mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
e077455e9e
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and at least handle the file name and line number they are called from, there's no need to report ERR_R_MALLOC_FAILURE where they are called directly, or when SSLfatal() and RLAYERfatal() is used, the reason `ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`. There were a number of places where `ERR_R_MALLOC_FAILURE` was reported even though it was a function from a different sub-system that was called. Those places are changed to report ERR_R_{lib}_LIB, where {lib} is the name of that sub-system. Some of them are tricky to get right, as we have a lot of functions that belong in the ASN1 sub-system, and all the `sk_` calls or from the CRYPTO sub-system. Some extra adaptation was necessary where there were custom OPENSSL_malloc() wrappers, and some bugs are fixed alongside these changes. Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Hugo Landau <hlandau@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19301)
242 lines
7.2 KiB
C
242 lines
7.2 KiB
C
/*
|
|
* Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/pkcs12.h>
|
|
|
|
/* Cheap and nasty Unicode stuff */
|
|
|
|
unsigned char *OPENSSL_asc2uni(const char *asc, int asclen,
|
|
unsigned char **uni, int *unilen)
|
|
{
|
|
int ulen, i;
|
|
unsigned char *unitmp;
|
|
|
|
if (asclen == -1)
|
|
asclen = strlen(asc);
|
|
if (asclen < 0)
|
|
return NULL;
|
|
ulen = asclen * 2 + 2;
|
|
if ((unitmp = OPENSSL_malloc(ulen)) == NULL)
|
|
return NULL;
|
|
for (i = 0; i < ulen - 2; i += 2) {
|
|
unitmp[i] = 0;
|
|
unitmp[i + 1] = asc[i >> 1];
|
|
}
|
|
/* Make result double null terminated */
|
|
unitmp[ulen - 2] = 0;
|
|
unitmp[ulen - 1] = 0;
|
|
if (unilen)
|
|
*unilen = ulen;
|
|
if (uni)
|
|
*uni = unitmp;
|
|
return unitmp;
|
|
}
|
|
|
|
char *OPENSSL_uni2asc(const unsigned char *uni, int unilen)
|
|
{
|
|
int asclen, i;
|
|
char *asctmp;
|
|
|
|
/* string must contain an even number of bytes */
|
|
if (unilen & 1)
|
|
return NULL;
|
|
if (unilen < 0)
|
|
return NULL;
|
|
asclen = unilen / 2;
|
|
/* If no terminating zero allow for one */
|
|
if (!unilen || uni[unilen - 1])
|
|
asclen++;
|
|
uni++;
|
|
if ((asctmp = OPENSSL_malloc(asclen)) == NULL)
|
|
return NULL;
|
|
for (i = 0; i < unilen; i += 2)
|
|
asctmp[i >> 1] = uni[i];
|
|
asctmp[asclen - 1] = 0;
|
|
return asctmp;
|
|
}
|
|
|
|
/*
|
|
* OPENSSL_{utf82uni|uni2utf8} perform conversion between UTF-8 and
|
|
* PKCS#12 BMPString format, which is specified as big-endian UTF-16.
|
|
* One should keep in mind that even though BMPString is passed as
|
|
* unsigned char *, it's not the kind of string you can exercise e.g.
|
|
* strlen on. Caller also has to keep in mind that its length is
|
|
* expressed not in number of UTF-16 characters, but in number of
|
|
* bytes the string occupies, and treat it, the length, accordingly.
|
|
*/
|
|
unsigned char *OPENSSL_utf82uni(const char *asc, int asclen,
|
|
unsigned char **uni, int *unilen)
|
|
{
|
|
int ulen, i, j;
|
|
unsigned char *unitmp, *ret;
|
|
unsigned long utf32chr = 0;
|
|
|
|
if (asclen == -1)
|
|
asclen = strlen(asc);
|
|
|
|
for (ulen = 0, i = 0; i < asclen; i += j) {
|
|
j = UTF8_getc((const unsigned char *)asc+i, asclen-i, &utf32chr);
|
|
|
|
/*
|
|
* Following condition is somewhat opportunistic is sense that
|
|
* decoding failure is used as *indirect* indication that input
|
|
* string might in fact be extended ASCII/ANSI/ISO-8859-X. The
|
|
* fallback is taken in hope that it would allow to process
|
|
* files created with previous OpenSSL version, which used the
|
|
* naive OPENSSL_asc2uni all along. It might be worth noting
|
|
* that probability of false positive depends on language. In
|
|
* cases covered by ISO Latin 1 probability is very low, because
|
|
* any printable non-ASCII alphabet letter followed by another
|
|
* or any ASCII character will trigger failure and fallback.
|
|
* In other cases situation can be intensified by the fact that
|
|
* English letters are not part of alternative keyboard layout,
|
|
* but even then there should be plenty of pairs that trigger
|
|
* decoding failure...
|
|
*/
|
|
if (j < 0)
|
|
return OPENSSL_asc2uni(asc, asclen, uni, unilen);
|
|
|
|
if (utf32chr > 0x10FFFF) /* UTF-16 cap */
|
|
return NULL;
|
|
|
|
if (utf32chr >= 0x10000) /* pair of UTF-16 characters */
|
|
ulen += 2*2;
|
|
else /* or just one */
|
|
ulen += 2;
|
|
}
|
|
|
|
ulen += 2; /* for trailing UTF16 zero */
|
|
|
|
if ((ret = OPENSSL_malloc(ulen)) == NULL)
|
|
return NULL;
|
|
/* re-run the loop writing down UTF-16 characters in big-endian order */
|
|
for (unitmp = ret, i = 0; i < asclen; i += j) {
|
|
j = UTF8_getc((const unsigned char *)asc+i, asclen-i, &utf32chr);
|
|
if (utf32chr >= 0x10000) { /* pair if UTF-16 characters */
|
|
unsigned int hi, lo;
|
|
|
|
utf32chr -= 0x10000;
|
|
hi = 0xD800 + (utf32chr>>10);
|
|
lo = 0xDC00 + (utf32chr&0x3ff);
|
|
*unitmp++ = (unsigned char)(hi>>8);
|
|
*unitmp++ = (unsigned char)(hi);
|
|
*unitmp++ = (unsigned char)(lo>>8);
|
|
*unitmp++ = (unsigned char)(lo);
|
|
} else { /* or just one */
|
|
*unitmp++ = (unsigned char)(utf32chr>>8);
|
|
*unitmp++ = (unsigned char)(utf32chr);
|
|
}
|
|
}
|
|
/* Make result double null terminated */
|
|
*unitmp++ = 0;
|
|
*unitmp++ = 0;
|
|
if (unilen)
|
|
*unilen = ulen;
|
|
if (uni)
|
|
*uni = ret;
|
|
return ret;
|
|
}
|
|
|
|
static int bmp_to_utf8(char *str, const unsigned char *utf16, int len)
|
|
{
|
|
unsigned long utf32chr;
|
|
|
|
if (len == 0) return 0;
|
|
|
|
if (len < 2) return -1;
|
|
|
|
/* pull UTF-16 character in big-endian order */
|
|
utf32chr = (utf16[0]<<8) | utf16[1];
|
|
|
|
if (utf32chr >= 0xD800 && utf32chr < 0xE000) { /* two chars */
|
|
unsigned int lo;
|
|
|
|
if (len < 4) return -1;
|
|
|
|
utf32chr -= 0xD800;
|
|
utf32chr <<= 10;
|
|
lo = (utf16[2]<<8) | utf16[3];
|
|
if (lo < 0xDC00 || lo >= 0xE000) return -1;
|
|
utf32chr |= lo-0xDC00;
|
|
utf32chr += 0x10000;
|
|
}
|
|
|
|
return UTF8_putc((unsigned char *)str, len > 4 ? 4 : len, utf32chr);
|
|
}
|
|
|
|
char *OPENSSL_uni2utf8(const unsigned char *uni, int unilen)
|
|
{
|
|
int asclen, i, j;
|
|
char *asctmp;
|
|
|
|
/* string must contain an even number of bytes */
|
|
if (unilen & 1)
|
|
return NULL;
|
|
|
|
for (asclen = 0, i = 0; i < unilen; ) {
|
|
j = bmp_to_utf8(NULL, uni+i, unilen-i);
|
|
/*
|
|
* falling back to OPENSSL_uni2asc makes lesser sense [than
|
|
* falling back to OPENSSL_asc2uni in OPENSSL_utf82uni above],
|
|
* it's done rather to maintain symmetry...
|
|
*/
|
|
if (j < 0) return OPENSSL_uni2asc(uni, unilen);
|
|
if (j == 4) i += 4;
|
|
else i += 2;
|
|
asclen += j;
|
|
}
|
|
|
|
/* If no terminating zero allow for one */
|
|
if (!unilen || (uni[unilen-2]||uni[unilen - 1]))
|
|
asclen++;
|
|
|
|
if ((asctmp = OPENSSL_malloc(asclen)) == NULL)
|
|
return NULL;
|
|
|
|
/* re-run the loop emitting UTF-8 string */
|
|
for (asclen = 0, i = 0; i < unilen; ) {
|
|
j = bmp_to_utf8(asctmp+asclen, uni+i, unilen-i);
|
|
if (j == 4) i += 4;
|
|
else i += 2;
|
|
asclen += j;
|
|
}
|
|
|
|
/* If no terminating zero write one */
|
|
if (!unilen || (uni[unilen-2]||uni[unilen - 1]))
|
|
asctmp[asclen] = '\0';
|
|
|
|
return asctmp;
|
|
}
|
|
|
|
int i2d_PKCS12_bio(BIO *bp, const PKCS12 *p12)
|
|
{
|
|
return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS12), bp, p12);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_STDIO
|
|
int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12)
|
|
{
|
|
return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS12), fp, p12);
|
|
}
|
|
#endif
|
|
|
|
PKCS12 *d2i_PKCS12_bio(BIO *bp, PKCS12 **p12)
|
|
{
|
|
return ASN1_item_d2i_bio(ASN1_ITEM_rptr(PKCS12), bp, p12);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_STDIO
|
|
PKCS12 *d2i_PKCS12_fp(FILE *fp, PKCS12 **p12)
|
|
{
|
|
return ASN1_item_d2i_fp(ASN1_ITEM_rptr(PKCS12), fp, p12);
|
|
}
|
|
#endif
|