mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
9d91530d2d
This commit leverages the Montgomery ladder scaffold introduced in #6690 (alongside a specialized Lopez-Dahab ladder for binary curves) to provide a specialized differential addition-and-double implementation to speedup prime curves, while keeping all the features of `ec_scalar_mul_ladder` against SCA attacks. The arithmetic in ladder_pre, ladder_step and ladder_post is auto generated with tooling, from the following formulae: - `ladder_pre`: Formula 3 for doubling from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks", as described at https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 - `ladder_step`: differential addition-and-doubling Eq. (8) and (10) from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks", as described at https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3 - `ladder_post`: y-coordinate recovery using Eq. (8) from Brier-Joye "Weierstrass Elliptic Curves and Side-Channel Attacks", modified to work in projective coordinates. Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6772)
243 lines
6.6 KiB
C
243 lines
6.6 KiB
C
/*
|
|
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include "ec_lcl.h"
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void)
|
|
{
|
|
static const EC_METHOD ret = {
|
|
EC_FLAGS_DEFAULT_OCT,
|
|
NID_X9_62_prime_field,
|
|
ec_GFp_mont_group_init,
|
|
ec_GFp_mont_group_finish,
|
|
ec_GFp_mont_group_clear_finish,
|
|
ec_GFp_mont_group_copy,
|
|
ec_GFp_mont_group_set_curve,
|
|
ec_GFp_simple_group_get_curve,
|
|
ec_GFp_simple_group_get_degree,
|
|
ec_group_simple_order_bits,
|
|
ec_GFp_simple_group_check_discriminant,
|
|
ec_GFp_simple_point_init,
|
|
ec_GFp_simple_point_finish,
|
|
ec_GFp_simple_point_clear_finish,
|
|
ec_GFp_simple_point_copy,
|
|
ec_GFp_simple_point_set_to_infinity,
|
|
ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_point_set_affine_coordinates,
|
|
ec_GFp_simple_point_get_affine_coordinates,
|
|
0, 0, 0,
|
|
ec_GFp_simple_add,
|
|
ec_GFp_simple_dbl,
|
|
ec_GFp_simple_invert,
|
|
ec_GFp_simple_is_at_infinity,
|
|
ec_GFp_simple_is_on_curve,
|
|
ec_GFp_simple_cmp,
|
|
ec_GFp_simple_make_affine,
|
|
ec_GFp_simple_points_make_affine,
|
|
0 /* mul */ ,
|
|
0 /* precompute_mult */ ,
|
|
0 /* have_precompute_mult */ ,
|
|
ec_GFp_mont_field_mul,
|
|
ec_GFp_mont_field_sqr,
|
|
0 /* field_div */ ,
|
|
ec_GFp_mont_field_encode,
|
|
ec_GFp_mont_field_decode,
|
|
ec_GFp_mont_field_set_to_one,
|
|
ec_key_simple_priv2oct,
|
|
ec_key_simple_oct2priv,
|
|
0, /* set private */
|
|
ec_key_simple_generate_key,
|
|
ec_key_simple_check_key,
|
|
ec_key_simple_generate_public_key,
|
|
0, /* keycopy */
|
|
0, /* keyfinish */
|
|
ecdh_simple_compute_key,
|
|
0, /* field_inverse_mod_ord */
|
|
ec_GFp_simple_blind_coordinates,
|
|
ec_GFp_simple_ladder_pre,
|
|
ec_GFp_simple_ladder_step,
|
|
ec_GFp_simple_ladder_post
|
|
};
|
|
|
|
return &ret;
|
|
}
|
|
|
|
int ec_GFp_mont_group_init(EC_GROUP *group)
|
|
{
|
|
int ok;
|
|
|
|
ok = ec_GFp_simple_group_init(group);
|
|
group->field_data1 = NULL;
|
|
group->field_data2 = NULL;
|
|
return ok;
|
|
}
|
|
|
|
void ec_GFp_mont_group_finish(EC_GROUP *group)
|
|
{
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
group->field_data1 = NULL;
|
|
BN_free(group->field_data2);
|
|
group->field_data2 = NULL;
|
|
ec_GFp_simple_group_finish(group);
|
|
}
|
|
|
|
void ec_GFp_mont_group_clear_finish(EC_GROUP *group)
|
|
{
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
group->field_data1 = NULL;
|
|
BN_clear_free(group->field_data2);
|
|
group->field_data2 = NULL;
|
|
ec_GFp_simple_group_clear_finish(group);
|
|
}
|
|
|
|
int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
|
{
|
|
BN_MONT_CTX_free(dest->field_data1);
|
|
dest->field_data1 = NULL;
|
|
BN_clear_free(dest->field_data2);
|
|
dest->field_data2 = NULL;
|
|
|
|
if (!ec_GFp_simple_group_copy(dest, src))
|
|
return 0;
|
|
|
|
if (src->field_data1 != NULL) {
|
|
dest->field_data1 = BN_MONT_CTX_new();
|
|
if (dest->field_data1 == NULL)
|
|
return 0;
|
|
if (!BN_MONT_CTX_copy(dest->field_data1, src->field_data1))
|
|
goto err;
|
|
}
|
|
if (src->field_data2 != NULL) {
|
|
dest->field_data2 = BN_dup(src->field_data2);
|
|
if (dest->field_data2 == NULL)
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
BN_MONT_CTX_free(dest->field_data1);
|
|
dest->field_data1 = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
BN_CTX *new_ctx = NULL;
|
|
BN_MONT_CTX *mont = NULL;
|
|
BIGNUM *one = NULL;
|
|
int ret = 0;
|
|
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
group->field_data1 = NULL;
|
|
BN_free(group->field_data2);
|
|
group->field_data2 = NULL;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return 0;
|
|
}
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL)
|
|
goto err;
|
|
if (!BN_MONT_CTX_set(mont, p, ctx)) {
|
|
ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
one = BN_new();
|
|
if (one == NULL)
|
|
goto err;
|
|
if (!BN_to_montgomery(one, BN_value_one(), mont, ctx))
|
|
goto err;
|
|
|
|
group->field_data1 = mont;
|
|
mont = NULL;
|
|
group->field_data2 = one;
|
|
one = NULL;
|
|
|
|
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
|
|
|
if (!ret) {
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
group->field_data1 = NULL;
|
|
BN_free(group->field_data2);
|
|
group->field_data2 = NULL;
|
|
}
|
|
|
|
err:
|
|
BN_free(one);
|
|
BN_CTX_free(new_ctx);
|
|
BN_MONT_CTX_free(mont);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
if (group->field_data1 == NULL) {
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_MUL, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_mod_mul_montgomery(r, a, b, group->field_data1, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->field_data1 == NULL) {
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_SQR, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_mod_mul_montgomery(r, a, a, group->field_data1, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r,
|
|
const BIGNUM *a, BN_CTX *ctx)
|
|
{
|
|
if (group->field_data1 == NULL) {
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_ENCODE, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_to_montgomery(r, a, (BN_MONT_CTX *)group->field_data1, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r,
|
|
const BIGNUM *a, BN_CTX *ctx)
|
|
{
|
|
if (group->field_data1 == NULL) {
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_DECODE, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_from_montgomery(r, a, group->field_data1, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->field_data2 == NULL) {
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
if (!BN_copy(r, group->field_data2))
|
|
return 0;
|
|
return 1;
|
|
}
|