openssl/ssl/record/rec_layer_s3.c
FdaSilvaYY 2bb83824bb ssl: rework "e_os.h" inclusions
- Remove e_os.h include from "ssl_local.h"
- Added e_os.h into the files that need it now.
- Move e_os.h to be the very first include

Reviewed-by: Paul Dale <ppzgs1@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14344)
2024-09-05 17:02:51 +02:00

1483 lines
51 KiB
C

/*
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/e_os.h"
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#include <assert.h>
#include "../ssl_local.h"
#include "../quic/quic_local.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/rand.h>
#include <openssl/core_names.h>
#include "record_local.h"
#include "internal/packet.h"
#include "internal/comp.h"
void RECORD_LAYER_init(RECORD_LAYER *rl, SSL_CONNECTION *s)
{
rl->s = s;
}
int RECORD_LAYER_clear(RECORD_LAYER *rl)
{
int ret = 1;
/* Clear any buffered records we no longer need */
while (rl->curr_rec < rl->num_recs)
ret &= ssl_release_record(rl->s,
&(rl->tlsrecs[rl->curr_rec++]),
0);
rl->wnum = 0;
memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
rl->handshake_fragment_len = 0;
rl->wpend_tot = 0;
rl->wpend_type = 0;
rl->wpend_buf = NULL;
rl->alert_count = 0;
rl->num_recs = 0;
rl->curr_rec = 0;
BIO_free(rl->rrlnext);
rl->rrlnext = NULL;
if (rl->rrlmethod != NULL)
rl->rrlmethod->free(rl->rrl); /* Ignore return value */
if (rl->wrlmethod != NULL)
rl->wrlmethod->free(rl->wrl); /* Ignore return value */
BIO_free(rl->rrlnext);
rl->rrlmethod = NULL;
rl->wrlmethod = NULL;
rl->rrlnext = NULL;
rl->rrl = NULL;
rl->wrl = NULL;
if (rl->d)
DTLS_RECORD_LAYER_clear(rl);
return ret;
}
int RECORD_LAYER_reset(RECORD_LAYER *rl)
{
int ret;
ret = RECORD_LAYER_clear(rl);
/* We try and reset both record layers even if one fails */
ret &= ssl_set_new_record_layer(rl->s,
SSL_CONNECTION_IS_DTLS(rl->s)
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
OSSL_RECORD_DIRECTION_READ,
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
NID_undef, NULL, NULL, NULL);
ret &= ssl_set_new_record_layer(rl->s,
SSL_CONNECTION_IS_DTLS(rl->s)
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
OSSL_RECORD_DIRECTION_WRITE,
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
NID_undef, NULL, NULL, NULL);
/* SSLfatal already called in the event of failure */
return ret;
}
/* Checks if we have unprocessed read ahead data pending */
int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
{
return rl->rrlmethod->unprocessed_read_pending(rl->rrl);
}
/* Checks if we have decrypted unread record data pending */
int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl)
{
return (rl->curr_rec < rl->num_recs)
|| rl->rrlmethod->processed_read_pending(rl->rrl);
}
int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
{
return rl->wpend_tot > 0;
}
static uint32_t ossl_get_max_early_data(SSL_CONNECTION *s)
{
uint32_t max_early_data;
SSL_SESSION *sess = s->session;
/*
* If we are a client then we always use the max_early_data from the
* session/psksession. Otherwise we go with the lowest out of the max early
* data set in the session and the configured max_early_data.
*/
if (!s->server && sess->ext.max_early_data == 0) {
if (!ossl_assert(s->psksession != NULL
&& s->psksession->ext.max_early_data > 0)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
sess = s->psksession;
}
if (!s->server)
max_early_data = sess->ext.max_early_data;
else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED)
max_early_data = s->recv_max_early_data;
else
max_early_data = s->recv_max_early_data < sess->ext.max_early_data
? s->recv_max_early_data : sess->ext.max_early_data;
return max_early_data;
}
static int ossl_early_data_count_ok(SSL_CONNECTION *s, size_t length,
size_t overhead, int send)
{
uint32_t max_early_data;
max_early_data = ossl_get_max_early_data(s);
if (max_early_data == 0) {
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
/* If we are dealing with ciphertext we need to allow for the overhead */
max_early_data += overhead;
if (s->early_data_count + length > max_early_data) {
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
s->early_data_count += length;
return 1;
}
size_t ssl3_pending(const SSL *s)
{
size_t i, num = 0;
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return 0;
if (SSL_CONNECTION_IS_DTLS(sc)) {
TLS_RECORD *rdata;
pitem *item, *iter;
iter = pqueue_iterator(sc->rlayer.d->buffered_app_data);
while ((item = pqueue_next(&iter)) != NULL) {
rdata = item->data;
num += rdata->length;
}
}
for (i = 0; i < sc->rlayer.num_recs; i++) {
if (sc->rlayer.tlsrecs[i].type != SSL3_RT_APPLICATION_DATA)
return num;
num += sc->rlayer.tlsrecs[i].length;
}
num += sc->rlayer.rrlmethod->app_data_pending(sc->rlayer.rrl);
return num;
}
void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
{
ctx->default_read_buf_len = len;
}
void SSL_set_default_read_buffer_len(SSL *s, size_t len)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL || IS_QUIC(s))
return;
sc->rlayer.default_read_buf_len = len;
}
const char *SSL_rstate_string_long(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
const char *lng;
if (sc == NULL)
return NULL;
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
return "unknown";
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, NULL, &lng);
return lng;
}
const char *SSL_rstate_string(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
const char *shrt;
if (sc == NULL)
return NULL;
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
return "unknown";
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, &shrt, NULL);
return shrt;
}
static int tls_write_check_pending(SSL_CONNECTION *s, uint8_t type,
const unsigned char *buf, size_t len)
{
if (s->rlayer.wpend_tot == 0)
return 0;
/* We have pending data, so do some sanity checks */
if ((s->rlayer.wpend_tot > len)
|| (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)
&& (s->rlayer.wpend_buf != buf))
|| (s->rlayer.wpend_type != type)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY);
return -1;
}
return 1;
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int ssl3_write_bytes(SSL *ssl, uint8_t type, const void *buf_, size_t len,
size_t *written)
{
const unsigned char *buf = buf_;
size_t tot;
size_t n, max_send_fragment, split_send_fragment, maxpipes;
int i;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
OSSL_RECORD_TEMPLATE tmpls[SSL_MAX_PIPELINES];
unsigned int recversion;
if (s == NULL)
return -1;
s->rwstate = SSL_NOTHING;
tot = s->rlayer.wnum;
/*
* ensure that if we end up with a smaller value of data to write out
* than the original len from a write which didn't complete for
* non-blocking I/O and also somehow ended up avoiding the check for
* this in tls_write_check_pending/SSL_R_BAD_WRITE_RETRY as it must never be
* possible to end up with (len-tot) as a large number that will then
* promptly send beyond the end of the users buffer ... so we trap and
* report the error in a way the user will notice
*/
if ((len < s->rlayer.wnum)
|| ((s->rlayer.wpend_tot != 0)
&& (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_LENGTH);
return -1;
}
if (s->early_data_state == SSL_EARLY_DATA_WRITING
&& !ossl_early_data_count_ok(s, len, 0, 1)) {
/* SSLfatal() already called */
return -1;
}
s->rlayer.wnum = 0;
/*
* If we are supposed to be sending a KeyUpdate or NewSessionTicket then go
* into init unless we have writes pending - in which case we should finish
* doing that first.
*/
if (s->rlayer.wpend_tot == 0 && (s->key_update != SSL_KEY_UPDATE_NONE
|| s->ext.extra_tickets_expected > 0))
ossl_statem_set_in_init(s, 1);
/*
* When writing early data on the server side we could be "in_init" in
* between receiving the EoED and the CF - but we don't want to handle those
* messages yet.
*/
if (SSL_in_init(ssl) && !ossl_statem_get_in_handshake(s)
&& s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) {
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
}
i = tls_write_check_pending(s, type, buf, len);
if (i < 0) {
/* SSLfatal() already called */
return i;
} else if (i > 0) {
/* Retry needed */
i = HANDLE_RLAYER_WRITE_RETURN(s,
s->rlayer.wrlmethod->retry_write_records(s->rlayer.wrl));
if (i <= 0) {
s->rlayer.wnum = tot;
return i;
}
tot += s->rlayer.wpend_tot;
s->rlayer.wpend_tot = 0;
} /* else no retry required */
if (tot == 0) {
/*
* We've not previously sent any data for this write so memorize
* arguments so that we can detect bad write retries later
*/
s->rlayer.wpend_tot = 0;
s->rlayer.wpend_type = type;
s->rlayer.wpend_buf = buf;
}
if (tot == len) { /* done? */
*written = tot;
return 1;
}
/* If we have an alert to send, lets send it */
if (s->s3.alert_dispatch > 0) {
i = ssl->method->ssl_dispatch_alert(ssl);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
s->rlayer.wnum = tot;
return i;
}
/* if it went, fall through and send more stuff */
}
n = (len - tot);
max_send_fragment = ssl_get_max_send_fragment(s);
split_send_fragment = ssl_get_split_send_fragment(s);
if (max_send_fragment == 0
|| split_send_fragment == 0
|| split_send_fragment > max_send_fragment) {
/*
* We should have prevented this when we set/get the split and max send
* fragments so we shouldn't get here
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
/*
* Some servers hang if initial client hello is larger than 256 bytes
* and record version number > TLS 1.0
*/
recversion = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION : s->version;
if (SSL_get_state(ssl) == TLS_ST_CW_CLNT_HELLO
&& !s->renegotiate
&& TLS1_get_version(ssl) > TLS1_VERSION
&& s->hello_retry_request == SSL_HRR_NONE)
recversion = TLS1_VERSION;
for (;;) {
size_t tmppipelen, remain;
size_t j, lensofar = 0;
/*
* Ask the record layer how it would like to split the amount of data
* that we have, and how many of those records it would like in one go.
*/
maxpipes = s->rlayer.wrlmethod->get_max_records(s->rlayer.wrl, type, n,
max_send_fragment,
&split_send_fragment);
/*
* If max_pipelines is 0 then this means "undefined" and we default to
* whatever the record layer wants to do. Otherwise we use the smallest
* value from the number requested by the record layer, and max number
* configured by the user.
*/
if (s->max_pipelines > 0 && maxpipes > s->max_pipelines)
maxpipes = s->max_pipelines;
if (maxpipes > SSL_MAX_PIPELINES)
maxpipes = SSL_MAX_PIPELINES;
if (split_send_fragment > max_send_fragment) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (n / maxpipes >= split_send_fragment) {
/*
* We have enough data to completely fill all available
* pipelines
*/
for (j = 0; j < maxpipes; j++) {
tmpls[j].type = type;
tmpls[j].version = recversion;
tmpls[j].buf = &(buf[tot]) + (j * split_send_fragment);
tmpls[j].buflen = split_send_fragment;
}
/* Remember how much data we are going to be sending */
s->rlayer.wpend_tot = maxpipes * split_send_fragment;
} else {
/* We can partially fill all available pipelines */
tmppipelen = n / maxpipes;
remain = n % maxpipes;
/*
* If there is a remainder we add an extra byte to the first few
* pipelines
*/
if (remain > 0)
tmppipelen++;
for (j = 0; j < maxpipes; j++) {
tmpls[j].type = type;
tmpls[j].version = recversion;
tmpls[j].buf = &(buf[tot]) + lensofar;
tmpls[j].buflen = tmppipelen;
lensofar += tmppipelen;
if (j + 1 == remain)
tmppipelen--;
}
/* Remember how much data we are going to be sending */
s->rlayer.wpend_tot = n;
}
i = HANDLE_RLAYER_WRITE_RETURN(s,
s->rlayer.wrlmethod->write_records(s->rlayer.wrl, tmpls, maxpipes));
if (i <= 0) {
/* SSLfatal() already called if appropriate */
s->rlayer.wnum = tot;
return i;
}
if (s->rlayer.wpend_tot == n
|| (type == SSL3_RT_APPLICATION_DATA
&& (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0)) {
*written = tot + s->rlayer.wpend_tot;
s->rlayer.wpend_tot = 0;
return 1;
}
n -= s->rlayer.wpend_tot;
tot += s->rlayer.wpend_tot;
}
}
int ossl_tls_handle_rlayer_return(SSL_CONNECTION *s, int writing, int ret,
char *file, int line)
{
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (ret == OSSL_RECORD_RETURN_RETRY) {
s->rwstate = writing ? SSL_WRITING : SSL_READING;
ret = -1;
} else {
s->rwstate = SSL_NOTHING;
if (ret == OSSL_RECORD_RETURN_EOF) {
if (writing) {
/*
* This shouldn't happen with a writing operation. We treat it
* as fatal.
*/
ERR_new();
ERR_set_debug(file, line, 0);
ossl_statem_fatal(s, SSL_AD_INTERNAL_ERROR,
ERR_R_INTERNAL_ERROR, NULL);
ret = OSSL_RECORD_RETURN_FATAL;
} else if ((s->options & SSL_OP_IGNORE_UNEXPECTED_EOF) != 0) {
SSL_set_shutdown(ssl, SSL_RECEIVED_SHUTDOWN);
s->s3.warn_alert = SSL_AD_CLOSE_NOTIFY;
} else {
ERR_new();
ERR_set_debug(file, line, 0);
/*
* This reason code is part of the API and may be used by
* applications for control flow decisions.
*/
ossl_statem_fatal(s, SSL_AD_DECODE_ERROR,
SSL_R_UNEXPECTED_EOF_WHILE_READING, NULL);
}
} else if (ret == OSSL_RECORD_RETURN_FATAL) {
int al = s->rlayer.rrlmethod->get_alert_code(s->rlayer.rrl);
if (al != SSL_AD_NO_ALERT) {
ERR_new();
ERR_set_debug(file, line, 0);
ossl_statem_fatal(s, al, SSL_R_RECORD_LAYER_FAILURE, NULL);
}
/*
* else some failure but there is no alert code. We don't log an
* error for this. The record layer should have logged an error
* already or, if not, its due to some sys call error which will be
* reported via SSL_ERROR_SYSCALL and errno.
*/
}
/*
* The record layer distinguishes the cases of EOF, non-fatal
* err and retry. Upper layers do not.
* If we got a retry or success then *ret is already correct,
* otherwise we need to convert the return value.
*/
if (ret == OSSL_RECORD_RETURN_NON_FATAL_ERR || ret == OSSL_RECORD_RETURN_EOF)
ret = 0;
else if (ret < OSSL_RECORD_RETURN_NON_FATAL_ERR)
ret = -1;
}
return ret;
}
int ssl_release_record(SSL_CONNECTION *s, TLS_RECORD *rr, size_t length)
{
assert(rr->length >= length);
if (rr->rechandle != NULL) {
if (length == 0)
length = rr->length;
/* The record layer allocated the buffers for this record */
if (HANDLE_RLAYER_READ_RETURN(s,
s->rlayer.rrlmethod->release_record(s->rlayer.rrl,
rr->rechandle,
length)) <= 0) {
/* RLAYER_fatal already called */
return 0;
}
if (length == rr->length)
s->rlayer.curr_rec++;
} else if (length == 0 || length == rr->length) {
/* We allocated the buffers for this record (only happens with DTLS) */
OPENSSL_free(rr->allocdata);
rr->allocdata = NULL;
}
rr->length -= length;
if (rr->length > 0)
rr->off += length;
else
rr->off = 0;
return 1;
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when tls_get_message_header and tls_get_message_body
* call us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
* messages are treated as if they were handshake messages *if* the |recvd_type|
* argument is non NULL.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int ssl3_read_bytes(SSL *ssl, uint8_t type, uint8_t *recvd_type,
unsigned char *buf, size_t len,
int peek, size_t *readbytes)
{
int i, j, ret;
size_t n, curr_rec, totalbytes;
TLS_RECORD *rr;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
int is_tls13;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
is_tls13 = SSL_CONNECTION_IS_TLS13(s);
if ((type != 0
&& (type != SSL3_RT_APPLICATION_DATA)
&& (type != SSL3_RT_HANDSHAKE))
|| (peek && (type != SSL3_RT_APPLICATION_DATA))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->rlayer.handshake_fragment;
unsigned char *dst = buf;
unsigned int k;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->rlayer.handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
s->rlayer.handshake_fragment[k] = *src++;
if (recvd_type != NULL)
*recvd_type = SSL3_RT_HANDSHAKE;
*readbytes = n;
return 1;
}
/*
* Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
*/
if (!ossl_statem_get_in_handshake(s) && SSL_in_init(ssl)) {
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0)
return -1;
}
start:
s->rwstate = SSL_NOTHING;
/*-
* For each record 'i' up to |num_recs]
* rr[i].type - is the type of record
* rr[i].data, - data
* rr[i].off, - offset into 'data' for next read
* rr[i].length, - number of bytes.
*/
/* get new records if necessary */
if (s->rlayer.curr_rec >= s->rlayer.num_recs) {
s->rlayer.curr_rec = s->rlayer.num_recs = 0;
do {
rr = &s->rlayer.tlsrecs[s->rlayer.num_recs];
ret = HANDLE_RLAYER_READ_RETURN(s,
s->rlayer.rrlmethod->read_record(s->rlayer.rrl,
&rr->rechandle,
&rr->version, &rr->type,
&rr->data, &rr->length,
NULL, NULL));
if (ret <= 0) {
/* SSLfatal() already called if appropriate */
return ret;
}
rr->off = 0;
s->rlayer.num_recs++;
} while (s->rlayer.rrlmethod->processed_read_pending(s->rlayer.rrl)
&& s->rlayer.num_recs < SSL_MAX_PIPELINES);
}
rr = &s->rlayer.tlsrecs[s->rlayer.curr_rec];
if (s->rlayer.handshake_fragment_len > 0
&& rr->type != SSL3_RT_HANDSHAKE
&& SSL_CONNECTION_IS_TLS13(s)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA);
return -1;
}
/*
* Reset the count of consecutive warning alerts if we've got a non-empty
* record that isn't an alert.
*/
if (rr->type != SSL3_RT_ALERT && rr->length != 0)
s->rlayer.alert_count = 0;
/* we now have a packet which can be read and processed */
if (s->s3.change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (rr->type != SSL3_RT_HANDSHAKE)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
return -1;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
s->rlayer.curr_rec++;
s->rwstate = SSL_NOTHING;
return 0;
}
if (type == rr->type
|| (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL
&& !is_tls13)) {
/*
* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC
*/
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(ssl) && type == SSL3_RT_APPLICATION_DATA
&& SSL_IS_FIRST_HANDSHAKE(s)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE);
return -1;
}
if (type == SSL3_RT_HANDSHAKE
&& rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
&& s->rlayer.handshake_fragment_len > 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
if (recvd_type != NULL)
*recvd_type = rr->type;
if (len == 0) {
/*
* Skip a zero length record. This ensures multiple calls to
* SSL_read() with a zero length buffer will eventually cause
* SSL_pending() to report data as being available.
*/
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
return -1;
return 0;
}
totalbytes = 0;
curr_rec = s->rlayer.curr_rec;
do {
if (len - totalbytes > rr->length)
n = rr->length;
else
n = len - totalbytes;
memcpy(buf, &(rr->data[rr->off]), n);
buf += n;
if (peek) {
/* Mark any zero length record as consumed CVE-2016-6305 */
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
return -1;
} else {
if (!ssl_release_record(s, rr, n))
return -1;
}
if (rr->length == 0
|| (peek && n == rr->length)) {
rr++;
curr_rec++;
}
totalbytes += n;
} while (type == SSL3_RT_APPLICATION_DATA
&& curr_rec < s->rlayer.num_recs
&& totalbytes < len);
if (totalbytes == 0) {
/* We must have read empty records. Get more data */
goto start;
}
*readbytes = totalbytes;
return 1;
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello) or invalid (we
* were actually expecting a CCS).
*/
/*
* Lets just double check that we've not got an SSLv2 record
*/
if (rr->version == SSL2_VERSION) {
/*
* Should never happen. ssl3_get_record() should only give us an SSLv2
* record back if this is the first packet and we are looking for an
* initial ClientHello. Therefore |type| should always be equal to
* |rr->type|. If not then something has gone horribly wrong
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (ssl->method->version == TLS_ANY_VERSION
&& (s->server || rr->type != SSL3_RT_ALERT)) {
/*
* If we've got this far and still haven't decided on what version
* we're using then this must be a client side alert we're dealing
* with. We shouldn't be receiving anything other than a ClientHello
* if we are a server.
*/
s->version = rr->version;
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
/*-
* s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
if (rr->type == SSL3_RT_ALERT) {
unsigned int alert_level, alert_descr;
const unsigned char *alert_bytes = rr->data + rr->off;
PACKET alert;
if (!PACKET_buf_init(&alert, alert_bytes, rr->length)
|| !PACKET_get_1(&alert, &alert_level)
|| !PACKET_get_1(&alert, &alert_descr)
|| PACKET_remaining(&alert) != 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT);
return -1;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, ssl,
s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (ssl->ctx->info_callback != NULL)
cb = ssl->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(ssl, SSL_CB_READ_ALERT, j);
}
if ((!is_tls13 && alert_level == SSL3_AL_WARNING)
|| (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) {
s->s3.warn_alert = alert_descr;
if (!ssl_release_record(s, rr, 0))
return -1;
s->rlayer.alert_count++;
if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MANY_WARN_ALERTS);
return -1;
}
}
/*
* Apart from close_notify the only other warning alert in TLSv1.3
* is user_cancelled - which we just ignore.
*/
if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) {
goto start;
} else if (alert_descr == SSL_AD_CLOSE_NOTIFY
&& (is_tls13 || alert_level == SSL3_AL_WARNING)) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return 0;
} else if (alert_level == SSL3_AL_FATAL || is_tls13) {
s->rwstate = SSL_NOTHING;
s->s3.fatal_alert = alert_descr;
SSLfatal_data(s, SSL_AD_NO_ALERT,
SSL_AD_REASON_OFFSET + alert_descr,
"SSL alert number %d", alert_descr);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
if (!ssl_release_record(s, rr, 0))
return -1;
SSL_CTX_remove_session(s->session_ctx, s->session);
return 0;
} else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
/*
* This is a warning but we receive it if we requested
* renegotiation and the peer denied it. Terminate with a fatal
* alert because if application tried to renegotiate it
* presumably had a good reason and expects it to succeed. In
* future we might have a renegotiation where we don't care if
* the peer refused it where we carry on.
*/
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_RENEGOTIATION);
return -1;
} else if (alert_level == SSL3_AL_WARNING) {
/* We ignore any other warning alert in TLSv1.2 and below */
goto start;
}
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE);
return -1;
}
if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) {
if (rr->type == SSL3_RT_HANDSHAKE) {
BIO *rbio;
/*
* We ignore any handshake messages sent to us unless they are
* TLSv1.3 in which case we want to process them. For all other
* handshake messages we can't do anything reasonable with them
* because we are unable to write any response due to having already
* sent close_notify.
*/
if (!SSL_CONNECTION_IS_TLS13(s)) {
if (!ssl_release_record(s, rr, 0))
return -1;
if ((s->mode & SSL_MODE_AUTO_RETRY) != 0)
goto start;
s->rwstate = SSL_READING;
rbio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(rbio);
BIO_set_retry_read(rbio);
return -1;
}
} else {
/*
* The peer is continuing to send application data, but we have
* already sent close_notify. If this was expected we should have
* been called via SSL_read() and this would have been handled
* above.
* No alert sent because we already sent close_notify
*/
if (!ssl_release_record(s, rr, 0))
return -1;
SSLfatal(s, SSL_AD_NO_ALERT,
SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY);
return -1;
}
}
/*
* For handshake data we have 'fragment' storage, so fill that so that we
* can process the header at a fixed place. This is done after the
* "SHUTDOWN" code above to avoid filling the fragment storage with data
* that we're just going to discard.
*/
if (rr->type == SSL3_RT_HANDSHAKE) {
size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment);
unsigned char *dest = s->rlayer.handshake_fragment;
size_t *dest_len = &s->rlayer.handshake_fragment_len;
n = dest_maxlen - *dest_len; /* available space in 'dest' */
if (rr->length < n)
n = rr->length; /* available bytes */
/* now move 'n' bytes: */
if (n > 0) {
memcpy(dest + *dest_len, rr->data + rr->off, n);
*dest_len += n;
}
/*
* We release the number of bytes consumed, or the whole record if it
* is zero length
*/
if ((n > 0 || rr->length == 0) && !ssl_release_record(s, rr, n))
return -1;
if (*dest_len < dest_maxlen)
goto start; /* fragment was too small */
}
if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
/*
* Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or
* protocol violation)
*/
if ((s->rlayer.handshake_fragment_len >= 4)
&& !ossl_statem_get_in_handshake(s)) {
int ined = (s->early_data_state == SSL_EARLY_DATA_READING);
/* We found handshake data, so we're going back into init */
ossl_statem_set_in_init(s, 1);
i = s->handshake_func(ssl);
/* SSLfatal() already called if appropriate */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
/*
* If we were actually trying to read early data and we found a
* handshake message, then we don't want to continue to try and read
* the application data any more. It won't be "early" now.
*/
if (ined)
return -1;
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (!RECORD_LAYER_read_pending(&s->rlayer)) {
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return -1;
}
}
goto start;
}
switch (rr->type) {
default:
/*
* TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but
* TLS 1.2 says you MUST send an unexpected message alert. We use the
* TLS 1.2 behaviour for all protocol versions to prevent issues where
* no progress is being made and the peer continually sends unrecognised
* record types, using up resources processing them.
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
* that should not happen when type != rr->type
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR);
return -1;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (ossl_statem_app_data_allowed(s)) {
s->s3.in_read_app_data = 2;
return -1;
} else if (ossl_statem_skip_early_data(s)) {
/*
* This can happen after a client sends a CH followed by early_data,
* but the server responds with a HelloRetryRequest. The server
* reads the next record from the client expecting to find a
* plaintext ClientHello but gets a record which appears to be
* application data. The trial decrypt "works" because null
* decryption was applied. We just skip it and move on to the next
* record.
*/
if (!ossl_early_data_count_ok(s, rr->length,
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
/* SSLfatal() already called */
return -1;
}
if (!ssl_release_record(s, rr, 0))
return -1;
goto start;
} else {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
}
}
}
/*
* Returns true if the current rrec was sent in SSLv2 backwards compatible
* format and false otherwise.
*/
int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
{
if (SSL_CONNECTION_IS_DTLS(rl->s))
return 0;
return rl->tlsrecs[0].version == SSL2_VERSION;
}
static OSSL_FUNC_rlayer_msg_callback_fn rlayer_msg_callback_wrapper;
static void rlayer_msg_callback_wrapper(int write_p, int version,
int content_type, const void *buf,
size_t len, void *cbarg)
{
SSL_CONNECTION *s = cbarg;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (s->msg_callback != NULL)
s->msg_callback(write_p, version, content_type, buf, len, ssl,
s->msg_callback_arg);
}
static OSSL_FUNC_rlayer_security_fn rlayer_security_wrapper;
static int rlayer_security_wrapper(void *cbarg, int op, int bits, int nid,
void *other)
{
SSL_CONNECTION *s = cbarg;
return ssl_security(s, op, bits, nid, other);
}
static OSSL_FUNC_rlayer_padding_fn rlayer_padding_wrapper;
static size_t rlayer_padding_wrapper(void *cbarg, int type, size_t len)
{
SSL_CONNECTION *s = cbarg;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
return s->rlayer.record_padding_cb(ssl, type, len,
s->rlayer.record_padding_arg);
}
static const OSSL_DISPATCH rlayer_dispatch[] = {
{ OSSL_FUNC_RLAYER_SKIP_EARLY_DATA, (void (*)(void))ossl_statem_skip_early_data },
{ OSSL_FUNC_RLAYER_MSG_CALLBACK, (void (*)(void))rlayer_msg_callback_wrapper },
{ OSSL_FUNC_RLAYER_SECURITY, (void (*)(void))rlayer_security_wrapper },
{ OSSL_FUNC_RLAYER_PADDING, (void (*)(void))rlayer_padding_wrapper },
OSSL_DISPATCH_END
};
void ossl_ssl_set_custom_record_layer(SSL_CONNECTION *s,
const OSSL_RECORD_METHOD *meth,
void *rlarg)
{
s->rlayer.custom_rlmethod = meth;
s->rlayer.rlarg = rlarg;
}
static const OSSL_RECORD_METHOD *ssl_select_next_record_layer(SSL_CONNECTION *s,
int direction,
int level)
{
if (s->rlayer.custom_rlmethod != NULL)
return s->rlayer.custom_rlmethod;
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE) {
if (SSL_CONNECTION_IS_DTLS(s))
return &ossl_dtls_record_method;
return &ossl_tls_record_method;
}
#ifndef OPENSSL_NO_KTLS
/* KTLS does not support renegotiation */
if (level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION
&& (s->options & SSL_OP_ENABLE_KTLS) != 0
&& (SSL_CONNECTION_IS_TLS13(s) || SSL_IS_FIRST_HANDSHAKE(s)))
return &ossl_ktls_record_method;
#endif
/* Default to the current OSSL_RECORD_METHOD */
return direction == OSSL_RECORD_DIRECTION_READ ? s->rlayer.rrlmethod
: s->rlayer.wrlmethod;
}
static int ssl_post_record_layer_select(SSL_CONNECTION *s, int direction)
{
const OSSL_RECORD_METHOD *thismethod;
OSSL_RECORD_LAYER *thisrl;
if (direction == OSSL_RECORD_DIRECTION_READ) {
thismethod = s->rlayer.rrlmethod;
thisrl = s->rlayer.rrl;
} else {
thismethod = s->rlayer.wrlmethod;
thisrl = s->rlayer.wrl;
}
#ifndef OPENSSL_NO_KTLS
{
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (s->rlayer.rrlmethod == &ossl_ktls_record_method) {
/* KTLS does not support renegotiation so disallow it */
SSL_set_options(ssl, SSL_OP_NO_RENEGOTIATION);
}
}
#endif
if (SSL_IS_FIRST_HANDSHAKE(s) && thismethod->set_first_handshake != NULL)
thismethod->set_first_handshake(thisrl, 1);
if (s->max_pipelines != 0 && thismethod->set_max_pipelines != NULL)
thismethod->set_max_pipelines(thisrl, s->max_pipelines);
return 1;
}
int ssl_set_new_record_layer(SSL_CONNECTION *s, int version,
int direction, int level,
unsigned char *secret, size_t secretlen,
unsigned char *key, size_t keylen,
unsigned char *iv, size_t ivlen,
unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
int mactype, const EVP_MD *md,
const SSL_COMP *comp, const EVP_MD *kdfdigest)
{
OSSL_PARAM options[5], *opts = options;
OSSL_PARAM settings[6], *set = settings;
const OSSL_RECORD_METHOD **thismethod;
OSSL_RECORD_LAYER **thisrl, *newrl = NULL;
BIO *thisbio;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
const OSSL_RECORD_METHOD *meth;
int use_etm, stream_mac = 0, tlstree = 0;
unsigned int maxfrag = (direction == OSSL_RECORD_DIRECTION_WRITE)
? ssl_get_max_send_fragment(s)
: SSL3_RT_MAX_PLAIN_LENGTH;
int use_early_data = 0;
uint32_t max_early_data;
COMP_METHOD *compm = (comp == NULL) ? NULL : comp->method;
meth = ssl_select_next_record_layer(s, direction, level);
if (direction == OSSL_RECORD_DIRECTION_READ) {
thismethod = &s->rlayer.rrlmethod;
thisrl = &s->rlayer.rrl;
thisbio = s->rbio;
} else {
thismethod = &s->rlayer.wrlmethod;
thisrl = &s->rlayer.wrl;
thisbio = s->wbio;
}
if (meth == NULL)
meth = *thismethod;
if (!ossl_assert(meth != NULL)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
/* Parameters that *may* be supported by a record layer if passed */
*opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS,
&s->options);
*opts++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE,
&s->mode);
if (direction == OSSL_RECORD_DIRECTION_READ) {
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN,
&s->rlayer.default_read_buf_len);
*opts++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD,
&s->rlayer.read_ahead);
} else {
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_BLOCK_PADDING,
&s->rlayer.block_padding);
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_HS_PADDING,
&s->rlayer.hs_padding);
}
*opts = OSSL_PARAM_construct_end();
/* Parameters that *must* be supported by a record layer if passed */
if (direction == OSSL_RECORD_DIRECTION_READ) {
use_etm = SSL_READ_ETM(s) ? 1 : 0;
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM) != 0)
stream_mac = 1;
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_TLSTREE) != 0)
tlstree = 1;
} else {
use_etm = SSL_WRITE_ETM(s) ? 1 : 0;
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) != 0)
stream_mac = 1;
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_TLSTREE) != 0)
tlstree = 1;
}
if (use_etm)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM,
&use_etm);
if (stream_mac)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC,
&stream_mac);
if (tlstree)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE,
&tlstree);
/*
* We only need to do this for the read side. The write side should already
* have the correct value due to the ssl_get_max_send_fragment() call above
*/
if (direction == OSSL_RECORD_DIRECTION_READ
&& s->session != NULL
&& USE_MAX_FRAGMENT_LENGTH_EXT(s->session))
maxfrag = GET_MAX_FRAGMENT_LENGTH(s->session);
if (maxfrag != SSL3_RT_MAX_PLAIN_LENGTH)
*set++ = OSSL_PARAM_construct_uint(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN,
&maxfrag);
/*
* The record layer must check the amount of early data sent or received
* using the early keys. A server also needs to worry about rejected early
* data that might arrive when the handshake keys are in force.
*/
if (s->server && direction == OSSL_RECORD_DIRECTION_READ) {
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY
|| level == OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE);
} else if (!s->server && direction == OSSL_RECORD_DIRECTION_WRITE) {
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY);
}
if (use_early_data) {
max_early_data = ossl_get_max_early_data(s);
if (max_early_data != 0)
*set++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA,
&max_early_data);
}
*set = OSSL_PARAM_construct_end();
for (;;) {
int rlret;
BIO *prev = NULL;
BIO *next = NULL;
unsigned int epoch = 0;
OSSL_DISPATCH rlayer_dispatch_tmp[OSSL_NELEM(rlayer_dispatch)];
size_t i, j;
if (direction == OSSL_RECORD_DIRECTION_READ) {
prev = s->rlayer.rrlnext;
if (SSL_CONNECTION_IS_DTLS(s)
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
epoch = dtls1_get_epoch(s, SSL3_CC_READ); /* new epoch */
#ifndef OPENSSL_NO_DGRAM
if (SSL_CONNECTION_IS_DTLS(s))
next = BIO_new(BIO_s_dgram_mem());
else
#endif
next = BIO_new(BIO_s_mem());
if (next == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
s->rlayer.rrlnext = next;
} else {
if (SSL_CONNECTION_IS_DTLS(s)
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
epoch = dtls1_get_epoch(s, SSL3_CC_WRITE); /* new epoch */
}
/*
* Create a copy of the dispatch array, missing out wrappers for
* callbacks that we don't need.
*/
for (i = 0, j = 0; i < OSSL_NELEM(rlayer_dispatch); i++) {
switch (rlayer_dispatch[i].function_id) {
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
if (s->msg_callback == NULL)
continue;
break;
case OSSL_FUNC_RLAYER_PADDING:
if (s->rlayer.record_padding_cb == NULL)
continue;
break;
default:
break;
}
rlayer_dispatch_tmp[j++] = rlayer_dispatch[i];
}
rlret = meth->new_record_layer(sctx->libctx, sctx->propq, version,
s->server, direction, level, epoch,
secret, secretlen, key, keylen, iv,
ivlen, mackey, mackeylen, ciph, taglen,
mactype, md, compm, kdfdigest, prev,
thisbio, next, NULL, NULL, settings,
options, rlayer_dispatch_tmp, s,
s->rlayer.rlarg, &newrl);
BIO_free(prev);
switch (rlret) {
case OSSL_RECORD_RETURN_FATAL:
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_RECORD_LAYER_FAILURE);
return 0;
case OSSL_RECORD_RETURN_NON_FATAL_ERR:
if (*thismethod != meth && *thismethod != NULL) {
/*
* We tried a new record layer method, but it didn't work out,
* so we fallback to the original method and try again
*/
meth = *thismethod;
continue;
}
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_SUITABLE_RECORD_LAYER);
return 0;
case OSSL_RECORD_RETURN_SUCCESS:
break;
default:
/* Should not happen */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
break;
}
/*
* Free the old record layer if we have one except in the case of DTLS when
* writing and there are still buffered sent messages in our queue. In that
* case the record layer is still referenced by those buffered messages for
* potential retransmit. Only when those buffered messages get freed do we
* free the record layer object (see dtls1_hm_fragment_free)
*/
if (!SSL_CONNECTION_IS_DTLS(s)
|| direction == OSSL_RECORD_DIRECTION_READ
|| pqueue_peek(s->d1->sent_messages) == NULL) {
if (*thismethod != NULL && !(*thismethod)->free(*thisrl)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
*thisrl = newrl;
*thismethod = meth;
return ssl_post_record_layer_select(s, direction);
}
int ssl_set_record_protocol_version(SSL_CONNECTION *s, int vers)
{
if (!ossl_assert(s->rlayer.rrlmethod != NULL)
|| !ossl_assert(s->rlayer.wrlmethod != NULL))
return 0;
s->rlayer.rrlmethod->set_protocol_version(s->rlayer.rrl, s->version);
s->rlayer.wrlmethod->set_protocol_version(s->rlayer.wrl, s->version);
return 1;
}