mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
e5dd732749
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20519)
(cherry picked from commit d4765408c7
)
745 lines
23 KiB
Perl
745 lines
23 KiB
Perl
# Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
|
||
# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
||
# this file except in compliance with the License. You can obtain a copy
|
||
# in the file LICENSE in the source distribution or at
|
||
# https://www.openssl.org/source/license.html
|
||
#
|
||
#
|
||
# Originally written by Sergey Kirillov and Andrey Matyukov.
|
||
# Special thanks to Ilya Albrekht for his valuable hints.
|
||
# Intel Corporation
|
||
#
|
||
# December 2020
|
||
#
|
||
# Initial release.
|
||
#
|
||
# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
|
||
#
|
||
# IceLake-Client @ 1.3GHz
|
||
# |---------+----------------------+--------------+-------------|
|
||
# | | OpenSSL 3.0.0-alpha9 | this | Unit |
|
||
# |---------+----------------------+--------------+-------------|
|
||
# | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
|
||
# | | 611 | 1280 / +109% | sign/s |
|
||
# |---------+----------------------+--------------+-------------|
|
||
#
|
||
|
||
# $output is the last argument if it looks like a file (it has an extension)
|
||
# $flavour is the first argument if it doesn't look like a file
|
||
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
||
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
||
|
||
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||
$avx512ifma=0;
|
||
|
||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||
die "can't locate x86_64-xlate.pl";
|
||
|
||
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
|
||
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
|
||
$avx512ifma = ($1>=2.26);
|
||
}
|
||
|
||
if (!$avx512ifma && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
|
||
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
|
||
$avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
|
||
}
|
||
|
||
if (!$avx512ifma && `$ENV{CC} -v 2>&1`
|
||
=~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
|
||
my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
|
||
if ($1) {
|
||
# Apple conditions, they use a different version series, see
|
||
# https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
|
||
# clang 7.0.0 is Apple clang 10.0.1
|
||
$avx512ifma = ($ver>=10.0001)
|
||
} else {
|
||
$avx512ifma = ($ver>=7.0);
|
||
}
|
||
}
|
||
|
||
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
|
||
or die "can't call $xlate: $!";
|
||
*STDOUT=*OUT;
|
||
|
||
if ($avx512ifma>0) {{{
|
||
@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
|
||
|
||
$code.=<<___;
|
||
.extern OPENSSL_ia32cap_P
|
||
.globl ossl_rsaz_avx512ifma_eligible
|
||
.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
|
||
.align 32
|
||
ossl_rsaz_avx512ifma_eligible:
|
||
mov OPENSSL_ia32cap_P+8(%rip), %ecx
|
||
xor %eax,%eax
|
||
and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
|
||
cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
|
||
cmove %ecx,%eax
|
||
ret
|
||
.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
|
||
___
|
||
|
||
###############################################################################
|
||
# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
|
||
#
|
||
# AMM is defined as presented in the paper [1].
|
||
#
|
||
# The input and output are presented in 2^52 radix domain, i.e.
|
||
# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
|
||
# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
|
||
#
|
||
# NB: the AMM implementation does not perform "conditional" subtraction step
|
||
# specified in the original algorithm as according to the Lemma 1 from the paper
|
||
# [2], the result will be always < 2*m and can be used as a direct input to
|
||
# the next AMM iteration. This post-condition is true, provided the correct
|
||
# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
|
||
# which matches our case: 1040 > 1024 + 2 * 1.
|
||
#
|
||
# [1] Gueron, S. Efficient software implementations of modular exponentiation.
|
||
# DOI: 10.1007/s13389-012-0031-5
|
||
# [2] Gueron, S. Enhanced Montgomery Multiplication.
|
||
# DOI: 10.1007/3-540-36400-5_5
|
||
#
|
||
# void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res,
|
||
# const BN_ULONG *a,
|
||
# const BN_ULONG *b,
|
||
# const BN_ULONG *m,
|
||
# BN_ULONG k0);
|
||
###############################################################################
|
||
{
|
||
# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
|
||
my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
|
||
|
||
my $mask52 = "%rax";
|
||
my $acc0_0 = "%r9";
|
||
my $acc0_0_low = "%r9d";
|
||
my $acc0_1 = "%r15";
|
||
my $acc0_1_low = "%r15d";
|
||
my $b_ptr = "%r11";
|
||
|
||
my $iter = "%ebx";
|
||
|
||
my $zero = "%ymm0";
|
||
my $Bi = "%ymm1";
|
||
my $Yi = "%ymm2";
|
||
my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(16..19)));
|
||
my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(20..23)));
|
||
|
||
# Registers mapping for normalization.
|
||
my ($T0,$T0h,$T1,$T1h,$T2) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (25..26)));
|
||
|
||
sub amm52x20_x1() {
|
||
# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
|
||
# of data for corresponding AMM operation;
|
||
# _b_offset - offset in the |b| array pointing to the next qword digit;
|
||
my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
|
||
my $_R0_xmm = $_R0;
|
||
$_R0_xmm =~ s/%y/%x/;
|
||
$code.=<<___;
|
||
movq $_b_offset($b_ptr), %r13 # b[i]
|
||
|
||
vpbroadcastq %r13, $Bi # broadcast b[i]
|
||
movq $_data_offset($a), %rdx
|
||
mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
|
||
addq %r13, $_acc # acc += t0
|
||
movq %r12, %r10
|
||
adcq \$0, %r10 # t2 += CF
|
||
|
||
movq $_k0, %r13
|
||
imulq $_acc, %r13 # acc * k0
|
||
andq $mask52, %r13 # yi = (acc * k0) & mask52
|
||
|
||
vpbroadcastq %r13, $Yi # broadcast y[i]
|
||
movq $_data_offset($m), %rdx
|
||
mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
|
||
addq %r13, $_acc # acc += t0
|
||
adcq %r12, %r10 # t2 += (t1 + CF)
|
||
|
||
shrq \$52, $_acc
|
||
salq \$12, %r10
|
||
or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
|
||
|
||
vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
|
||
vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
|
||
vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
|
||
vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
||
vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
|
||
|
||
vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
|
||
vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
|
||
vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
|
||
vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
||
vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
|
||
|
||
# Shift accumulators right by 1 qword, zero extending the highest one
|
||
valignq \$1, $_R0, $_R0h, $_R0
|
||
valignq \$1, $_R0h, $_R1, $_R0h
|
||
valignq \$1, $_R1, $_R1h, $_R1
|
||
valignq \$1, $_R1h, $_R2, $_R1h
|
||
valignq \$1, $_R2, $zero, $_R2
|
||
|
||
vmovq $_R0_xmm, %r13
|
||
addq %r13, $_acc # acc += R0[0]
|
||
|
||
vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
|
||
vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
|
||
vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
|
||
vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
||
vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
|
||
|
||
vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
|
||
vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
|
||
vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
|
||
vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
||
vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
|
||
___
|
||
}
|
||
|
||
# Normalization routine: handles carry bits and gets bignum qwords to normalized
|
||
# 2^52 representation.
|
||
#
|
||
# Uses %r8-14,%e[bcd]x
|
||
sub amm52x20_x1_norm {
|
||
my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
|
||
$code.=<<___;
|
||
# Put accumulator to low qword in R0
|
||
vpbroadcastq $_acc, $T0
|
||
vpblendd \$3, $T0, $_R0, $_R0
|
||
|
||
# Extract "carries" (12 high bits) from each QW of R0..R2
|
||
# Save them to LSB of QWs in T0..T2
|
||
vpsrlq \$52, $_R0, $T0
|
||
vpsrlq \$52, $_R0h, $T0h
|
||
vpsrlq \$52, $_R1, $T1
|
||
vpsrlq \$52, $_R1h, $T1h
|
||
vpsrlq \$52, $_R2, $T2
|
||
|
||
# "Shift left" T0..T2 by 1 QW
|
||
valignq \$3, $T1h, $T2, $T2
|
||
valignq \$3, $T1, $T1h, $T1h
|
||
valignq \$3, $T0h, $T1, $T1
|
||
valignq \$3, $T0, $T0h, $T0h
|
||
valignq \$3, .Lzeros(%rip), $T0, $T0
|
||
|
||
# Drop "carries" from R0..R2 QWs
|
||
vpandq .Lmask52x4(%rip), $_R0, $_R0
|
||
vpandq .Lmask52x4(%rip), $_R0h, $_R0h
|
||
vpandq .Lmask52x4(%rip), $_R1, $_R1
|
||
vpandq .Lmask52x4(%rip), $_R1h, $_R1h
|
||
vpandq .Lmask52x4(%rip), $_R2, $_R2
|
||
|
||
# Sum R0..R2 with corresponding adjusted carries
|
||
vpaddq $T0, $_R0, $_R0
|
||
vpaddq $T0h, $_R0h, $_R0h
|
||
vpaddq $T1, $_R1, $_R1
|
||
vpaddq $T1h, $_R1h, $_R1h
|
||
vpaddq $T2, $_R2, $_R2
|
||
|
||
# Now handle carry bits from this addition
|
||
# Get mask of QWs which 52-bit parts overflow...
|
||
vpcmpuq \$6, .Lmask52x4(%rip), $_R0, %k1 # OP=nle (i.e. gt)
|
||
vpcmpuq \$6, .Lmask52x4(%rip), $_R0h, %k2
|
||
vpcmpuq \$6, .Lmask52x4(%rip), $_R1, %k3
|
||
vpcmpuq \$6, .Lmask52x4(%rip), $_R1h, %k4
|
||
vpcmpuq \$6, .Lmask52x4(%rip), $_R2, %k5
|
||
kmovb %k1, %r14d # k1
|
||
kmovb %k2, %r13d # k1h
|
||
kmovb %k3, %r12d # k2
|
||
kmovb %k4, %r11d # k2h
|
||
kmovb %k5, %r10d # k3
|
||
|
||
# ...or saturated
|
||
vpcmpuq \$0, .Lmask52x4(%rip), $_R0, %k1 # OP=eq
|
||
vpcmpuq \$0, .Lmask52x4(%rip), $_R0h, %k2
|
||
vpcmpuq \$0, .Lmask52x4(%rip), $_R1, %k3
|
||
vpcmpuq \$0, .Lmask52x4(%rip), $_R1h, %k4
|
||
vpcmpuq \$0, .Lmask52x4(%rip), $_R2, %k5
|
||
kmovb %k1, %r9d # k4
|
||
kmovb %k2, %r8d # k4h
|
||
kmovb %k3, %ebx # k5
|
||
kmovb %k4, %ecx # k5h
|
||
kmovb %k5, %edx # k6
|
||
|
||
# Get mask of QWs where carries shall be propagated to.
|
||
# Merge 4-bit masks to 8-bit values to use add with carry.
|
||
shl \$4, %r13b
|
||
or %r13b, %r14b
|
||
shl \$4, %r11b
|
||
or %r11b, %r12b
|
||
|
||
add %r14b, %r14b
|
||
adc %r12b, %r12b
|
||
adc %r10b, %r10b
|
||
|
||
shl \$4, %r8b
|
||
or %r8b,%r9b
|
||
shl \$4, %cl
|
||
or %cl, %bl
|
||
|
||
add %r9b, %r14b
|
||
adc %bl, %r12b
|
||
adc %dl, %r10b
|
||
|
||
xor %r9b, %r14b
|
||
xor %bl, %r12b
|
||
xor %dl, %r10b
|
||
|
||
kmovb %r14d, %k1
|
||
shr \$4, %r14b
|
||
kmovb %r14d, %k2
|
||
kmovb %r12d, %k3
|
||
shr \$4, %r12b
|
||
kmovb %r12d, %k4
|
||
kmovb %r10d, %k5
|
||
|
||
# Add carries according to the obtained mask
|
||
vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
|
||
vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
|
||
vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
|
||
vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
|
||
vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
|
||
|
||
vpandq .Lmask52x4(%rip), $_R0, $_R0
|
||
vpandq .Lmask52x4(%rip), $_R0h, $_R0h
|
||
vpandq .Lmask52x4(%rip), $_R1, $_R1
|
||
vpandq .Lmask52x4(%rip), $_R1h, $_R1h
|
||
vpandq .Lmask52x4(%rip), $_R2, $_R2
|
||
___
|
||
}
|
||
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.globl ossl_rsaz_amm52x20_x1_ifma256
|
||
.type ossl_rsaz_amm52x20_x1_ifma256,\@function,5
|
||
.align 32
|
||
ossl_rsaz_amm52x20_x1_ifma256:
|
||
.cfi_startproc
|
||
endbranch
|
||
push %rbx
|
||
.cfi_push %rbx
|
||
push %rbp
|
||
.cfi_push %rbp
|
||
push %r12
|
||
.cfi_push %r12
|
||
push %r13
|
||
.cfi_push %r13
|
||
push %r14
|
||
.cfi_push %r14
|
||
push %r15
|
||
.cfi_push %r15
|
||
.Lossl_rsaz_amm52x20_x1_ifma256_body:
|
||
|
||
# Zeroing accumulators
|
||
vpxord $zero, $zero, $zero
|
||
vmovdqa64 $zero, $R0_0
|
||
vmovdqa64 $zero, $R0_0h
|
||
vmovdqa64 $zero, $R1_0
|
||
vmovdqa64 $zero, $R1_0h
|
||
vmovdqa64 $zero, $R2_0
|
||
|
||
xorl $acc0_0_low, $acc0_0_low
|
||
|
||
movq $b, $b_ptr # backup address of b
|
||
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
||
|
||
# Loop over 20 digits unrolled by 4
|
||
mov \$5, $iter
|
||
|
||
.align 32
|
||
.Lloop5:
|
||
___
|
||
foreach my $idx (0..3) {
|
||
&amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
|
||
}
|
||
$code.=<<___;
|
||
lea `4*8`($b_ptr), $b_ptr
|
||
dec $iter
|
||
jne .Lloop5
|
||
___
|
||
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
||
$code.=<<___;
|
||
|
||
vmovdqu64 $R0_0, `0*32`($res)
|
||
vmovdqu64 $R0_0h, `1*32`($res)
|
||
vmovdqu64 $R1_0, `2*32`($res)
|
||
vmovdqu64 $R1_0h, `3*32`($res)
|
||
vmovdqu64 $R2_0, `4*32`($res)
|
||
|
||
vzeroupper
|
||
mov 0(%rsp),%r15
|
||
.cfi_restore %r15
|
||
mov 8(%rsp),%r14
|
||
.cfi_restore %r14
|
||
mov 16(%rsp),%r13
|
||
.cfi_restore %r13
|
||
mov 24(%rsp),%r12
|
||
.cfi_restore %r12
|
||
mov 32(%rsp),%rbp
|
||
.cfi_restore %rbp
|
||
mov 40(%rsp),%rbx
|
||
.cfi_restore %rbx
|
||
lea 48(%rsp),%rsp
|
||
.cfi_adjust_cfa_offset -48
|
||
.Lossl_rsaz_amm52x20_x1_ifma256_epilogue:
|
||
ret
|
||
.cfi_endproc
|
||
.size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
|
||
___
|
||
|
||
$code.=<<___;
|
||
.data
|
||
.align 32
|
||
.Lmask52x4:
|
||
.quad 0xfffffffffffff
|
||
.quad 0xfffffffffffff
|
||
.quad 0xfffffffffffff
|
||
.quad 0xfffffffffffff
|
||
___
|
||
|
||
###############################################################################
|
||
# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
|
||
#
|
||
# See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
|
||
# Montgomery Multiplication algorithm and function input parameters description.
|
||
#
|
||
# This function does two AMMs for two independent inputs, hence dual.
|
||
#
|
||
# void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG out[2][20],
|
||
# const BN_ULONG a[2][20],
|
||
# const BN_ULONG b[2][20],
|
||
# const BN_ULONG m[2][20],
|
||
# const BN_ULONG k0[2]);
|
||
###############################################################################
|
||
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.globl ossl_rsaz_amm52x20_x2_ifma256
|
||
.type ossl_rsaz_amm52x20_x2_ifma256,\@function,5
|
||
.align 32
|
||
ossl_rsaz_amm52x20_x2_ifma256:
|
||
.cfi_startproc
|
||
endbranch
|
||
push %rbx
|
||
.cfi_push %rbx
|
||
push %rbp
|
||
.cfi_push %rbp
|
||
push %r12
|
||
.cfi_push %r12
|
||
push %r13
|
||
.cfi_push %r13
|
||
push %r14
|
||
.cfi_push %r14
|
||
push %r15
|
||
.cfi_push %r15
|
||
.Lossl_rsaz_amm52x20_x2_ifma256_body:
|
||
|
||
# Zeroing accumulators
|
||
vpxord $zero, $zero, $zero
|
||
vmovdqa64 $zero, $R0_0
|
||
vmovdqa64 $zero, $R0_0h
|
||
vmovdqa64 $zero, $R1_0
|
||
vmovdqa64 $zero, $R1_0h
|
||
vmovdqa64 $zero, $R2_0
|
||
vmovdqa64 $zero, $R0_1
|
||
vmovdqa64 $zero, $R0_1h
|
||
vmovdqa64 $zero, $R1_1
|
||
vmovdqa64 $zero, $R1_1h
|
||
vmovdqa64 $zero, $R2_1
|
||
|
||
xorl $acc0_0_low, $acc0_0_low
|
||
xorl $acc0_1_low, $acc0_1_low
|
||
|
||
movq $b, $b_ptr # backup address of b
|
||
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
||
|
||
mov \$20, $iter
|
||
|
||
.align 32
|
||
.Lloop20:
|
||
___
|
||
&amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
|
||
# 20*8 = offset of the next dimension in two-dimension array
|
||
&amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
|
||
$code.=<<___;
|
||
lea 8($b_ptr), $b_ptr
|
||
dec $iter
|
||
jne .Lloop20
|
||
___
|
||
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
||
&amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
|
||
$code.=<<___;
|
||
|
||
vmovdqu64 $R0_0, `0*32`($res)
|
||
vmovdqu64 $R0_0h, `1*32`($res)
|
||
vmovdqu64 $R1_0, `2*32`($res)
|
||
vmovdqu64 $R1_0h, `3*32`($res)
|
||
vmovdqu64 $R2_0, `4*32`($res)
|
||
|
||
vmovdqu64 $R0_1, `5*32`($res)
|
||
vmovdqu64 $R0_1h, `6*32`($res)
|
||
vmovdqu64 $R1_1, `7*32`($res)
|
||
vmovdqu64 $R1_1h, `8*32`($res)
|
||
vmovdqu64 $R2_1, `9*32`($res)
|
||
|
||
vzeroupper
|
||
mov 0(%rsp),%r15
|
||
.cfi_restore %r15
|
||
mov 8(%rsp),%r14
|
||
.cfi_restore %r14
|
||
mov 16(%rsp),%r13
|
||
.cfi_restore %r13
|
||
mov 24(%rsp),%r12
|
||
.cfi_restore %r12
|
||
mov 32(%rsp),%rbp
|
||
.cfi_restore %rbp
|
||
mov 40(%rsp),%rbx
|
||
.cfi_restore %rbx
|
||
lea 48(%rsp),%rsp
|
||
.cfi_adjust_cfa_offset -48
|
||
.Lossl_rsaz_amm52x20_x2_ifma256_epilogue:
|
||
ret
|
||
.cfi_endproc
|
||
.size ossl_rsaz_amm52x20_x2_ifma256, .-ossl_rsaz_amm52x20_x2_ifma256
|
||
___
|
||
}
|
||
|
||
###############################################################################
|
||
# Constant time extraction from the precomputed table of powers base^i, where
|
||
# i = 0..2^EXP_WIN_SIZE-1
|
||
#
|
||
# The input |red_table| contains precomputations for two independent base values.
|
||
# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
|
||
#
|
||
# Extracted value (output) is 2 20 digit numbers in 2^52 radix.
|
||
#
|
||
# void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
|
||
# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
|
||
# int red_table_idx1, int red_table_idx2);
|
||
#
|
||
# EXP_WIN_SIZE = 5
|
||
###############################################################################
|
||
{
|
||
# input parameters
|
||
my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
|
||
("%rdi","%rsi","%rdx","%rcx"); # Unix order
|
||
|
||
my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
|
||
my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
|
||
my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
|
||
|
||
my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
|
||
my $t0xmm = $t0;
|
||
$t0xmm =~ s/%y/%x/;
|
||
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.align 32
|
||
.globl ossl_extract_multiplier_2x20_win5
|
||
.type ossl_extract_multiplier_2x20_win5,\@abi-omnipotent
|
||
ossl_extract_multiplier_2x20_win5:
|
||
.cfi_startproc
|
||
endbranch
|
||
vmovdqa64 .Lones(%rip), $ones # broadcast ones
|
||
vpbroadcastq $red_tbl_idx1, $idx1
|
||
vpbroadcastq $red_tbl_idx2, $idx2
|
||
leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
|
||
|
||
# zeroing t0..n, cur_idx
|
||
vpxor $t0xmm, $t0xmm, $t0xmm
|
||
vmovdqa64 $t0, $cur_idx
|
||
___
|
||
foreach (1..9) {
|
||
$code.="vmovdqa64 $t0, $t[$_] \n";
|
||
}
|
||
$code.=<<___;
|
||
|
||
.align 32
|
||
.Lloop:
|
||
vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
|
||
vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
|
||
___
|
||
foreach (0..9) {
|
||
my $mask = $_<5?"%k1":"%k2";
|
||
$code.=<<___;
|
||
vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
|
||
vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
|
||
___
|
||
}
|
||
$code.=<<___;
|
||
vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
|
||
addq \$`2*20*8`, $red_tbl
|
||
cmpq $red_tbl, %rax
|
||
jne .Lloop
|
||
___
|
||
# store t0..n
|
||
foreach (0..9) {
|
||
$code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
|
||
}
|
||
$code.=<<___;
|
||
ret
|
||
.cfi_endproc
|
||
.size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
|
||
___
|
||
$code.=<<___;
|
||
.data
|
||
.align 32
|
||
.Lones:
|
||
.quad 1,1,1,1
|
||
.Lzeros:
|
||
.quad 0,0,0,0
|
||
___
|
||
}
|
||
|
||
if ($win64) {
|
||
$rec="%rcx";
|
||
$frame="%rdx";
|
||
$context="%r8";
|
||
$disp="%r9";
|
||
|
||
$code.=<<___;
|
||
.extern __imp_RtlVirtualUnwind
|
||
.type rsaz_def_handler,\@abi-omnipotent
|
||
.align 16
|
||
rsaz_def_handler:
|
||
push %rsi
|
||
push %rdi
|
||
push %rbx
|
||
push %rbp
|
||
push %r12
|
||
push %r13
|
||
push %r14
|
||
push %r15
|
||
pushfq
|
||
sub \$64,%rsp
|
||
|
||
mov 120($context),%rax # pull context->Rax
|
||
mov 248($context),%rbx # pull context->Rip
|
||
|
||
mov 8($disp),%rsi # disp->ImageBase
|
||
mov 56($disp),%r11 # disp->HandlerData
|
||
|
||
mov 0(%r11),%r10d # HandlerData[0]
|
||
lea (%rsi,%r10),%r10 # prologue label
|
||
cmp %r10,%rbx # context->Rip<.Lprologue
|
||
jb .Lcommon_seh_tail
|
||
|
||
mov 152($context),%rax # pull context->Rsp
|
||
|
||
mov 4(%r11),%r10d # HandlerData[1]
|
||
lea (%rsi,%r10),%r10 # epilogue label
|
||
cmp %r10,%rbx # context->Rip>=.Lepilogue
|
||
jae .Lcommon_seh_tail
|
||
|
||
lea 48(%rax),%rax
|
||
|
||
mov -8(%rax),%rbx
|
||
mov -16(%rax),%rbp
|
||
mov -24(%rax),%r12
|
||
mov -32(%rax),%r13
|
||
mov -40(%rax),%r14
|
||
mov -48(%rax),%r15
|
||
mov %rbx,144($context) # restore context->Rbx
|
||
mov %rbp,160($context) # restore context->Rbp
|
||
mov %r12,216($context) # restore context->R12
|
||
mov %r13,224($context) # restore context->R13
|
||
mov %r14,232($context) # restore context->R14
|
||
mov %r15,240($context) # restore context->R14
|
||
|
||
.Lcommon_seh_tail:
|
||
mov 8(%rax),%rdi
|
||
mov 16(%rax),%rsi
|
||
mov %rax,152($context) # restore context->Rsp
|
||
mov %rsi,168($context) # restore context->Rsi
|
||
mov %rdi,176($context) # restore context->Rdi
|
||
|
||
mov 40($disp),%rdi # disp->ContextRecord
|
||
mov $context,%rsi # context
|
||
mov \$154,%ecx # sizeof(CONTEXT)
|
||
.long 0xa548f3fc # cld; rep movsq
|
||
|
||
mov $disp,%rsi
|
||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||
mov %r10,32(%rsp) # arg5
|
||
mov %r11,40(%rsp) # arg6
|
||
mov %r12,48(%rsp) # arg7
|
||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||
call *__imp_RtlVirtualUnwind(%rip)
|
||
|
||
mov \$1,%eax # ExceptionContinueSearch
|
||
add \$64,%rsp
|
||
popfq
|
||
pop %r15
|
||
pop %r14
|
||
pop %r13
|
||
pop %r12
|
||
pop %rbp
|
||
pop %rbx
|
||
pop %rdi
|
||
pop %rsi
|
||
ret
|
||
.size rsaz_def_handler,.-rsaz_def_handler
|
||
|
||
.section .pdata
|
||
.align 4
|
||
.rva .LSEH_begin_ossl_rsaz_amm52x20_x1_ifma256
|
||
.rva .LSEH_end_ossl_rsaz_amm52x20_x1_ifma256
|
||
.rva .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256
|
||
|
||
.rva .LSEH_begin_ossl_rsaz_amm52x20_x2_ifma256
|
||
.rva .LSEH_end_ossl_rsaz_amm52x20_x2_ifma256
|
||
.rva .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256
|
||
|
||
.section .xdata
|
||
.align 8
|
||
.LSEH_info_ossl_rsaz_amm52x20_x1_ifma256:
|
||
.byte 9,0,0,0
|
||
.rva rsaz_def_handler
|
||
.rva .Lossl_rsaz_amm52x20_x1_ifma256_body,.Lossl_rsaz_amm52x20_x1_ifma256_epilogue
|
||
.LSEH_info_ossl_rsaz_amm52x20_x2_ifma256:
|
||
.byte 9,0,0,0
|
||
.rva rsaz_def_handler
|
||
.rva .Lossl_rsaz_amm52x20_x2_ifma256_body,.Lossl_rsaz_amm52x20_x2_ifma256_epilogue
|
||
___
|
||
}
|
||
}}} else {{{ # fallback for old assembler
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.globl ossl_rsaz_avx512ifma_eligible
|
||
.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
|
||
ossl_rsaz_avx512ifma_eligible:
|
||
xor %eax,%eax
|
||
ret
|
||
.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
|
||
|
||
.globl ossl_rsaz_amm52x20_x1_ifma256
|
||
.globl ossl_rsaz_amm52x20_x2_ifma256
|
||
.globl ossl_extract_multiplier_2x20_win5
|
||
.type ossl_rsaz_amm52x20_x1_ifma256,\@abi-omnipotent
|
||
ossl_rsaz_amm52x20_x1_ifma256:
|
||
ossl_rsaz_amm52x20_x2_ifma256:
|
||
ossl_extract_multiplier_2x20_win5:
|
||
.byte 0x0f,0x0b # ud2
|
||
ret
|
||
.size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
|
||
___
|
||
}}}
|
||
|
||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||
print $code;
|
||
close STDOUT or die "error closing STDOUT: $!";
|