openssl/providers/implementations/kdfs/hkdf.c
Dr. David von Oheimb 0a8a6afdfb Add quick one-shot EVP_Q_mac() and deprecation compensation decls for MAC functions
This helps compensating for deprecated functions such as HMAC()
and reduces clutter in the crypto lib, apps, and tests.
Also fixes memory leaks in generate_cookie_callback() of apps/lib/s_cb.c.
and replaces 'B<...>' by 'I<...>' where appropriate in HMAC.pod

Partially fixes #14628.

Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14664)
2021-05-08 14:35:03 +02:00

496 lines
15 KiB
C

/*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* HMAC low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/core_names.h>
#include <openssl/proverr.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include "crypto/evp.h"
#include "prov/provider_ctx.h"
#include "prov/providercommon.h"
#include "prov/implementations.h"
#include "prov/provider_util.h"
#include "e_os.h"
#define HKDF_MAXBUF 2048
static OSSL_FUNC_kdf_newctx_fn kdf_hkdf_new;
static OSSL_FUNC_kdf_freectx_fn kdf_hkdf_free;
static OSSL_FUNC_kdf_reset_fn kdf_hkdf_reset;
static OSSL_FUNC_kdf_derive_fn kdf_hkdf_derive;
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_hkdf_settable_ctx_params;
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_hkdf_set_ctx_params;
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_hkdf_gettable_ctx_params;
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_hkdf_get_ctx_params;
static int HKDF(OSSL_LIB_CTX *libctx, const EVP_MD *evp_md,
const unsigned char *salt, size_t salt_len,
const unsigned char *key, size_t key_len,
const unsigned char *info, size_t info_len,
unsigned char *okm, size_t okm_len);
static int HKDF_Extract(OSSL_LIB_CTX *libctx, const EVP_MD *evp_md,
const unsigned char *salt, size_t salt_len,
const unsigned char *ikm, size_t ikm_len,
unsigned char *prk, size_t prk_len);
static int HKDF_Expand(const EVP_MD *evp_md,
const unsigned char *prk, size_t prk_len,
const unsigned char *info, size_t info_len,
unsigned char *okm, size_t okm_len);
typedef struct {
void *provctx;
int mode;
PROV_DIGEST digest;
unsigned char *salt;
size_t salt_len;
unsigned char *key;
size_t key_len;
unsigned char info[HKDF_MAXBUF];
size_t info_len;
} KDF_HKDF;
static void *kdf_hkdf_new(void *provctx)
{
KDF_HKDF *ctx;
if (!ossl_prov_is_running())
return NULL;
if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL)
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
else
ctx->provctx = provctx;
return ctx;
}
static void kdf_hkdf_free(void *vctx)
{
KDF_HKDF *ctx = (KDF_HKDF *)vctx;
if (ctx != NULL) {
kdf_hkdf_reset(ctx);
OPENSSL_free(ctx);
}
}
static void kdf_hkdf_reset(void *vctx)
{
KDF_HKDF *ctx = (KDF_HKDF *)vctx;
void *provctx = ctx->provctx;
ossl_prov_digest_reset(&ctx->digest);
OPENSSL_free(ctx->salt);
OPENSSL_clear_free(ctx->key, ctx->key_len);
OPENSSL_cleanse(ctx->info, ctx->info_len);
memset(ctx, 0, sizeof(*ctx));
ctx->provctx = provctx;
}
static size_t kdf_hkdf_size(KDF_HKDF *ctx)
{
int sz;
const EVP_MD *md = ossl_prov_digest_md(&ctx->digest);
if (ctx->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY)
return SIZE_MAX;
if (md == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
return 0;
}
sz = EVP_MD_size(md);
if (sz < 0)
return 0;
return sz;
}
static int kdf_hkdf_derive(void *vctx, unsigned char *key, size_t keylen,
const OSSL_PARAM params[])
{
KDF_HKDF *ctx = (KDF_HKDF *)vctx;
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
const EVP_MD *md;
if (!ossl_prov_is_running() || !kdf_hkdf_set_ctx_params(ctx, params))
return 0;
md = ossl_prov_digest_md(&ctx->digest);
if (md == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
return 0;
}
if (ctx->key == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY);
return 0;
}
if (keylen == 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
return 0;
}
switch (ctx->mode) {
case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND:
return HKDF(libctx, md, ctx->salt, ctx->salt_len,
ctx->key, ctx->key_len, ctx->info, ctx->info_len, key, keylen);
case EVP_KDF_HKDF_MODE_EXTRACT_ONLY:
return HKDF_Extract(libctx, md, ctx->salt, ctx->salt_len,
ctx->key, ctx->key_len, key, keylen);
case EVP_KDF_HKDF_MODE_EXPAND_ONLY:
return HKDF_Expand(md, ctx->key, ctx->key_len, ctx->info,
ctx->info_len, key, keylen);
default:
return 0;
}
}
static int kdf_hkdf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
KDF_HKDF *ctx = vctx;
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
int n;
if (params == NULL)
return 1;
if (!ossl_prov_digest_load_from_params(&ctx->digest, params, libctx))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_MODE)) != NULL) {
if (p->data_type == OSSL_PARAM_UTF8_STRING) {
if (strcasecmp(p->data, "EXTRACT_AND_EXPAND") == 0) {
ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND;
} else if (strcasecmp(p->data, "EXTRACT_ONLY") == 0) {
ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY;
} else if (strcasecmp(p->data, "EXPAND_ONLY") == 0) {
ctx->mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY;
} else {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return 0;
}
} else if (OSSL_PARAM_get_int(p, &n)) {
if (n != EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND
&& n != EVP_KDF_HKDF_MODE_EXTRACT_ONLY
&& n != EVP_KDF_HKDF_MODE_EXPAND_ONLY) {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return 0;
}
ctx->mode = n;
} else {
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return 0;
}
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_KEY)) != NULL) {
OPENSSL_clear_free(ctx->key, ctx->key_len);
ctx->key = NULL;
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->key, 0,
&ctx->key_len))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) {
if (p->data_size != 0 && p->data != NULL) {
OPENSSL_free(ctx->salt);
ctx->salt = NULL;
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0,
&ctx->salt_len))
return 0;
}
}
/* The info fields concatenate, so process them all */
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_INFO)) != NULL) {
ctx->info_len = 0;
for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1,
OSSL_KDF_PARAM_INFO)) {
const void *q = ctx->info + ctx->info_len;
size_t sz = 0;
if (p->data_size != 0
&& p->data != NULL
&& !OSSL_PARAM_get_octet_string(p, (void **)&q,
HKDF_MAXBUF - ctx->info_len,
&sz))
return 0;
ctx->info_len += sz;
}
}
return 1;
}
static const OSSL_PARAM *kdf_hkdf_settable_ctx_params(ossl_unused void *ctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_MODE, NULL, 0),
OSSL_PARAM_int(OSSL_KDF_PARAM_MODE, NULL),
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_INFO, NULL, 0),
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
static int kdf_hkdf_get_ctx_params(void *vctx, OSSL_PARAM params[])
{
KDF_HKDF *ctx = (KDF_HKDF *)vctx;
OSSL_PARAM *p;
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
return OSSL_PARAM_set_size_t(p, kdf_hkdf_size(ctx));
return -2;
}
static const OSSL_PARAM *kdf_hkdf_gettable_ctx_params(ossl_unused void *ctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
const OSSL_DISPATCH ossl_kdf_hkdf_functions[] = {
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_hkdf_new },
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_hkdf_free },
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_hkdf_reset },
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_hkdf_derive },
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_hkdf_settable_ctx_params },
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_hkdf_set_ctx_params },
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_hkdf_gettable_ctx_params },
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_hkdf_get_ctx_params },
{ 0, NULL }
};
/*
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
* Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and
* "Cryptographic Extraction and Key Derivation: The HKDF Scheme"
* Section 4.2 (https://eprint.iacr.org/2010/264.pdf).
*
* From the paper:
* The scheme HKDF is specified as:
* HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t)
*
* where:
* SKM is source key material
* XTS is extractor salt (which may be null or constant)
* CTXinfo is context information (may be null)
* L is the number of key bits to be produced by KDF
* k is the output length in bits of the hash function used with HMAC
* t = ceil(L/k)
* the value K(t) is truncated to its first d = L mod k bits.
*
* From RFC 5869:
* 2.2. Step 1: Extract
* HKDF-Extract(salt, IKM) -> PRK
* 2.3. Step 2: Expand
* HKDF-Expand(PRK, info, L) -> OKM
*/
static int HKDF(OSSL_LIB_CTX *libctx, const EVP_MD *evp_md,
const unsigned char *salt, size_t salt_len,
const unsigned char *ikm, size_t ikm_len,
const unsigned char *info, size_t info_len,
unsigned char *okm, size_t okm_len)
{
unsigned char prk[EVP_MAX_MD_SIZE];
int ret, sz;
size_t prk_len;
sz = EVP_MD_size(evp_md);
if (sz < 0)
return 0;
prk_len = (size_t)sz;
/* Step 1: HKDF-Extract(salt, IKM) -> PRK */
if (!HKDF_Extract(libctx, evp_md,
salt, salt_len, ikm, ikm_len, prk, prk_len))
return 0;
/* Step 2: HKDF-Expand(PRK, info, L) -> OKM */
ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len);
OPENSSL_cleanse(prk, sizeof(prk));
return ret;
}
/*
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
* Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2).
*
* 2.2. Step 1: Extract
*
* HKDF-Extract(salt, IKM) -> PRK
*
* Options:
* Hash a hash function; HashLen denotes the length of the
* hash function output in octets
*
* Inputs:
* salt optional salt value (a non-secret random value);
* if not provided, it is set to a string of HashLen zeros.
* IKM input keying material
*
* Output:
* PRK a pseudorandom key (of HashLen octets)
*
* The output PRK is calculated as follows:
*
* PRK = HMAC-Hash(salt, IKM)
*/
static int HKDF_Extract(OSSL_LIB_CTX *libctx, const EVP_MD *evp_md,
const unsigned char *salt, size_t salt_len,
const unsigned char *ikm, size_t ikm_len,
unsigned char *prk, size_t prk_len)
{
int sz = EVP_MD_size(evp_md);
if (sz < 0)
return 0;
if (prk_len != (size_t)sz) {
ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_OUTPUT_BUFFER_SIZE);
return 0;
}
/* calc: PRK = HMAC-Hash(salt, IKM) */
return
EVP_Q_mac(libctx, "HMAC", NULL, EVP_MD_name(evp_md), NULL, salt,
salt_len, ikm, ikm_len, prk, EVP_MD_size(evp_md), NULL)
!= NULL;
}
/*
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
* Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3).
*
* 2.3. Step 2: Expand
*
* HKDF-Expand(PRK, info, L) -> OKM
*
* Options:
* Hash a hash function; HashLen denotes the length of the
* hash function output in octets
*
* Inputs:
* PRK a pseudorandom key of at least HashLen octets
* (usually, the output from the extract step)
* info optional context and application specific information
* (can be a zero-length string)
* L length of output keying material in octets
* (<= 255*HashLen)
*
* Output:
* OKM output keying material (of L octets)
*
* The output OKM is calculated as follows:
*
* N = ceil(L/HashLen)
* T = T(1) | T(2) | T(3) | ... | T(N)
* OKM = first L octets of T
*
* where:
* T(0) = empty string (zero length)
* T(1) = HMAC-Hash(PRK, T(0) | info | 0x01)
* T(2) = HMAC-Hash(PRK, T(1) | info | 0x02)
* T(3) = HMAC-Hash(PRK, T(2) | info | 0x03)
* ...
*
* (where the constant concatenated to the end of each T(n) is a
* single octet.)
*/
static int HKDF_Expand(const EVP_MD *evp_md,
const unsigned char *prk, size_t prk_len,
const unsigned char *info, size_t info_len,
unsigned char *okm, size_t okm_len)
{
HMAC_CTX *hmac;
int ret = 0, sz;
unsigned int i;
unsigned char prev[EVP_MAX_MD_SIZE];
size_t done_len = 0, dig_len, n;
sz = EVP_MD_size(evp_md);
if (sz <= 0)
return 0;
dig_len = (size_t)sz;
/* calc: N = ceil(L/HashLen) */
n = okm_len / dig_len;
if (okm_len % dig_len)
n++;
if (n > 255 || okm == NULL)
return 0;
if ((hmac = HMAC_CTX_new()) == NULL)
return 0;
if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL))
goto err;
for (i = 1; i <= n; i++) {
size_t copy_len;
const unsigned char ctr = i;
/* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */
if (i > 1) {
if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL))
goto err;
if (!HMAC_Update(hmac, prev, dig_len))
goto err;
}
if (!HMAC_Update(hmac, info, info_len))
goto err;
if (!HMAC_Update(hmac, &ctr, 1))
goto err;
if (!HMAC_Final(hmac, prev, NULL))
goto err;
copy_len = (done_len + dig_len > okm_len) ?
okm_len - done_len :
dig_len;
memcpy(okm + done_len, prev, copy_len);
done_len += copy_len;
}
ret = 1;
err:
OPENSSL_cleanse(prev, sizeof(prev));
HMAC_CTX_free(hmac);
return ret;
}