openssl/providers/implementations/rands/test_rng.c
Pauli eaf0879439 Coverity 1545174: calling risky function
Remove the call to rand() and replace with an xor-shift RNG.
There are no security implications to worry about here.  This RNG is
used during testing only.

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
(Merged from https://github.com/openssl/openssl/pull/22211)
2023-10-02 19:18:21 +11:00

347 lines
11 KiB
C

/*
* Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <stdlib.h>
#include <openssl/core_dispatch.h>
#include <openssl/e_os2.h>
#include <openssl/params.h>
#include <openssl/core_names.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/randerr.h>
#include "prov/providercommon.h"
#include "prov/provider_ctx.h"
#include "prov/provider_util.h"
#include "prov/implementations.h"
static OSSL_FUNC_rand_newctx_fn test_rng_new;
static OSSL_FUNC_rand_freectx_fn test_rng_free;
static OSSL_FUNC_rand_instantiate_fn test_rng_instantiate;
static OSSL_FUNC_rand_uninstantiate_fn test_rng_uninstantiate;
static OSSL_FUNC_rand_generate_fn test_rng_generate;
static OSSL_FUNC_rand_reseed_fn test_rng_reseed;
static OSSL_FUNC_rand_nonce_fn test_rng_nonce;
static OSSL_FUNC_rand_settable_ctx_params_fn test_rng_settable_ctx_params;
static OSSL_FUNC_rand_set_ctx_params_fn test_rng_set_ctx_params;
static OSSL_FUNC_rand_gettable_ctx_params_fn test_rng_gettable_ctx_params;
static OSSL_FUNC_rand_get_ctx_params_fn test_rng_get_ctx_params;
static OSSL_FUNC_rand_verify_zeroization_fn test_rng_verify_zeroization;
static OSSL_FUNC_rand_enable_locking_fn test_rng_enable_locking;
static OSSL_FUNC_rand_lock_fn test_rng_lock;
static OSSL_FUNC_rand_unlock_fn test_rng_unlock;
static OSSL_FUNC_rand_get_seed_fn test_rng_get_seed;
typedef struct {
void *provctx;
unsigned int generate;
int state;
unsigned int strength;
size_t max_request;
unsigned char *entropy, *nonce;
size_t entropy_len, entropy_pos, nonce_len;
CRYPTO_RWLOCK *lock;
uint32_t seed;
} PROV_TEST_RNG;
static void *test_rng_new(void *provctx, void *parent,
const OSSL_DISPATCH *parent_dispatch)
{
PROV_TEST_RNG *t;
t = OPENSSL_zalloc(sizeof(*t));
if (t == NULL)
return NULL;
t->max_request = INT_MAX;
t->provctx = provctx;
t->state = EVP_RAND_STATE_UNINITIALISED;
return t;
}
static void test_rng_free(void *vtest)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
if (t == NULL)
return;
OPENSSL_free(t->entropy);
OPENSSL_free(t->nonce);
CRYPTO_THREAD_lock_free(t->lock);
OPENSSL_free(t);
}
static int test_rng_instantiate(void *vtest, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len,
const OSSL_PARAM params[])
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
if (!test_rng_set_ctx_params(t, params) || strength > t->strength)
return 0;
t->state = EVP_RAND_STATE_READY;
t->entropy_pos = 0;
t->seed = 221953166; /* Value doesn't matter, so long as it isn't zero */
return 1;
}
static int test_rng_uninstantiate(void *vtest)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
t->entropy_pos = 0;
t->state = EVP_RAND_STATE_UNINITIALISED;
return 1;
}
static unsigned char gen_byte(PROV_TEST_RNG *t)
{
uint32_t n;
/*
* Implement the 32 bit xorshift as suggested by George Marsaglia in:
* https://doi.org/10.18637/jss.v008.i14
*
* This is a very fast PRNG so there is no need to extract bytes one at a
* time and use the entire value each time.
*/
n = t->seed;
n ^= n << 13;
n ^= n >> 17;
n ^= n << 5;
t->seed = n;
return n & 0xff;
}
static int test_rng_generate(void *vtest, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *adin, size_t adin_len)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
size_t i;
if (strength > t->strength)
return 0;
if (t->generate) {
for (i = 0; i < outlen; i++)
out[i] = gen_byte(t);
} else {
if (t->entropy_len - t->entropy_pos < outlen)
return 0;
memcpy(out, t->entropy + t->entropy_pos, outlen);
t->entropy_pos += outlen;
}
return 1;
}
static int test_rng_reseed(ossl_unused void *vtest,
ossl_unused int prediction_resistance,
ossl_unused const unsigned char *ent,
ossl_unused size_t ent_len,
ossl_unused const unsigned char *adin,
ossl_unused size_t adin_len)
{
return 1;
}
static size_t test_rng_nonce(void *vtest, unsigned char *out,
unsigned int strength, size_t min_noncelen,
ossl_unused size_t max_noncelen)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
size_t i;
if (strength > t->strength)
return 0;
if (t->generate) {
for (i = 0; i < min_noncelen; i++)
out[i] = gen_byte(t);
return min_noncelen;
}
if (t->nonce == NULL)
return 0;
if (out != NULL)
memcpy(out, t->nonce, t->nonce_len);
return t->nonce_len;
}
static int test_rng_get_ctx_params(void *vtest, OSSL_PARAM params[])
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STATE);
if (p != NULL && !OSSL_PARAM_set_int(p, t->state))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STRENGTH);
if (p != NULL && !OSSL_PARAM_set_int(p, t->strength))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_REQUEST);
if (p != NULL && !OSSL_PARAM_set_size_t(p, t->max_request))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_GENERATE);
if (p != NULL && OSSL_PARAM_set_uint(p, t->generate))
return 0;
return 1;
}
static const OSSL_PARAM *test_rng_gettable_ctx_params(ossl_unused void *vtest,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_int(OSSL_RAND_PARAM_STATE, NULL),
OSSL_PARAM_uint(OSSL_RAND_PARAM_STRENGTH, NULL),
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_REQUEST, NULL),
OSSL_PARAM_uint(OSSL_RAND_PARAM_GENERATE, NULL),
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
static int test_rng_set_ctx_params(void *vtest, const OSSL_PARAM params[])
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
const OSSL_PARAM *p;
void *ptr = NULL;
size_t size = 0;
if (params == NULL)
return 1;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_STRENGTH);
if (p != NULL && !OSSL_PARAM_get_uint(p, &t->strength))
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_TEST_ENTROPY);
if (p != NULL) {
if (!OSSL_PARAM_get_octet_string(p, &ptr, 0, &size))
return 0;
OPENSSL_free(t->entropy);
t->entropy = ptr;
t->entropy_len = size;
t->entropy_pos = 0;
ptr = NULL;
}
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_TEST_NONCE);
if (p != NULL) {
if (!OSSL_PARAM_get_octet_string(p, &ptr, 0, &size))
return 0;
OPENSSL_free(t->nonce);
t->nonce = ptr;
t->nonce_len = size;
}
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_MAX_REQUEST);
if (p != NULL && !OSSL_PARAM_get_size_t(p, &t->max_request))
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_GENERATE);
if (p != NULL && !OSSL_PARAM_get_uint(p, &t->generate))
return 0;
return 1;
}
static const OSSL_PARAM *test_rng_settable_ctx_params(ossl_unused void *vtest,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY, NULL, 0),
OSSL_PARAM_octet_string(OSSL_RAND_PARAM_TEST_NONCE, NULL, 0),
OSSL_PARAM_uint(OSSL_RAND_PARAM_STRENGTH, NULL),
OSSL_PARAM_size_t(OSSL_RAND_PARAM_MAX_REQUEST, NULL),
OSSL_PARAM_uint(OSSL_RAND_PARAM_GENERATE, NULL),
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
static int test_rng_verify_zeroization(ossl_unused void *vtest)
{
return 1;
}
static size_t test_rng_get_seed(void *vtest, unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
ossl_unused int prediction_resistance,
ossl_unused const unsigned char *adin,
ossl_unused size_t adin_len)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
*pout = t->entropy;
return t->entropy_len > max_len ? max_len : t->entropy_len;
}
static int test_rng_enable_locking(void *vtest)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
if (t != NULL && t->lock == NULL) {
t->lock = CRYPTO_THREAD_lock_new();
if (t->lock == NULL) {
ERR_raise(ERR_LIB_PROV, RAND_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
return 1;
}
static int test_rng_lock(void *vtest)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
if (t == NULL || t->lock == NULL)
return 1;
return CRYPTO_THREAD_write_lock(t->lock);
}
static void test_rng_unlock(void *vtest)
{
PROV_TEST_RNG *t = (PROV_TEST_RNG *)vtest;
if (t != NULL && t->lock != NULL)
CRYPTO_THREAD_unlock(t->lock);
}
const OSSL_DISPATCH ossl_test_rng_functions[] = {
{ OSSL_FUNC_RAND_NEWCTX, (void(*)(void))test_rng_new },
{ OSSL_FUNC_RAND_FREECTX, (void(*)(void))test_rng_free },
{ OSSL_FUNC_RAND_INSTANTIATE,
(void(*)(void))test_rng_instantiate },
{ OSSL_FUNC_RAND_UNINSTANTIATE,
(void(*)(void))test_rng_uninstantiate },
{ OSSL_FUNC_RAND_GENERATE, (void(*)(void))test_rng_generate },
{ OSSL_FUNC_RAND_RESEED, (void(*)(void))test_rng_reseed },
{ OSSL_FUNC_RAND_NONCE, (void(*)(void))test_rng_nonce },
{ OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))test_rng_enable_locking },
{ OSSL_FUNC_RAND_LOCK, (void(*)(void))test_rng_lock },
{ OSSL_FUNC_RAND_UNLOCK, (void(*)(void))test_rng_unlock },
{ OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS,
(void(*)(void))test_rng_settable_ctx_params },
{ OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))test_rng_set_ctx_params },
{ OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS,
(void(*)(void))test_rng_gettable_ctx_params },
{ OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))test_rng_get_ctx_params },
{ OSSL_FUNC_RAND_VERIFY_ZEROIZATION,
(void(*)(void))test_rng_verify_zeroization },
{ OSSL_FUNC_RAND_GET_SEED, (void(*)(void))test_rng_get_seed },
OSSL_DISPATCH_END
};