mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
68a51d59a2
The idea to have all these things in providers/common was viable as long as the implementations was spread around their main providers. This is, however, no longer the case, so we move the common blocks closer to the source that use them. Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/10564)
301 lines
9.2 KiB
C++
301 lines
9.2 KiB
C++
/*
|
|
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*-
|
|
* IBM S390X support for AES GCM.
|
|
* This file is included by cipher_aes_gcm_hw.c
|
|
*/
|
|
|
|
/* iv + padding length for iv lengths != 12 */
|
|
#define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
|
|
|
|
static int s390x_aes_gcm_initkey(PROV_GCM_CTX *ctx,
|
|
const unsigned char *key, size_t keylen)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
|
|
ctx->key_set = 1;
|
|
memcpy(&actx->plat.s390x.param.kma.k, key, keylen);
|
|
actx->plat.s390x.fc = S390X_AES_FC(keylen);
|
|
if (!ctx->enc)
|
|
actx->plat.s390x.fc |= S390X_DECRYPT;
|
|
return 1;
|
|
}
|
|
|
|
static int s390x_aes_gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv,
|
|
size_t ivlen)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
|
|
|
|
kma->t.g[0] = 0;
|
|
kma->t.g[1] = 0;
|
|
kma->tpcl = 0;
|
|
kma->taadl = 0;
|
|
actx->plat.s390x.mreslen = 0;
|
|
actx->plat.s390x.areslen = 0;
|
|
actx->plat.s390x.kreslen = 0;
|
|
|
|
if (ivlen == GCM_IV_DEFAULT_SIZE) {
|
|
memcpy(&kma->j0, iv, ivlen);
|
|
kma->j0.w[3] = 1;
|
|
kma->cv.w = 1;
|
|
} else {
|
|
unsigned long long ivbits = ivlen << 3;
|
|
size_t len = S390X_gcm_ivpadlen(ivlen);
|
|
unsigned char iv_zero_pad[S390X_gcm_ivpadlen(GCM_IV_MAX_SIZE)];
|
|
/*
|
|
* The IV length needs to be zero padded to be a multiple of 16 bytes
|
|
* followed by 8 bytes of zeros and 8 bytes for the IV length.
|
|
* The GHASH of this value can then be calculated.
|
|
*/
|
|
memcpy(iv_zero_pad, iv, ivlen);
|
|
memset(iv_zero_pad + ivlen, 0, len - ivlen);
|
|
memcpy(iv_zero_pad + len - sizeof(ivbits), &ivbits, sizeof(ivbits));
|
|
/*
|
|
* Calculate the ghash of the iv - the result is stored into the tag
|
|
* param.
|
|
*/
|
|
s390x_kma(iv_zero_pad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma);
|
|
actx->plat.s390x.fc |= S390X_KMA_HS; /* The hash subkey is set */
|
|
|
|
/* Copy the 128 bit GHASH result into J0 and clear the tag */
|
|
kma->j0.g[0] = kma->t.g[0];
|
|
kma->j0.g[1] = kma->t.g[1];
|
|
kma->t.g[0] = 0;
|
|
kma->t.g[1] = 0;
|
|
/* Set the 32 bit counter */
|
|
kma->cv.w = kma->j0.w[3];
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int s390x_aes_gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
|
|
unsigned char out[AES_BLOCK_SIZE];
|
|
int rc;
|
|
|
|
kma->taadl <<= 3;
|
|
kma->tpcl <<= 3;
|
|
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
|
|
actx->plat.s390x.mres, actx->plat.s390x.mreslen, out,
|
|
actx->plat.s390x.fc | S390X_KMA_LAAD | S390X_KMA_LPC, kma);
|
|
|
|
/* gctx->mres already returned to the caller */
|
|
OPENSSL_cleanse(out, actx->plat.s390x.mreslen);
|
|
|
|
if (ctx->enc) {
|
|
ctx->taglen = GCM_TAG_MAX_SIZE;
|
|
memcpy(tag, kma->t.b, ctx->taglen);
|
|
rc = 1;
|
|
} else {
|
|
rc = (CRYPTO_memcmp(tag, kma->t.b, ctx->taglen) == 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int s390x_aes_gcm_one_shot(PROV_GCM_CTX *ctx,
|
|
unsigned char *aad, size_t aad_len,
|
|
const unsigned char *in, size_t in_len,
|
|
unsigned char *out,
|
|
unsigned char *tag, size_t taglen)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
|
|
int rc;
|
|
|
|
kma->taadl = aad_len << 3;
|
|
kma->tpcl = in_len << 3;
|
|
s390x_kma(aad, aad_len, in, in_len, out,
|
|
actx->plat.s390x.fc | S390X_KMA_LAAD | S390X_KMA_LPC, kma);
|
|
|
|
if (ctx->enc) {
|
|
memcpy(tag, kma->t.b, taglen);
|
|
rc = 1;
|
|
} else {
|
|
rc = (CRYPTO_memcmp(tag, kma->t.b, taglen) == 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Process additional authenticated data. Returns 1 on success. Code is
|
|
* big-endian.
|
|
*/
|
|
static int s390x_aes_gcm_aad_update(PROV_GCM_CTX *ctx,
|
|
const unsigned char *aad, size_t len)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
|
|
unsigned long long alen;
|
|
int n, rem;
|
|
|
|
/* If already processed pt/ct then error */
|
|
if (kma->tpcl != 0)
|
|
return 0;
|
|
|
|
/* update the total aad length */
|
|
alen = kma->taadl + len;
|
|
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
|
return 0;
|
|
kma->taadl = alen;
|
|
|
|
/* check if there is any existing aad data from a previous add */
|
|
n = actx->plat.s390x.areslen;
|
|
if (n) {
|
|
/* add additional data to a buffer until it has 16 bytes */
|
|
while (n && len) {
|
|
actx->plat.s390x.ares[n] = *aad;
|
|
++aad;
|
|
--len;
|
|
n = (n + 1) & 0xf;
|
|
}
|
|
/* ctx->ares contains a complete block if offset has wrapped around */
|
|
if (!n) {
|
|
s390x_kma(actx->plat.s390x.ares, 16, NULL, 0, NULL,
|
|
actx->plat.s390x.fc, kma);
|
|
actx->plat.s390x.fc |= S390X_KMA_HS;
|
|
}
|
|
actx->plat.s390x.areslen = n;
|
|
}
|
|
|
|
/* If there are leftover bytes (< 128 bits) save them for next time */
|
|
rem = len & 0xf;
|
|
/* Add any remaining 16 byte blocks (128 bit each) */
|
|
len &= ~(size_t)0xf;
|
|
if (len) {
|
|
s390x_kma(aad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma);
|
|
actx->plat.s390x.fc |= S390X_KMA_HS;
|
|
aad += len;
|
|
}
|
|
|
|
if (rem) {
|
|
actx->plat.s390x.areslen = rem;
|
|
|
|
do {
|
|
--rem;
|
|
actx->plat.s390x.ares[rem] = aad[rem];
|
|
} while (rem);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 1 for
|
|
* success. Code is big-endian.
|
|
*/
|
|
static int s390x_aes_gcm_cipher_update(PROV_GCM_CTX *ctx,
|
|
const unsigned char *in, size_t len,
|
|
unsigned char *out)
|
|
{
|
|
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
|
|
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
|
|
const unsigned char *inptr;
|
|
unsigned long long mlen;
|
|
union {
|
|
unsigned int w[4];
|
|
unsigned char b[16];
|
|
} buf;
|
|
size_t inlen;
|
|
int n, rem, i;
|
|
|
|
mlen = kma->tpcl + len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return 0;
|
|
kma->tpcl = mlen;
|
|
|
|
n = actx->plat.s390x.mreslen;
|
|
if (n) {
|
|
inptr = in;
|
|
inlen = len;
|
|
while (n && inlen) {
|
|
actx->plat.s390x.mres[n] = *inptr;
|
|
n = (n + 1) & 0xf;
|
|
++inptr;
|
|
--inlen;
|
|
}
|
|
/* ctx->mres contains a complete block if offset has wrapped around */
|
|
if (!n) {
|
|
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
|
|
actx->plat.s390x.mres, 16, buf.b,
|
|
actx->plat.s390x.fc | S390X_KMA_LAAD, kma);
|
|
actx->plat.s390x.fc |= S390X_KMA_HS;
|
|
actx->plat.s390x.areslen = 0;
|
|
|
|
/* previous call already encrypted/decrypted its remainder,
|
|
* see comment below */
|
|
n = actx->plat.s390x.mreslen;
|
|
while (n) {
|
|
*out = buf.b[n];
|
|
n = (n + 1) & 0xf;
|
|
++out;
|
|
++in;
|
|
--len;
|
|
}
|
|
actx->plat.s390x.mreslen = 0;
|
|
}
|
|
}
|
|
|
|
rem = len & 0xf;
|
|
|
|
len &= ~(size_t)0xf;
|
|
if (len) {
|
|
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, in, len, out,
|
|
actx->plat.s390x.fc | S390X_KMA_LAAD, kma);
|
|
in += len;
|
|
out += len;
|
|
actx->plat.s390x.fc |= S390X_KMA_HS;
|
|
actx->plat.s390x.areslen = 0;
|
|
}
|
|
|
|
/*-
|
|
* If there is a remainder, it has to be saved such that it can be
|
|
* processed by kma later. However, we also have to do the for-now
|
|
* unauthenticated encryption/decryption part here and now...
|
|
*/
|
|
if (rem) {
|
|
if (!actx->plat.s390x.mreslen) {
|
|
buf.w[0] = kma->j0.w[0];
|
|
buf.w[1] = kma->j0.w[1];
|
|
buf.w[2] = kma->j0.w[2];
|
|
buf.w[3] = kma->cv.w + 1;
|
|
s390x_km(buf.b, 16, actx->plat.s390x.kres,
|
|
actx->plat.s390x.fc & 0x1f, &kma->k);
|
|
}
|
|
|
|
n = actx->plat.s390x.mreslen;
|
|
for (i = 0; i < rem; i++) {
|
|
actx->plat.s390x.mres[n + i] = in[i];
|
|
out[i] = in[i] ^ actx->plat.s390x.kres[n + i];
|
|
}
|
|
actx->plat.s390x.mreslen += rem;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static const PROV_GCM_HW s390x_aes_gcm = {
|
|
s390x_aes_gcm_initkey,
|
|
s390x_aes_gcm_setiv,
|
|
s390x_aes_gcm_aad_update,
|
|
s390x_aes_gcm_cipher_update,
|
|
s390x_aes_gcm_cipher_final,
|
|
s390x_aes_gcm_one_shot
|
|
};
|
|
|
|
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
|
|
{
|
|
if ((keybits == 128 && S390X_aes_128_gcm_CAPABLE)
|
|
|| (keybits == 192 && S390X_aes_192_gcm_CAPABLE)
|
|
|| (keybits == 256 && S390X_aes_256_gcm_CAPABLE))
|
|
return &s390x_aes_gcm;
|
|
return &aes_gcm;
|
|
}
|