2_pkey))
|
|
break;
|
|
st = 1; /* mark loop as succeeded */
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err, "SM2 init failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
/* Perform SM2 signature test */
|
|
st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum],
|
|
loopargs[i].buf2, &loopargs[i].sigsize,
|
|
loopargs[i].buf, 20);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"SM2 sign failure. No SM2 sign will be done.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", sm2_curves[testnum].name,
|
|
sm2_curves[testnum].bits, seconds.sm2);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
|
|
BIO_printf(bio_err,
|
|
mr ? "+R12:%ld:%u:%s:%.2f\n" :
|
|
"%ld %u bits %s sign ops in %.2fs \n",
|
|
count, sm2_curves[testnum].bits,
|
|
sm2_curves[testnum].name, d);
|
|
sm2_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
|
|
/* Perform SM2 verification test */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum],
|
|
loopargs[i].buf2, loopargs[i].sigsize,
|
|
loopargs[i].buf, 20);
|
|
if (st != 1)
|
|
break;
|
|
}
|
|
if (st != 1) {
|
|
BIO_printf(bio_err,
|
|
"SM2 verify failure. No SM2 verify will be done.\n");
|
|
dofail();
|
|
sm2_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", sm2_curves[testnum].name,
|
|
sm2_curves[testnum].bits, seconds.sm2);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R13:%ld:%u:%s:%.2f\n"
|
|
: "%ld %u bits %s verify ops in %.2fs\n",
|
|
count, sm2_curves[testnum].bits,
|
|
sm2_curves[testnum].name, d);
|
|
sm2_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < SM2_NUM; testnum++)
|
|
sm2_doit[testnum] = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_SM2 */
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
for (testnum = 0; testnum < FFDH_NUM; testnum++) {
|
|
int ffdh_checks = 1;
|
|
|
|
if (!ffdh_doit[testnum])
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY *pkey_A = NULL;
|
|
EVP_PKEY *pkey_B = NULL;
|
|
EVP_PKEY_CTX *ffdh_ctx = NULL;
|
|
EVP_PKEY_CTX *test_ctx = NULL;
|
|
size_t secret_size;
|
|
size_t test_out;
|
|
|
|
/* Ensure that the error queue is empty */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
dofail();
|
|
}
|
|
|
|
pkey_A = EVP_PKEY_new();
|
|
if (!pkey_A) {
|
|
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
pkey_B = EVP_PKEY_new();
|
|
if (!pkey_B) {
|
|
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL);
|
|
if (!ffdh_ctx) {
|
|
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) {
|
|
BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) {
|
|
BIO_printf(bio_err, "Error setting DH key size for keygen.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 ||
|
|
EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) {
|
|
BIO_printf(bio_err, "FFDH key generation failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
EVP_PKEY_CTX_free(ffdh_ctx);
|
|
|
|
/*
|
|
* check if the derivation works correctly both ways so that
|
|
* we know if future derive calls will fail, and we can skip
|
|
* error checking in benchmarked code
|
|
*/
|
|
ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL);
|
|
if (ffdh_ctx == NULL) {
|
|
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) {
|
|
BIO_printf(bio_err, "FFDH derivation context init failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) {
|
|
BIO_printf(bio_err, "Assigning peer key for derivation failed.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) {
|
|
BIO_printf(bio_err, "Checking size of shared secret failed.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (secret_size > MAX_FFDH_SIZE) {
|
|
BIO_printf(bio_err, "Assertion failure: shared secret too large.\n");
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_derive(ffdh_ctx,
|
|
loopargs[i].secret_ff_a,
|
|
&secret_size) <= 0) {
|
|
BIO_printf(bio_err, "Shared secret derive failure.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
/* Now check from side B */
|
|
test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL);
|
|
if (!test_ctx) {
|
|
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
if (EVP_PKEY_derive_init(test_ctx) <= 0 ||
|
|
EVP_PKEY_derive_set_peer(test_ctx, pkey_A) <= 0 ||
|
|
EVP_PKEY_derive(test_ctx, NULL, &test_out) <= 0 ||
|
|
EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) <= 0 ||
|
|
test_out != secret_size) {
|
|
BIO_printf(bio_err, "FFDH computation failure.\n");
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
/* compare the computed secrets */
|
|
if (CRYPTO_memcmp(loopargs[i].secret_ff_a,
|
|
loopargs[i].secret_ff_b, secret_size)) {
|
|
BIO_printf(bio_err, "FFDH computations don't match.\n");
|
|
dofail();
|
|
op_count = 1;
|
|
ffdh_checks = 0;
|
|
break;
|
|
}
|
|
|
|
loopargs[i].ffdh_ctx[testnum] = ffdh_ctx;
|
|
|
|
EVP_PKEY_free(pkey_A);
|
|
pkey_A = NULL;
|
|
EVP_PKEY_free(pkey_B);
|
|
pkey_B = NULL;
|
|
EVP_PKEY_CTX_free(test_ctx);
|
|
test_ctx = NULL;
|
|
}
|
|
if (ffdh_checks != 0) {
|
|
pkey_print_message("", "ffdh",
|
|
ffdh_params[testnum].bits, seconds.ffdh);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R14:%ld:%d:%.2f\n" :
|
|
"%ld %u-bits FFDH ops in %.2fs\n", count,
|
|
ffdh_params[testnum].bits, d);
|
|
ffdh_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(ffdh_doit, testnum);
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_DH */
|
|
|
|
for (testnum = 0; testnum < kems_algs_len; testnum++) {
|
|
int kem_checks = 1;
|
|
const char *kem_name = kems_algname[testnum];
|
|
|
|
if (!kems_doit[testnum] || !do_kems)
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY *pkey = NULL;
|
|
EVP_PKEY_CTX *kem_gen_ctx = NULL;
|
|
EVP_PKEY_CTX *kem_encaps_ctx = NULL;
|
|
EVP_PKEY_CTX *kem_decaps_ctx = NULL;
|
|
size_t send_secret_len, out_len;
|
|
size_t rcv_secret_len;
|
|
unsigned char *out = NULL, *send_secret = NULL, *rcv_secret;
|
|
unsigned int bits;
|
|
char *name;
|
|
char sfx[MAX_ALGNAME_SUFFIX];
|
|
OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
int use_params = 0;
|
|
enum kem_type_t { KEM_RSA = 1, KEM_EC, KEM_X25519, KEM_X448 } kem_type;
|
|
|
|
/* no string after rsa<bitcnt> permitted: */
|
|
if (strlen(kem_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */
|
|
&& sscanf(kem_name, "rsa%u%s", &bits, sfx) == 1)
|
|
kem_type = KEM_RSA;
|
|
else if (strncmp(kem_name, "EC", 2) == 0)
|
|
kem_type = KEM_EC;
|
|
else if (strcmp(kem_name, "X25519") == 0)
|
|
kem_type = KEM_X25519;
|
|
else if (strcmp(kem_name, "X448") == 0)
|
|
kem_type = KEM_X448;
|
|
else kem_type = 0;
|
|
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
dofail();
|
|
}
|
|
|
|
if (kem_type == KEM_RSA) {
|
|
params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS,
|
|
&bits);
|
|
use_params = 1;
|
|
} else if (kem_type == KEM_EC) {
|
|
name = (char *)(kem_name + 2);
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
|
|
name, 0);
|
|
use_params = 1;
|
|
}
|
|
|
|
kem_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(),
|
|
(kem_type == KEM_RSA) ? "RSA":
|
|
(kem_type == KEM_EC) ? "EC":
|
|
kem_name,
|
|
app_get0_propq());
|
|
|
|
if ((!kem_gen_ctx || EVP_PKEY_keygen_init(kem_gen_ctx) <= 0)
|
|
|| (use_params
|
|
&& EVP_PKEY_CTX_set_params(kem_gen_ctx, params) <= 0)) {
|
|
BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n",
|
|
kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
if (EVP_PKEY_keygen(kem_gen_ctx, &pkey) <= 0) {
|
|
BIO_printf(bio_err, "Error while generating KEM EVP_PKEY.\n");
|
|
goto kem_err_break;
|
|
}
|
|
/* Now prepare encaps data structs */
|
|
kem_encaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
|
|
pkey,
|
|
app_get0_propq());
|
|
if (kem_encaps_ctx == NULL
|
|
|| EVP_PKEY_encapsulate_init(kem_encaps_ctx, NULL) <= 0
|
|
|| (kem_type == KEM_RSA
|
|
&& EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "RSASVE") <= 0)
|
|
|| ((kem_type == KEM_EC
|
|
|| kem_type == KEM_X25519
|
|
|| kem_type == KEM_X448)
|
|
&& EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "DHKEM") <= 0)
|
|
|| EVP_PKEY_encapsulate(kem_encaps_ctx, NULL, &out_len,
|
|
NULL, &send_secret_len) <= 0) {
|
|
BIO_printf(bio_err,
|
|
"Error while initializing encaps data structs for %s.\n",
|
|
kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
out = app_malloc(out_len, "encaps result");
|
|
send_secret = app_malloc(send_secret_len, "encaps secret");
|
|
if (out == NULL || send_secret == NULL) {
|
|
BIO_printf(bio_err, "MemAlloc error in encaps for %s.\n", kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
if (EVP_PKEY_encapsulate(kem_encaps_ctx, out, &out_len,
|
|
send_secret, &send_secret_len) <= 0) {
|
|
BIO_printf(bio_err, "Encaps error for %s.\n", kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
/* Now prepare decaps data structs */
|
|
kem_decaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
|
|
pkey,
|
|
app_get0_propq());
|
|
if (kem_decaps_ctx == NULL
|
|
|| EVP_PKEY_decapsulate_init(kem_decaps_ctx, NULL) <= 0
|
|
|| (kem_type == KEM_RSA
|
|
&& EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "RSASVE") <= 0)
|
|
|| ((kem_type == KEM_EC
|
|
|| kem_type == KEM_X25519
|
|
|| kem_type == KEM_X448)
|
|
&& EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "DHKEM") <= 0)
|
|
|| EVP_PKEY_decapsulate(kem_decaps_ctx, NULL, &rcv_secret_len,
|
|
out, out_len) <= 0) {
|
|
BIO_printf(bio_err,
|
|
"Error while initializing decaps data structs for %s.\n",
|
|
kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
rcv_secret = app_malloc(rcv_secret_len, "KEM decaps secret");
|
|
if (rcv_secret == NULL) {
|
|
BIO_printf(bio_err, "MemAlloc failure in decaps for %s.\n",
|
|
kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
if (EVP_PKEY_decapsulate(kem_decaps_ctx, rcv_secret,
|
|
&rcv_secret_len, out, out_len) <= 0
|
|
|| rcv_secret_len != send_secret_len
|
|
|| memcmp(send_secret, rcv_secret, send_secret_len)) {
|
|
BIO_printf(bio_err, "Decaps error for %s.\n", kem_name);
|
|
goto kem_err_break;
|
|
}
|
|
loopargs[i].kem_gen_ctx[testnum] = kem_gen_ctx;
|
|
loopargs[i].kem_encaps_ctx[testnum] = kem_encaps_ctx;
|
|
loopargs[i].kem_decaps_ctx[testnum] = kem_decaps_ctx;
|
|
loopargs[i].kem_out_len[testnum] = out_len;
|
|
loopargs[i].kem_secret_len[testnum] = send_secret_len;
|
|
loopargs[i].kem_out[testnum] = out;
|
|
loopargs[i].kem_send_secret[testnum] = send_secret;
|
|
loopargs[i].kem_rcv_secret[testnum] = rcv_secret;
|
|
EVP_PKEY_free(pkey);
|
|
pkey = NULL;
|
|
continue;
|
|
|
|
kem_err_break:
|
|
dofail();
|
|
EVP_PKEY_free(pkey);
|
|
op_count = 1;
|
|
kem_checks = 0;
|
|
break;
|
|
}
|
|
if (kem_checks != 0) {
|
|
kskey_print_message(kem_name, "keygen", seconds.kem);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, KEM_keygen_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R15:%ld:%s:%.2f\n" :
|
|
"%ld %s KEM keygen ops in %.2fs\n", count,
|
|
kem_name, d);
|
|
kems_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
kskey_print_message(kem_name, "encaps", seconds.kem);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, KEM_encaps_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R16:%ld:%s:%.2f\n" :
|
|
"%ld %s KEM encaps ops in %.2fs\n", count,
|
|
kem_name, d);
|
|
kems_results[testnum][1] = (double)count / d;
|
|
op_count = count;
|
|
kskey_print_message(kem_name, "decaps", seconds.kem);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, KEM_decaps_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R17:%ld:%s:%.2f\n" :
|
|
"%ld %s KEM decaps ops in %.2fs\n", count,
|
|
kem_name, d);
|
|
kems_results[testnum][2] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
if (op_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
stop_it(kems_doit, testnum);
|
|
}
|
|
}
|
|
|
|
for (testnum = 0; testnum < sigs_algs_len; testnum++) {
|
|
int sig_checks = 1;
|
|
const char *sig_name = sigs_algname[testnum];
|
|
|
|
if (!sigs_doit[testnum] || !do_sigs)
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY *pkey = NULL;
|
|
EVP_PKEY_CTX *ctx_params = NULL;
|
|
EVP_PKEY* pkey_params = NULL;
|
|
EVP_PKEY_CTX *sig_gen_ctx = NULL;
|
|
EVP_PKEY_CTX *sig_sign_ctx = NULL;
|
|
EVP_PKEY_CTX *sig_verify_ctx = NULL;
|
|
unsigned char md[SHA256_DIGEST_LENGTH];
|
|
unsigned char *sig;
|
|
char sfx[MAX_ALGNAME_SUFFIX];
|
|
size_t md_len = SHA256_DIGEST_LENGTH;
|
|
size_t max_sig_len, sig_len;
|
|
unsigned int bits;
|
|
OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
int use_params = 0;
|
|
|
|
/* only sign little data to avoid measuring digest performance */
|
|
memset(md, 0, SHA256_DIGEST_LENGTH);
|
|
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
dofail();
|
|
}
|
|
|
|
/* no string after rsa<bitcnt> permitted: */
|
|
if (strlen(sig_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */
|
|
&& sscanf(sig_name, "rsa%u%s", &bits, sfx) == 1) {
|
|
params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS,
|
|
&bits);
|
|
use_params = 1;
|
|
}
|
|
|
|
if (strncmp(sig_name, "dsa", 3) == 0) {
|
|
ctx_params = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);
|
|
if (ctx_params == NULL
|
|
|| EVP_PKEY_paramgen_init(ctx_params) <= 0
|
|
|| EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx_params,
|
|
atoi(sig_name + 3)) <= 0
|
|
|| EVP_PKEY_paramgen(ctx_params, &pkey_params) <= 0
|
|
|| (sig_gen_ctx = EVP_PKEY_CTX_new(pkey_params, NULL)) == NULL
|
|
|| EVP_PKEY_keygen_init(sig_gen_ctx) <= 0) {
|
|
BIO_printf(bio_err,
|
|
"Error initializing classic keygen ctx for %s.\n",
|
|
sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
}
|
|
|
|
if (sig_gen_ctx == NULL)
|
|
sig_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(),
|
|
use_params == 1 ? "RSA" : sig_name,
|
|
app_get0_propq());
|
|
|
|
if (!sig_gen_ctx || EVP_PKEY_keygen_init(sig_gen_ctx) <= 0
|
|
|| (use_params &&
|
|
EVP_PKEY_CTX_set_params(sig_gen_ctx, params) <= 0)) {
|
|
BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n",
|
|
sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
if (EVP_PKEY_keygen(sig_gen_ctx, &pkey) <= 0) {
|
|
BIO_printf(bio_err,
|
|
"Error while generating signature EVP_PKEY for %s.\n",
|
|
sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
/* Now prepare signature data structs */
|
|
sig_sign_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
|
|
pkey,
|
|
app_get0_propq());
|
|
if (sig_sign_ctx == NULL
|
|
|| EVP_PKEY_sign_init(sig_sign_ctx) <= 0
|
|
|| (use_params == 1
|
|
&& (EVP_PKEY_CTX_set_rsa_padding(sig_sign_ctx,
|
|
RSA_PKCS1_PADDING) <= 0))
|
|
|| EVP_PKEY_sign(sig_sign_ctx, NULL, &max_sig_len,
|
|
md, md_len) <= 0) {
|
|
BIO_printf(bio_err,
|
|
"Error while initializing signing data structs for %s.\n",
|
|
sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
sig = app_malloc(sig_len = max_sig_len, "signature buffer");
|
|
if (sig == NULL) {
|
|
BIO_printf(bio_err, "MemAlloc error in sign for %s.\n", sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
if (EVP_PKEY_sign(sig_sign_ctx, sig, &sig_len, md, md_len) <= 0) {
|
|
BIO_printf(bio_err, "Signing error for %s.\n", sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
/* Now prepare verify data structs */
|
|
memset(md, 0, SHA256_DIGEST_LENGTH);
|
|
sig_verify_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(),
|
|
pkey,
|
|
app_get0_propq());
|
|
if (sig_verify_ctx == NULL
|
|
|| EVP_PKEY_verify_init(sig_verify_ctx) <= 0
|
|
|| (use_params == 1
|
|
&& (EVP_PKEY_CTX_set_rsa_padding(sig_verify_ctx,
|
|
RSA_PKCS1_PADDING) <= 0))) {
|
|
BIO_printf(bio_err,
|
|
"Error while initializing verify data structs for %s.\n",
|
|
sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) {
|
|
BIO_printf(bio_err, "Verify error for %s.\n", sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) {
|
|
BIO_printf(bio_err, "Verify 2 error for %s.\n", sig_name);
|
|
goto sig_err_break;
|
|
}
|
|
loopargs[i].sig_gen_ctx[testnum] = sig_gen_ctx;
|
|
loopargs[i].sig_sign_ctx[testnum] = sig_sign_ctx;
|
|
loopargs[i].sig_verify_ctx[testnum] = sig_verify_ctx;
|
|
loopargs[i].sig_max_sig_len[testnum] = max_sig_len;
|
|
loopargs[i].sig_act_sig_len[testnum] = sig_len;
|
|
loopargs[i].sig_sig[testnum] = sig;
|
|
EVP_PKEY_free(pkey);
|
|
pkey = NULL;
|
|
continue;
|
|
|
|
sig_err_break:
|
|
dofail();
|
|
EVP_PKEY_free(pkey);
|
|
op_count = 1;
|
|
sig_checks = 0;
|
|
break;
|
|
}
|
|
|
|
if (sig_checks != 0) {
|
|
kskey_print_message(sig_name, "keygen", seconds.sig);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SIG_keygen_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R18:%ld:%s:%.2f\n" :
|
|
"%ld %s signature keygen ops in %.2fs\n", count,
|
|
sig_name, d);
|
|
sigs_results[testnum][0] = (double)count / d;
|
|
op_count = count;
|
|
kskey_print_message(sig_name, "signs", seconds.sig);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, SIG_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R19:%ld:%s:%.2f\n" :
|
|
"%ld %s signature sign ops in %.2fs\n", count,
|
|
sig_name, d);
|
|
sigs_results[testnum][1] = (double)count / d;
|
|
op_count = count;
|
|
|
|
kskey_print_message(sig_name, "verify", seconds.sig);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, SIG_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R20:%ld:%s:%.2f\n" :
|
|
"%ld %s signature verify ops in %.2fs\n", count,
|
|
sig_name, d);
|
|
sigs_results[testnum][2] = (double)count / d;
|
|
op_count = count;
|
|
}
|
|
if (op_count <= 1)
|
|
stop_it(sigs_doit, testnum);
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
show_res:
|
|
#endif
|
|
if (!mr) {
|
|
printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING));
|
|
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
|
|
printf("options: %s\n", BN_options());
|
|
printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS));
|
|
printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO));
|
|
}
|
|
|
|
if (pr_header) {
|
|
if (mr) {
|
|
printf("+H");
|
|
} else {
|
|
printf("The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
printf("type ");
|
|
}
|
|
for (testnum = 0; testnum < size_num; testnum++)
|
|
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
|
|
printf("\n");
|
|
}
|
|
|
|
for (k = 0; k < ALGOR_NUM; k++) {
|
|
const char *alg_name = names[k];
|
|
|
|
if (!doit[k])
|
|
continue;
|
|
|
|
if (k == D_EVP) {
|
|
if (evp_cipher == NULL)
|
|
alg_name = evp_md_name;
|
|
else if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
|
|
app_bail_out("failed to get name of cipher '%s'\n", evp_cipher);
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F:%u:%s", k, alg_name);
|
|
else
|
|
printf("%-13s", alg_name);
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
if (results[k][testnum] > 10000 && !mr)
|
|
printf(" %11.2fk", results[k][testnum] / 1e3);
|
|
else
|
|
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
testnum = 1;
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
if (!rsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%19ssign verify encrypt decrypt sign/s verify/s encr./s decr./s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F2:%u:%u:%f:%f:%f:%f\n",
|
|
k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1],
|
|
rsa_results[k][2], rsa_results[k][3]);
|
|
else
|
|
printf("rsa %5u bits %8.6fs %8.6fs %8.6fs %8.6fs %8.1f %8.1f %8.1f %8.1f\n",
|
|
rsa_keys[k].bits, 1.0 / rsa_results[k][0],
|
|
1.0 / rsa_results[k][1], 1.0 / rsa_results[k][2],
|
|
1.0 / rsa_results[k][3],
|
|
rsa_results[k][0], rsa_results[k][1],
|
|
rsa_results[k][2], rsa_results[k][3]);
|
|
}
|
|
testnum = 1;
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (k = 0; k < DSA_NUM; k++) {
|
|
if (!dsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%18ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F3:%u:%u:%f:%f\n",
|
|
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
|
|
else
|
|
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
|
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
|
|
dsa_results[k][0], dsa_results[k][1]);
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
testnum = 1;
|
|
for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
|
|
if (!ecdsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F4:%u:%u:%f:%f\n",
|
|
k, ec_curves[k].bits,
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
else
|
|
printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
|
ec_curves[k].bits, ec_curves[k].name,
|
|
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
}
|
|
|
|
testnum = 1;
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
if (!ecdh_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30sop op/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F5:%u:%u:%f:%f\n",
|
|
k, ec_curves[k].bits,
|
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
|
|
|
|
else
|
|
printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
|
|
ec_curves[k].bits, ec_curves[k].name,
|
|
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_ECX
|
|
testnum = 1;
|
|
for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
|
|
if (!eddsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F6:%u:%u:%s:%f:%f\n",
|
|
k, ed_curves[k].bits, ed_curves[k].name,
|
|
eddsa_results[k][0], eddsa_results[k][1]);
|
|
else
|
|
printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
|
ed_curves[k].bits, ed_curves[k].name,
|
|
1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
|
|
eddsa_results[k][0], eddsa_results[k][1]);
|
|
}
|
|
#endif /* OPENSSL_NO_ECX */
|
|
|
|
#ifndef OPENSSL_NO_SM2
|
|
testnum = 1;
|
|
for (k = 0; k < OSSL_NELEM(sm2_doit); k++) {
|
|
if (!sm2_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F7:%u:%u:%s:%f:%f\n",
|
|
k, sm2_curves[k].bits, sm2_curves[k].name,
|
|
sm2_results[k][0], sm2_results[k][1]);
|
|
else
|
|
printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
|
sm2_curves[k].bits, sm2_curves[k].name,
|
|
1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
|
|
sm2_results[k][0], sm2_results[k][1]);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DH
|
|
testnum = 1;
|
|
for (k = 0; k < FFDH_NUM; k++) {
|
|
if (!ffdh_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%23sop op/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F8:%u:%u:%f:%f\n",
|
|
k, ffdh_params[k].bits,
|
|
ffdh_results[k][0], 1.0 / ffdh_results[k][0]);
|
|
|
|
else
|
|
printf("%4u bits ffdh %8.4fs %8.1f\n",
|
|
ffdh_params[k].bits,
|
|
1.0 / ffdh_results[k][0], ffdh_results[k][0]);
|
|
}
|
|
#endif /* OPENSSL_NO_DH */
|
|
|
|
testnum = 1;
|
|
for (k = 0; k < kems_algs_len; k++) {
|
|
const char *kem_name = kems_algname[k];
|
|
|
|
if (!kems_doit[k] || !do_kems)
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%31skeygen encaps decaps keygens/s encaps/s decaps/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F9:%u:%f:%f:%f\n",
|
|
k, kems_results[k][0], kems_results[k][1],
|
|
kems_results[k][2]);
|
|
else
|
|
printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", kem_name,
|
|
1.0 / kems_results[k][0],
|
|
1.0 / kems_results[k][1], 1.0 / kems_results[k][2],
|
|
kems_results[k][0], kems_results[k][1], kems_results[k][2]);
|
|
}
|
|
ret = 0;
|
|
|
|
testnum = 1;
|
|
for (k = 0; k < sigs_algs_len; k++) {
|
|
const char *sig_name = sigs_algname[k];
|
|
|
|
if (!sigs_doit[k] || !do_sigs)
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%31skeygen signs verify keygens/s sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F10:%u:%f:%f:%f\n",
|
|
k, sigs_results[k][0], sigs_results[k][1],
|
|
sigs_results[k][2]);
|
|
else
|
|
printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", sig_name,
|
|
1.0 / sigs_results[k][0], 1.0 / sigs_results[k][1],
|
|
1.0 / sigs_results[k][2], sigs_results[k][0],
|
|
sigs_results[k][1], sigs_results[k][2]);
|
|
}
|
|
ret = 0;
|
|
|
|
end:
|
|
if (ret == 0 && testmode)
|
|
ret = testmoderesult;
|
|
ERR_print_errors(bio_err);
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
OPENSSL_free(loopargs[i].buf_malloc);
|
|
OPENSSL_free(loopargs[i].buf2_malloc);
|
|
|
|
BN_free(bn);
|
|
EVP_PKEY_CTX_free(genctx);
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
EVP_PKEY_CTX_free(loopargs[i].rsa_sign_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].rsa_verify_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].rsa_encrypt_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].rsa_decrypt_ctx[k]);
|
|
}
|
|
#ifndef OPENSSL_NO_DH
|
|
OPENSSL_free(loopargs[i].secret_ff_a);
|
|
OPENSSL_free(loopargs[i].secret_ff_b);
|
|
for (k = 0; k < FFDH_NUM; k++)
|
|
EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (k = 0; k < DSA_NUM; k++) {
|
|
EVP_PKEY_CTX_free(loopargs[i].dsa_sign_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].dsa_verify_ctx[k]);
|
|
}
|
|
#endif
|
|
for (k = 0; k < ECDSA_NUM; k++) {
|
|
EVP_PKEY_CTX_free(loopargs[i].ecdsa_sign_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].ecdsa_verify_ctx[k]);
|
|
}
|
|
for (k = 0; k < EC_NUM; k++)
|
|
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
|
|
#ifndef OPENSSL_NO_ECX
|
|
for (k = 0; k < EdDSA_NUM; k++) {
|
|
EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
|
|
EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]);
|
|
}
|
|
#endif /* OPENSSL_NO_ECX */
|
|
#ifndef OPENSSL_NO_SM2
|
|
for (k = 0; k < SM2_NUM; k++) {
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
|
|
/* free signing ctx */
|
|
if (loopargs[i].sm2_ctx[k] != NULL
|
|
&& (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL)
|
|
EVP_PKEY_CTX_free(pctx);
|
|
EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]);
|
|
/* free verification ctx */
|
|
if (loopargs[i].sm2_vfy_ctx[k] != NULL
|
|
&& (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL)
|
|
EVP_PKEY_CTX_free(pctx);
|
|
EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]);
|
|
/* free pkey */
|
|
EVP_PKEY_free(loopargs[i].sm2_pkey[k]);
|
|
}
|
|
#endif
|
|
for (k = 0; k < kems_algs_len; k++) {
|
|
EVP_PKEY_CTX_free(loopargs[i].kem_gen_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].kem_encaps_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].kem_decaps_ctx[k]);
|
|
OPENSSL_free(loopargs[i].kem_out[k]);
|
|
OPENSSL_free(loopargs[i].kem_send_secret[k]);
|
|
OPENSSL_free(loopargs[i].kem_rcv_secret[k]);
|
|
}
|
|
for (k = 0; k < sigs_algs_len; k++) {
|
|
EVP_PKEY_CTX_free(loopargs[i].sig_gen_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].sig_sign_ctx[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].sig_verify_ctx[k]);
|
|
OPENSSL_free(loopargs[i].sig_sig[k]);
|
|
}
|
|
OPENSSL_free(loopargs[i].secret_a);
|
|
OPENSSL_free(loopargs[i].secret_b);
|
|
}
|
|
OPENSSL_free(evp_hmac_name);
|
|
OPENSSL_free(evp_cmac_name);
|
|
for (k = 0; k < kems_algs_len; k++)
|
|
OPENSSL_free(kems_algname[k]);
|
|
if (kem_stack != NULL)
|
|
sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
|
|
for (k = 0; k < sigs_algs_len; k++)
|
|
OPENSSL_free(sigs_algname[k]);
|
|
if (sig_stack != NULL)
|
|
sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
|
|
|
|
if (async_jobs > 0) {
|
|
for (i = 0; i < loopargs_len; i++)
|
|
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
|
|
}
|
|
|
|
if (async_init) {
|
|
ASYNC_cleanup_thread();
|
|
}
|
|
OPENSSL_free(loopargs);
|
|
release_engine(e);
|
|
EVP_CIPHER_free(evp_cipher);
|
|
EVP_MAC_free(mac);
|
|
NCONF_free(conf);
|
|
return ret;
|
|
}
|
|
|
|
static void print_message(const char *s, int length, int tm)
|
|
{
|
|
BIO_printf(bio_err,
|
|
mr ? "+DT:%s:%d:%d\n"
|
|
: "Doing %s ops for %ds on %d size blocks: ", s, tm, length);
|
|
(void)BIO_flush(bio_err);
|
|
run = 1;
|
|
alarm(tm);
|
|
}
|
|
|
|
static void pkey_print_message(const char *str, const char *str2, unsigned int bits,
|
|
int tm)
|
|
{
|
|
BIO_printf(bio_err,
|
|
mr ? "+DTP:%d:%s:%s:%d\n"
|
|
: "Doing %u bits %s %s ops for %ds: ", bits, str, str2, tm);
|
|
(void)BIO_flush(bio_err);
|
|
run = 1;
|
|
alarm(tm);
|
|
}
|
|
|
|
static void kskey_print_message(const char *str, const char *str2, int tm)
|
|
{
|
|
BIO_printf(bio_err,
|
|
mr ? "+DTP:%s:%s:%d\n"
|
|
: "Doing %s %s ops for %ds: ", str, str2, tm);
|
|
(void)BIO_flush(bio_err);
|
|
run = 1;
|
|
alarm(tm);
|
|
}
|
|
|
|
static void print_result(int alg, int run_no, int count, double time_used)
|
|
{
|
|
if (count == -1) {
|
|
BIO_printf(bio_err, "%s error!\n", names[alg]);
|
|
dofail();
|
|
return;
|
|
}
|
|
BIO_printf(bio_err,
|
|
mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s ops in %.2fs\n", count, names[alg], time_used);
|
|
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
static char *sstrsep(char **string, const char *delim)
|
|
{
|
|
char isdelim[256];
|
|
char *token = *string;
|
|
|
|
memset(isdelim, 0, sizeof(isdelim));
|
|
isdelim[0] = 1;
|
|
|
|
while (*delim) {
|
|
isdelim[(unsigned char)(*delim)] = 1;
|
|
delim++;
|
|
}
|
|
|
|
while (!isdelim[(unsigned char)(**string)])
|
|
(*string)++;
|
|
|
|
if (**string) {
|
|
**string = 0;
|
|
(*string)++;
|
|
}
|
|
|
|
return token;
|
|
}
|
|
|
|
static int strtoint(const char *str, const int min_val, const int upper_val,
|
|
int *res)
|
|
{
|
|
char *end = NULL;
|
|
long int val = 0;
|
|
|
|
errno = 0;
|
|
val = strtol(str, &end, 10);
|
|
if (errno == 0 && end != str && *end == 0
|
|
&& min_val <= val && val < upper_val) {
|
|
*res = (int)val;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int do_multi(int multi, int size_num)
|
|
{
|
|
int n;
|
|
int fd[2];
|
|
int *fds;
|
|
int status;
|
|
static char sep[] = ":";
|
|
|
|
fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
|
|
for (n = 0; n < multi; ++n) {
|
|
if (pipe(fd) == -1) {
|
|
BIO_printf(bio_err, "pipe failure\n");
|
|
exit(1);
|
|
}
|
|
fflush(stdout);
|
|
(void)BIO_flush(bio_err);
|
|
if (fork()) {
|
|
close(fd[1]);
|
|
fds[n] = fd[0];
|
|
} else {
|
|
close(fd[0]);
|
|
close(1);
|
|
if (dup(fd[1]) == -1) {
|
|
BIO_printf(bio_err, "dup failed\n");
|
|
exit(1);
|
|
}
|
|
close(fd[1]);
|
|
mr = 1;
|
|
usertime = 0;
|
|
OPENSSL_free(fds);
|
|
return 0;
|
|
}
|
|
printf("Forked child %d\n", n);
|
|
}
|
|
|
|
/* for now, assume the pipe is long enough to take all the output */
|
|
for (n = 0; n < multi; ++n) {
|
|
FILE *f;
|
|
char buf[1024];
|
|
char *p;
|
|
char *tk;
|
|
int k;
|
|
double d;
|
|
|
|
if ((f = fdopen(fds[n], "r")) == NULL) {
|
|
BIO_printf(bio_err, "fdopen failure with 0x%x\n",
|
|
errno);
|
|
OPENSSL_free(fds);
|
|
return 1;
|
|
}
|
|
while (fgets(buf, sizeof(buf), f)) {
|
|
p = strchr(buf, '\n');
|
|
if (p)
|
|
*p = '\0';
|
|
if (buf[0] != '+') {
|
|
BIO_printf(bio_err,
|
|
"Don't understand line '%s' from child %d\n", buf,
|
|
n);
|
|
continue;
|
|
}
|
|
printf("Got: %s from %d\n", buf, n);
|
|
p = buf;
|
|
if (CHECK_AND_SKIP_PREFIX(p, "+F:")) {
|
|
int alg;
|
|
int j;
|
|
|
|
if (strtoint(sstrsep(&p, sep), 0, ALGOR_NUM, &alg)) {
|
|
sstrsep(&p, sep);
|
|
for (j = 0; j < size_num; ++j)
|
|
results[alg][j] += atof(sstrsep(&p, sep));
|
|
}
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F2:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(rsa_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][1] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][2] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][3] += d;
|
|
}
|
|
# ifndef OPENSSL_NO_DSA
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F3:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(dsa_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][1] += d;
|
|
}
|
|
# endif /* OPENSSL_NO_DSA */
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F4:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(ecdsa_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][1] += d;
|
|
}
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F5:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(ecdh_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdh_results[k][0] += d;
|
|
}
|
|
# ifndef OPENSSL_NO_ECX
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F6:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(eddsa_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
eddsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
eddsa_results[k][1] += d;
|
|
}
|
|
# endif /* OPENSSL_NO_ECX */
|
|
# ifndef OPENSSL_NO_SM2
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F7:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(sm2_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
sm2_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
sm2_results[k][1] += d;
|
|
}
|
|
# endif /* OPENSSL_NO_SM2 */
|
|
# ifndef OPENSSL_NO_DH
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F8:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(ffdh_results), &k)) {
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ffdh_results[k][0] += d;
|
|
}
|
|
# endif /* OPENSSL_NO_DH */
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F9:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(kems_results), &k)) {
|
|
d = atof(sstrsep(&p, sep));
|
|
kems_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
kems_results[k][1] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
kems_results[k][2] += d;
|
|
}
|
|
} else if (CHECK_AND_SKIP_PREFIX(p, "+F10:")) {
|
|
tk = sstrsep(&p, sep);
|
|
if (strtoint(tk, 0, OSSL_NELEM(sigs_results), &k)) {
|
|
d = atof(sstrsep(&p, sep));
|
|
sigs_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
sigs_results[k][1] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
sigs_results[k][2] += d;
|
|
}
|
|
} else if (!HAS_PREFIX(buf, "+H:")) {
|
|
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
|
|
n);
|
|
}
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
OPENSSL_free(fds);
|
|
for (n = 0; n < multi; ++n) {
|
|
while (wait(&status) == -1)
|
|
if (errno != EINTR) {
|
|
BIO_printf(bio_err, "Waitng for child failed with 0x%x\n",
|
|
errno);
|
|
return 1;
|
|
}
|
|
if (WIFEXITED(status) && WEXITSTATUS(status)) {
|
|
BIO_printf(bio_err, "Child exited with %d\n", WEXITSTATUS(status));
|
|
} else if (WIFSIGNALED(status)) {
|
|
BIO_printf(bio_err, "Child terminated by signal %d\n",
|
|
WTERMSIG(status));
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
|
|
const openssl_speed_sec_t *seconds)
|
|
{
|
|
static const int mblengths_list[] = {
|
|
8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024
|
|
};
|
|
const int *mblengths = mblengths_list;
|
|
int j, count, keylen, num = OSSL_NELEM(mblengths_list), ciph_success = 1;
|
|
const char *alg_name;
|
|
unsigned char *inp = NULL, *out = NULL, *key, no_key[32], no_iv[16];
|
|
EVP_CIPHER_CTX *ctx = NULL;
|
|
double d = 0.0;
|
|
|
|
if (lengths_single) {
|
|
mblengths = &lengths_single;
|
|
num = 1;
|
|
}
|
|
|
|
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
|
|
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
|
|
if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
|
|
app_bail_out("failed to allocate cipher context\n");
|
|
if (!EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv))
|
|
app_bail_out("failed to initialise cipher context\n");
|
|
|
|
if ((keylen = EVP_CIPHER_CTX_get_key_length(ctx)) < 0) {
|
|
BIO_printf(bio_err, "Impossible negative key length: %d\n", keylen);
|
|
goto err;
|
|
}
|
|
key = app_malloc(keylen, "evp_cipher key");
|
|
if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0)
|
|
app_bail_out("failed to generate random cipher key\n");
|
|
if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
|
|
app_bail_out("failed to set cipher key\n");
|
|
OPENSSL_clear_free(key, keylen);
|
|
|
|
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
|
|
sizeof(no_key), no_key) <= 0)
|
|
app_bail_out("failed to set AEAD key\n");
|
|
if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
|
|
app_bail_out("failed to get cipher name\n");
|
|
|
|
for (j = 0; j < num; j++) {
|
|
print_message(alg_name, mblengths[j], seconds->sym);
|
|
Time_F(START);
|
|
for (count = 0; run && COND(count); count++) {
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
|
|
size_t len = mblengths[j];
|
|
int packlen;
|
|
|
|
memset(aad, 0, 8); /* avoid uninitialized values */
|
|
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
|
|
aad[9] = 3; /* version */
|
|
aad[10] = 2;
|
|
aad[11] = 0; /* length */
|
|
aad[12] = 0;
|
|
mb_param.out = NULL;
|
|
mb_param.inp = aad;
|
|
mb_param.len = len;
|
|
mb_param.interleave = 8;
|
|
|
|
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
|
|
sizeof(mb_param), &mb_param);
|
|
|
|
if (packlen > 0) {
|
|
mb_param.out = out;
|
|
mb_param.inp = inp;
|
|
mb_param.len = len;
|
|
(void)EVP_CIPHER_CTX_ctrl(ctx,
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
|
|
sizeof(mb_param), &mb_param);
|
|
} else {
|
|
int pad;
|
|
|
|
if (RAND_bytes(inp, 16) <= 0)
|
|
app_bail_out("error setting random bytes\n");
|
|
len += 16;
|
|
aad[11] = (unsigned char)(len >> 8);
|
|
aad[12] = (unsigned char)(len);
|
|
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN, aad);
|
|
ciph_success = EVP_Cipher(ctx, out, inp, len + pad);
|
|
}
|
|
}
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s ops in %.2fs\n", count, "evp", d);
|
|
if ((ciph_success <= 0) && (mr == 0))
|
|
BIO_printf(bio_err, "Error performing cipher op\n");
|
|
results[D_EVP][j] = ((double)count) / d * mblengths[j];
|
|
}
|
|
|
|
if (mr) {
|
|
fprintf(stdout, "+H");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%d", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%.2f", results[D_EVP][j]);
|
|
fprintf(stdout, "\n");
|
|
} else {
|
|
fprintf(stdout,
|
|
"The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
fprintf(stdout, "type ");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, "%7d bytes", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "%-24s", alg_name);
|
|
|
|
for (j = 0; j < num; j++) {
|
|
if (results[D_EVP][j] > 10000)
|
|
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
|
|
else
|
|
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
|
|
}
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
err:
|
|
OPENSSL_free(inp);
|
|
OPENSSL_free(out);
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
}
|