mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
62cb7c810e
There was really no need for this to be void and it made bugs very easy to introduce accidentally, especially given that the free functions needed to be passed a pointer to the pointer. Also fix some bugs in the QUIC code detected immediately by this change. . Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/23519)
200 lines
8.1 KiB
C
200 lines
8.1 KiB
C
/*
|
|
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
#ifndef OSSL_QUIC_REACTOR_H
|
|
# define OSSL_QUIC_REACTOR_H
|
|
|
|
# include "internal/time.h"
|
|
# include "internal/sockets.h"
|
|
# include "internal/quic_predef.h"
|
|
# include "internal/thread_arch.h"
|
|
# include <openssl/bio.h>
|
|
|
|
# ifndef OPENSSL_NO_QUIC
|
|
|
|
/*
|
|
* Core I/O Reactor Framework
|
|
* ==========================
|
|
*
|
|
* Manages use of async network I/O which the QUIC stack is built on. The core
|
|
* mechanic looks like this:
|
|
*
|
|
* - There is a pollable FD for both the read and write side respectively.
|
|
* Readability and writeability of these FDs respectively determines when
|
|
* network I/O is available.
|
|
*
|
|
* - The reactor can export these FDs to the user, as well as flags indicating
|
|
* whether the user should listen for readability, writeability, or neither.
|
|
*
|
|
* - The reactor can export a timeout indication to the user, indicating when
|
|
* the reactor should be called (via libssl APIs) regardless of whether
|
|
* the network socket has become ready.
|
|
*
|
|
* The reactor is based around a tick callback which is essentially the mutator
|
|
* function. The mutator attempts to do whatever it can, attempting to perform
|
|
* network I/O to the extent currently feasible. When done, the mutator returns
|
|
* information to the reactor indicating when it should be woken up again:
|
|
*
|
|
* - Should it be woken up when network RX is possible?
|
|
* - Should it be woken up when network TX is possible?
|
|
* - Should it be woken up no later than some deadline X?
|
|
*
|
|
* The intention is that ALL I/O-related SSL_* functions with side effects (e.g.
|
|
* SSL_read/SSL_write) consist of three phases:
|
|
*
|
|
* - Optionally mutate the QUIC machine's state.
|
|
* - Optionally tick the QUIC reactor.
|
|
* - Optionally mutate the QUIC machine's state.
|
|
*
|
|
* For example, SSL_write is a mutation (appending to a stream buffer) followed
|
|
* by an optional tick (generally expected as we may want to send the data
|
|
* immediately, though not strictly needed if transmission is being deferred due
|
|
* to Nagle's algorithm, etc.).
|
|
*
|
|
* SSL_read is also a mutation and in principle does not need to tick the
|
|
* reactor, but it generally will anyway to ensure that the reactor is regularly
|
|
* ticked by an application which is only reading and not writing.
|
|
*
|
|
* If the SSL object is being used in blocking mode, SSL_read may need to block
|
|
* if no data is available yet, and SSL_write may need to block if buffers
|
|
* are full.
|
|
*
|
|
* The internals of the QUIC I/O engine always use asynchronous I/O. If the
|
|
* application desires blocking semantics, we handle this by adding a blocking
|
|
* adaptation layer on top of our internal asynchronous I/O API as exposed by
|
|
* the reactor interface.
|
|
*/
|
|
struct quic_tick_result_st {
|
|
char net_read_desired;
|
|
char net_write_desired;
|
|
OSSL_TIME tick_deadline;
|
|
};
|
|
|
|
static ossl_inline ossl_unused void
|
|
ossl_quic_tick_result_merge_into(QUIC_TICK_RESULT *r,
|
|
const QUIC_TICK_RESULT *src)
|
|
{
|
|
r->net_read_desired = r->net_read_desired || src->net_read_desired;
|
|
r->net_write_desired = r->net_write_desired || src->net_write_desired;
|
|
r->tick_deadline = ossl_time_min(r->tick_deadline, src->tick_deadline);
|
|
}
|
|
|
|
struct quic_reactor_st {
|
|
/*
|
|
* BIO poll descriptors which can be polled. poll_r is a poll descriptor
|
|
* which becomes readable when the QUIC state machine can potentially do
|
|
* work, and poll_w is a poll descriptor which becomes writable when the
|
|
* QUIC state machine can potentially do work. Generally, either of these
|
|
* conditions means that SSL_tick() should be called, or another SSL
|
|
* function which implicitly calls SSL_tick() (e.g. SSL_read/SSL_write()).
|
|
*/
|
|
BIO_POLL_DESCRIPTOR poll_r, poll_w;
|
|
OSSL_TIME tick_deadline; /* ossl_time_infinite() if none currently applicable */
|
|
|
|
void (*tick_cb)(QUIC_TICK_RESULT *res, void *arg, uint32_t flags);
|
|
void *tick_cb_arg;
|
|
|
|
/*
|
|
* These are true if we would like to know when we can read or write from
|
|
* the network respectively.
|
|
*/
|
|
unsigned int net_read_desired : 1;
|
|
unsigned int net_write_desired : 1;
|
|
|
|
/*
|
|
* Are the read and write poll descriptors we are currently configured with
|
|
* things we can actually poll?
|
|
*/
|
|
unsigned int can_poll_r : 1;
|
|
unsigned int can_poll_w : 1;
|
|
};
|
|
|
|
void ossl_quic_reactor_init(QUIC_REACTOR *rtor,
|
|
void (*tick_cb)(QUIC_TICK_RESULT *res, void *arg,
|
|
uint32_t flags),
|
|
void *tick_cb_arg,
|
|
OSSL_TIME initial_tick_deadline);
|
|
|
|
void ossl_quic_reactor_set_poll_r(QUIC_REACTOR *rtor,
|
|
const BIO_POLL_DESCRIPTOR *r);
|
|
|
|
void ossl_quic_reactor_set_poll_w(QUIC_REACTOR *rtor,
|
|
const BIO_POLL_DESCRIPTOR *w);
|
|
|
|
const BIO_POLL_DESCRIPTOR *ossl_quic_reactor_get_poll_r(const QUIC_REACTOR *rtor);
|
|
const BIO_POLL_DESCRIPTOR *ossl_quic_reactor_get_poll_w(const QUIC_REACTOR *rtor);
|
|
|
|
int ossl_quic_reactor_can_poll_r(const QUIC_REACTOR *rtor);
|
|
int ossl_quic_reactor_can_poll_w(const QUIC_REACTOR *rtor);
|
|
|
|
int ossl_quic_reactor_can_support_poll_descriptor(const QUIC_REACTOR *rtor,
|
|
const BIO_POLL_DESCRIPTOR *d);
|
|
|
|
int ossl_quic_reactor_net_read_desired(QUIC_REACTOR *rtor);
|
|
int ossl_quic_reactor_net_write_desired(QUIC_REACTOR *rtor);
|
|
|
|
OSSL_TIME ossl_quic_reactor_get_tick_deadline(QUIC_REACTOR *rtor);
|
|
|
|
/*
|
|
* Do whatever work can be done, and as much work as can be done. This involves
|
|
* e.g. seeing if we can read anything from the network (if we want to), seeing
|
|
* if we can write anything to the network (if we want to), etc.
|
|
*
|
|
* If the CHANNEL_ONLY flag is set, this indicates that we should only
|
|
* touch state which is synchronised by the channel mutex.
|
|
*/
|
|
#define QUIC_REACTOR_TICK_FLAG_CHANNEL_ONLY (1U << 0)
|
|
|
|
int ossl_quic_reactor_tick(QUIC_REACTOR *rtor, uint32_t flags);
|
|
|
|
/*
|
|
* Blocking I/O Adaptation Layer
|
|
* =============================
|
|
*
|
|
* The blocking I/O adaptation layer implements blocking I/O on top of our
|
|
* asynchronous core.
|
|
*
|
|
* The core mechanism is block_until_pred(), which does not return until pred()
|
|
* returns a value other than 0. The blocker uses OS I/O synchronisation
|
|
* primitives (e.g. poll(2)) and ticks the reactor until the predicate is
|
|
* satisfied. The blocker is not required to call pred() more than once between
|
|
* tick calls.
|
|
*
|
|
* When pred returns a non-zero value, that value is returned by this function.
|
|
* This can be used to allow pred() to indicate error conditions and short
|
|
* circuit the blocking process.
|
|
*
|
|
* A return value of -1 is reserved for network polling errors. Therefore this
|
|
* return value should not be used by pred() if ambiguity is not desired. Note
|
|
* that the predicate function can always arrange its own output mechanism, for
|
|
* example by passing a structure of its own as the argument.
|
|
*
|
|
* If the SKIP_FIRST_TICK flag is set, the first call to reactor_tick() before
|
|
* the first call to pred() is skipped. This is useful if it is known that
|
|
* ticking the reactor again will not be useful (e.g. because it has already
|
|
* been done).
|
|
*
|
|
* This function assumes a write lock is held for the entire QUIC_CHANNEL. If
|
|
* mutex is non-NULL, it must be a lock currently held for write; it will be
|
|
* unlocked during any sleep, and then relocked for write afterwards.
|
|
*
|
|
* Precondition: mutex is NULL or is held for write (unchecked)
|
|
* Postcondition: mutex is NULL or is held for write (unless
|
|
* CRYPTO_THREAD_write_lock fails)
|
|
*/
|
|
#define SKIP_FIRST_TICK (1U << 0)
|
|
|
|
int ossl_quic_reactor_block_until_pred(QUIC_REACTOR *rtor,
|
|
int (*pred)(void *arg), void *pred_arg,
|
|
uint32_t flags,
|
|
CRYPTO_MUTEX *mutex);
|
|
|
|
# endif
|
|
|
|
#endif
|