openssl/apps/speed.c
Sebastian Andrzej Siewior 1154ffbfb3 APPS: Use a second EVP_MD_CTX for EdDSA verify
Verify for the two EdDSA algorithms fails in "speed eddsa".
It appears that the same ctx can not be used for the sign and verify
process.

Create a second EVP_MD_CTX for the verify purpose.

Fixes #11650

Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12074)
2020-06-11 17:28:10 +03:00

4448 lines
150 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#undef SECONDS
#define SECONDS 3
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
#define EdDSA_SECONDS 10
#define SM2_SECONDS 10
#define FFDH_SECONDS 10
/* We need to use some deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include "progs.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/async.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include <unistd.h>
#endif
#if defined(_WIN32)
# include <windows.h>
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
#include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
#include <openssl/hmac.h>
#ifndef OPENSSL_NO_CMAC
#include <openssl/cmac.h>
#endif
#include <openssl/sha.h>
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include <openssl/x509.h>
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_EC
# include <openssl/ec.h>
#endif
#include <openssl/modes.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#define MAX_MISALIGNMENT 63
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
#define MAX_FFDH_SIZE 1024
typedef struct openssl_speed_sec_st {
int sym;
int rsa;
int dsa;
int ecdsa;
int ecdh;
int eddsa;
int sm2;
int ffdh;
} openssl_speed_sec_t;
static volatile int run = 0;
static int mr = 0; /* machine-readeable output format to merge fork results */
static int usertime = 1;
static double Time_F(int s);
static void print_message(const char *s, long num, int length, int tm);
static void pkey_print_message(const char *str, const char *str2,
long num, unsigned int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi, int size_num);
#endif
static const int lengths_list[] = {
16, 64, 256, 1024, 8 * 1024, 16 * 1024
};
#define SIZE_NUM OSSL_NELEM(lengths_list)
static const int *lengths = lengths_list;
static const int aead_lengths_list[] = {
2, 31, 136, 1024, 8 * 1024, 16 * 1024
};
#define START 0
#define STOP 1
#ifdef SIGALRM
static void alarmed(int sig)
{
signal(SIGALRM, alarmed);
run = 0;
}
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#elif defined(_WIN32)
# define SIGALRM -1
static unsigned int lapse;
static volatile unsigned int schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
static double Time_F(int s)
{
return app_tminterval(s, usertime);
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds);
static int opt_found(const char *name, unsigned int *result,
const OPT_PAIR pairs[], unsigned int nbelem)
{
unsigned int idx;
for (idx = 0; idx < nbelem; ++idx, pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
#define opt_found(value, pairs, result)\
opt_found(value, result, pairs, OSSL_NELEM(pairs))
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM,
OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC
} OPTION_CHOICE;
const OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-', "Usage: %s [options] [algorithm...]\n"},
OPT_SECTION("General"),
{"help", OPT_HELP, '-', "Display this summary"},
{"mb", OPT_MB, '-',
"Enable (tls1>=1) multi-block mode on EVP-named cipher"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef OPENSSL_NO_ASYNC
{"async_jobs", OPT_ASYNCJOBS, 'p',
"Enable async mode and start specified number of jobs"},
#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
OPT_SECTION("Selection"),
{"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
#ifndef OPENSSL_NO_DEPRECATED_3_0
{"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"},
#endif
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"},
#endif
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"aead", OPT_AEAD, '-',
"Benchmark EVP-named AEAD cipher in TLS-like sequence"},
OPT_SECTION("Timing"),
{"elapsed", OPT_ELAPSED, '-',
"Use wall-clock time instead of CPU user time as divisor"},
{"seconds", OPT_SECONDS, 'p',
"Run benchmarks for specified amount of seconds"},
{"bytes", OPT_BYTES, 'p',
"Run [non-PKI] benchmarks on custom-sized buffer"},
{"misalign", OPT_MISALIGN, 'p',
"Use specified offset to mis-align buffers"},
OPT_R_OPTIONS,
OPT_PROV_OPTIONS,
OPT_PARAMETERS(),
{"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"},
{NULL}
};
enum {
D_MD2, D_MDC2, D_MD4, D_MD5 , D_HMAC, D_SHA1, D_RMD160, D_RC4,
D_CBC_DES, D_EDE3_DES, D_CBC_IDEA, D_CBC_SEED,
D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST,
D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES,
D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML,
D_EVP, D_SHA256, D_SHA512, D_WHIRLPOOL,
D_IGE_128_AES, D_IGE_192_AES, D_IGE_256_AES,
D_GHASH, D_RAND, D_EVP_HMAC, D_EVP_CMAC, ALGOR_NUM
};
/* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
"rand", "hmac", "cmac"
};
/* list of configured algorithm (remaining), with some few alias */
static const OPT_PAIR doit_choices[] = {
#if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"md2", D_MD2},
#endif
#if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"mdc2", D_MDC2},
#endif
#if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"md4", D_MD4},
#endif
#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"md5", D_MD5},
# ifndef OPENSSL_NO_DEPRECATED_3_0
{"hmac", D_HMAC},
# endif
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
#endif
#if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"whirlpool", D_WHIRLPOOL},
#endif
#if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
#endif
#if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"rc4", D_RC4},
#endif
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"aes-128-ige", D_IGE_128_AES},
{"aes-192-ige", D_IGE_192_AES},
{"aes-256-ige", D_IGE_256_AES},
#endif
#if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
#endif
#if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
#endif
#if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
#endif
#if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
#endif
#if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
#endif
#if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0)
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
#endif
{"ghash", D_GHASH},
{"rand", D_RAND}
};
static double results[ALGOR_NUM][SIZE_NUM];
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
enum { R_DSA_512, R_DSA_1024, R_DSA_2048, DSA_NUM };
static const OPT_PAIR dsa_choices[DSA_NUM] = {
{"dsa512", R_DSA_512},
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048}
};
static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_DSA */
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
enum {
R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680,
R_RSA_15360, RSA_NUM
};
static const OPT_PAIR rsa_choices[RSA_NUM] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360}
};
static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */
#endif /* OPENSSL_NO_RSA */
#ifndef OPENSSL_NO_DH
enum ff_params_t {
R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM
};
static const OPT_PAIR ffdh_choices[FFDH_NUM] = {
{"ffdh2048", R_FFDH_2048},
{"ffdh3072", R_FFDH_3072},
{"ffdh4096", R_FFDH_4096},
{"ffdh6144", R_FFDH_6144},
{"ffdh8192", R_FFDH_8192},
};
static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */
#endif /* OPENSSL_NO_DH */
#ifndef OPENSSL_NO_EC
enum ec_curves_t {
R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
# ifndef OPENSSL_NO_EC2M
R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
# endif
R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1,
R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM
};
/* list of ecdsa curves */
static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
# ifndef OPENSSL_NO_EC2M
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
# endif
{"ecdsabrp256r1", R_EC_BRP256R1},
{"ecdsabrp256t1", R_EC_BRP256T1},
{"ecdsabrp384r1", R_EC_BRP384R1},
{"ecdsabrp384t1", R_EC_BRP384T1},
{"ecdsabrp512r1", R_EC_BRP512R1},
{"ecdsabrp512t1", R_EC_BRP512T1}
};
enum { R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM };
/* list of ecdh curves, extension of |ecdsa_choices| list above */
static const OPT_PAIR ecdh_choices[EC_NUM] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
# ifndef OPENSSL_NO_EC2M
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
# endif
{"ecdhbrp256r1", R_EC_BRP256R1},
{"ecdhbrp256t1", R_EC_BRP256T1},
{"ecdhbrp384r1", R_EC_BRP384R1},
{"ecdhbrp384t1", R_EC_BRP384T1},
{"ecdhbrp512r1", R_EC_BRP512R1},
{"ecdhbrp512t1", R_EC_BRP512T1},
{"ecdhx25519", R_EC_X25519},
{"ecdhx448", R_EC_X448}
};
static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM };
static const OPT_PAIR eddsa_choices[EdDSA_NUM] = {
{"ed25519", R_EC_Ed25519},
{"ed448", R_EC_Ed448}
};
static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */
# ifndef OPENSSL_NO_SM2
enum { R_EC_CURVESM2, SM2_NUM };
static const OPT_PAIR sm2_choices[SM2_NUM] = {
{"curveSM2", R_EC_CURVESM2}
};
# define SM2_ID "TLSv1.3+GM+Cipher+Suite"
# define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1
static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */
# endif /* OPENSSL_NO_SM2 */
#endif /* OPENSSL_NO_EC */
#ifndef SIGALRM
# define COND(d) (count < (d))
# define COUNT(d) (d)
#else
# define COND(unused_cond) (run && count<0x7fffffff)
# define COUNT(d) (count)
#endif /* SIGALRM */
typedef struct loopargs_st {
ASYNC_JOB *inprogress_job;
ASYNC_WAIT_CTX *wait_ctx;
unsigned char *buf;
unsigned char *buf2;
unsigned char *buf_malloc;
unsigned char *buf2_malloc;
unsigned char *key;
unsigned int siglen;
size_t sigsize;
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
RSA *rsa_key[RSA_NUM];
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
DSA *dsa_key[DSA_NUM];
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *ecdsa[ECDSA_NUM];
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM];
# ifndef OPENSSL_NO_SM2
EVP_MD_CTX *sm2_ctx[SM2_NUM];
EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM];
EVP_PKEY *sm2_pkey[SM2_NUM];
# endif
unsigned char *secret_a;
unsigned char *secret_b;
size_t outlen[EC_NUM];
#endif
#ifndef OPENSSL_NO_DH
EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM];
unsigned char *secret_ff_a;
unsigned char *secret_ff_b;
#endif
EVP_CIPHER_CTX *ctx;
#ifndef OPENSSL_NO_DEPRECATED_3_0
HMAC_CTX *hctx;
#endif
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
CMAC_CTX *cmac_ctx;
#endif
GCM128_CONTEXT *gcm_ctx;
} loopargs_t;
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
loopargs_t * loopargs);
static unsigned int testnum;
/* Nb of iterations to do per algorithm and key-size */
static long c[ALGOR_NUM][SIZE_NUM];
#if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int EVP_Digest_MD2_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md2[MD2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
NULL))
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int EVP_Digest_MDC2_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char mdc2[MDC2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MDC2][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
NULL))
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int EVP_Digest_MD4_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md4[MD4_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD4][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
NULL))
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int MD5_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md5[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD5][testnum]); count++)
MD5(buf, lengths[testnum], md5);
return count;
}
# ifndef OPENSSL_NO_DEPRECATED_3_0
static int HMAC_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
HMAC_CTX *hctx = tempargs->hctx;
unsigned char hmac[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_HMAC][testnum]); count++) {
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
HMAC_Update(hctx, buf, lengths[testnum]);
HMAC_Final(hctx, hmac, NULL);
}
return count;
}
# endif
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
static int SHA1_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha[SHA_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA1][testnum]); count++)
SHA1(buf, lengths[testnum], sha);
return count;
}
static int SHA256_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha256[SHA256_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA256][testnum]); count++)
SHA256(buf, lengths[testnum], sha256);
return count;
}
static int SHA512_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char sha512[SHA512_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA512][testnum]); count++)
SHA512(buf, lengths[testnum], sha512);
return count;
}
#endif
#if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int WHIRLPOOL_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
WHIRLPOOL(buf, lengths[testnum], whirlpool);
return count;
}
#endif
#if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static int EVP_Digest_RMD160_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_RMD160][testnum]); count++) {
if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
NULL, EVP_ripemd160(), NULL))
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RC4][testnum]); count++)
RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
return count;
}
#endif
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static unsigned char DES_iv[8];
static DES_key_schedule sch[3];
static int DES_ncbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch[0],
&DES_iv, DES_ENCRYPT);
return count;
}
static int DES_ede3_cbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
&sch[0], &sch[1], &sch[2], &DES_iv, DES_ENCRYPT);
return count;
}
#endif
#define MAX_BLOCK_SIZE 128
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_DEPRECATED_3_0
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
return count;
}
static int AES_ige_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
return count;
}
static int CRYPTO_gcm128_aad_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
int count;
for (count = 0; COND(c[D_GHASH][testnum]); count++)
CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
return count;
}
#endif
static int RAND_bytes_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RAND][testnum]); count++)
RAND_bytes(buf, lengths[testnum]);
return count;
}
static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count, rc;
if (decrypt) {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
} else {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (rc != 1) {
/* reset iv in case of counter overflow */
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
}
}
}
if (decrypt)
EVP_DecryptFinal_ex(ctx, buf, &outl);
else
EVP_EncryptFinal_ex(ctx, buf, &outl);
return count;
}
/*
* CCM does not support streaming. For the purpose of performance measurement,
* each message is encrypted using the same (key,iv)-pair. Do not use this
* code in your application.
*/
static int EVP_Update_loop_ccm(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
unsigned char tag[12];
if (decrypt) {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
/* reset iv */
EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
/* counter is reset on every update */
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
}
} else {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
/* restore iv length field */
EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
/* counter is reset on every update */
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
}
}
if (decrypt)
EVP_DecryptFinal_ex(ctx, buf, &outl);
else
EVP_EncryptFinal_ex(ctx, buf, &outl);
return count;
}
/*
* To make AEAD benchmarking more relevant perform TLS-like operations,
* 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
* payload length is not actually limited by 16KB...
*/
static int EVP_Update_loop_aead(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
unsigned char aad[13] = { 0xcc };
unsigned char faketag[16] = { 0xcc };
if (decrypt) {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
sizeof(faketag), faketag);
EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
}
} else {
for (count = 0; COND(c[D_EVP][testnum]); count++) {
EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
}
}
return count;
}
static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char md[EVP_MAX_MD_SIZE];
int count;
for (count = 0; COND(c[D_EVP][testnum]); count++) {
if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
return -1;
}
return count;
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
static const EVP_MD *evp_hmac_md = NULL;
static char *evp_hmac_name = NULL;
static int EVP_HMAC_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char no_key[32];
int count;
for (count = 0; COND(c[D_EVP_HMAC][testnum]); count++) {
if (HMAC(evp_hmac_md, no_key, sizeof(no_key), buf, lengths[testnum],
NULL, NULL) == NULL)
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static const EVP_CIPHER *evp_cmac_cipher = NULL;
static char *evp_cmac_name = NULL;
static int EVP_CMAC_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
CMAC_CTX *cmac_ctx = tempargs->cmac_ctx;
static const char key[16] = "This is a key...";
unsigned char mac[16];
size_t len = sizeof(mac);
int count;
for (count = 0; COND(c[D_EVP_CMAC][testnum]); count++) {
if (!CMAC_Init(cmac_ctx, key, sizeof(key), evp_cmac_cipher, NULL)
|| !CMAC_Update(cmac_ctx, buf, lengths[testnum])
|| !CMAC_Final(cmac_ctx, mac, &len))
return -1;
}
return count;
}
#endif
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
static int RSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int *rsa_num = &tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][0]); count++) {
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int RSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int rsa_num = tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][1]); count++) {
ret =
RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_DH
static long ffdh_c[FFDH_NUM][1];
static int FFDH_derive_key_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum];
unsigned char *derived_secret = tempargs->secret_ff_a;
size_t outlen = MAX_FFDH_SIZE;
int count;
for (count = 0; COND(ffdh_c[testnum][0]); count++)
EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen);
return count;
}
#endif /* OPENSSL_NO_DH */
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int *siglen = &tempargs->siglen;
int ret, count;
for (count = 0; COND(dsa_c[testnum][0]); count++) {
ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int DSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int siglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(dsa_c[testnum][1]); count++) {
ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_EC
# ifndef OPENSSL_NO_DEPRECATED_3_0
static long ecdsa_c[ECDSA_NUM][2];
static int ECDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int *ecdsasiglen = &tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int ECDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int ecdsasiglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
# endif
/* ******************************************************************** */
static long ecdh_c[EC_NUM][1];
static int ECDH_EVP_derive_key_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
unsigned char *derived_secret = tempargs->secret_a;
int count;
size_t *outlen = &(tempargs->outlen[testnum]);
for (count = 0; COND(ecdh_c[testnum][0]); count++)
EVP_PKEY_derive(ctx, derived_secret, outlen);
return count;
}
static long eddsa_c[EdDSA_NUM][2];
static int EdDSA_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
unsigned char *eddsasig = tempargs->buf2;
size_t *eddsasigsize = &tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][0]); count++) {
ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret == 0) {
BIO_printf(bio_err, "EdDSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int EdDSA_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **edctx = tempargs->eddsa_ctx2;
unsigned char *eddsasig = tempargs->buf2;
size_t eddsasigsize = tempargs->sigsize;
int ret, count;
for (count = 0; COND(eddsa_c[testnum][1]); count++) {
ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
if (ret != 1) {
BIO_printf(bio_err, "EdDSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
# ifndef OPENSSL_NO_SM2
static long sm2_c[SM2_NUM][2];
static int SM2_sign_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx;
unsigned char *sm2sig = tempargs->buf2;
size_t sm2sigsize = tempargs->sigsize;
const size_t max_size = tempargs->sigsize;
int ret, count;
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
for (count = 0; COND(sm2_c[testnum][0]); count++) {
if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(),
NULL, sm2_pkey[testnum])) {
BIO_printf(bio_err, "SM2 init sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize,
buf, 20);
if (ret == 0) {
BIO_printf(bio_err, "SM2 sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
/* update the latest returned size and always use the fixed buffer size */
tempargs->sigsize = sm2sigsize;
sm2sigsize = max_size;
}
return count;
}
static int SM2_verify_loop(void *args)
{
loopargs_t *tempargs = *(loopargs_t **) args;
unsigned char *buf = tempargs->buf;
EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx;
unsigned char *sm2sig = tempargs->buf2;
size_t sm2sigsize = tempargs->sigsize;
int ret, count;
EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
for (count = 0; COND(sm2_c[testnum][1]); count++) {
if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(),
NULL, sm2_pkey[testnum])) {
BIO_printf(bio_err, "SM2 verify init failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize,
buf, 20);
if (ret != 1) {
BIO_printf(bio_err, "SM2 verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
# endif /* OPENSSL_NO_SM2 */
#endif /* OPENSSL_NO_EC */
static int run_benchmark(int async_jobs,
int (*loop_function) (void *), loopargs_t * loopargs)
{
int job_op_count = 0;
int total_op_count = 0;
int num_inprogress = 0;
int error = 0, i = 0, ret = 0;
OSSL_ASYNC_FD job_fd = 0;
size_t num_job_fds = 0;
if (async_jobs == 0) {
return loop_function((void *)&loopargs);
}
for (i = 0; i < async_jobs && !error; i++) {
loopargs_t *looparg_item = loopargs + i;
/* Copy pointer content (looparg_t item address) into async context */
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
&job_op_count, loop_function,
(void *)&looparg_item, sizeof(looparg_item));
switch (ret) {
case ASYNC_PAUSE:
++num_inprogress;
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
while (num_inprogress > 0) {
#if defined(OPENSSL_SYS_WINDOWS)
DWORD avail = 0;
#elif defined(OPENSSL_SYS_UNIX)
int select_result = 0;
OSSL_ASYNC_FD max_fd = 0;
fd_set waitfdset;
FD_ZERO(&waitfdset);
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
FD_SET(job_fd, &waitfdset);
if (job_fd > max_fd)
max_fd = job_fd;
}
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
BIO_printf(bio_err,
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
"Decrease the value of async_jobs\n",
max_fd, FD_SETSIZE);
ERR_print_errors(bio_err);
error = 1;
break;
}
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
if (select_result == -1 && errno == EINTR)
continue;
if (select_result == -1) {
BIO_printf(bio_err, "Failure in the select\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
if (select_result == 0)
continue;
#endif
for (i = 0; i < async_jobs; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
if (!ASYNC_WAIT_CTX_get_all_fds
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|| num_job_fds > 1) {
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
&num_job_fds);
#if defined(OPENSSL_SYS_UNIX)
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
continue;
#elif defined(OPENSSL_SYS_WINDOWS)
if (num_job_fds == 1
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
&& avail > 0)
continue;
#endif
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
loopargs[i].wait_ctx, &job_op_count,
loop_function, (void *)(loopargs + i),
sizeof(loopargs_t));
switch (ret) {
case ASYNC_PAUSE:
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
--num_inprogress;
loopargs[i].inprogress_job = NULL;
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
--num_inprogress;
loopargs[i].inprogress_job = NULL;
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
}
return error ? -1 : total_op_count;
}
#define stop_it(do_it, test_num)\
memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num);
int speed_main(int argc, char **argv)
{
ENGINE *e = NULL;
loopargs_t *loopargs = NULL;
const char *prog;
const char *engine_id = NULL;
const EVP_CIPHER *evp_cipher = NULL;
double d = 0.0;
OPTION_CHOICE o;
int async_init = 0, multiblock = 0, pr_header = 0;
uint8_t doit[ALGOR_NUM] = { 0 };
int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
long count = 0;
unsigned int size_num = SIZE_NUM;
unsigned int i, k, loopargs_len = 0, async_jobs = 0;
int keylen;
int buflen;
#ifndef NO_FORK
int multi = 0;
#endif
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
|| !defined(OPENSSL_NO_EC)
long rsa_count = 1;
#endif
openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
ECDSA_SECONDS, ECDH_SECONDS,
EdDSA_SECONDS, SM2_SECONDS,
FFDH_SECONDS };
/* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
RC5_32_KEY rc5_ks;
#endif
#if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
RC2_KEY rc2_ks;
#endif
#if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
IDEA_KEY_SCHEDULE idea_ks;
#endif
#if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0)
SEED_KEY_SCHEDULE seed_ks;
#endif
#if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0)
BF_KEY bf_ks;
#endif
#if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0)
CAST_KEY cast_ks;
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
#endif
#if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
CAMELLIA_KEY camellia_ks[3];
#endif
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static const struct {
const unsigned char *data;
unsigned int length;
unsigned int bits;
} rsa_keys[] = {
{ test512, sizeof(test512), 512 },
{ test1024, sizeof(test1024), 1024 },
{ test2048, sizeof(test2048), 2048 },
{ test3072, sizeof(test3072), 3072 },
{ test4096, sizeof(test4096), 4092 },
{ test7680, sizeof(test7680), 7680 },
{ test15360, sizeof(test15360), 15360 }
};
uint8_t rsa_doit[RSA_NUM] = { 0 };
int primes = RSA_DEFAULT_PRIME_NUM;
#endif
#ifndef OPENSSL_NO_DH
typedef struct ffdh_params_st {
const char *name;
unsigned int nid;
unsigned int bits;
} FFDH_PARAMS;
static const FFDH_PARAMS ffdh_params[FFDH_NUM] = {
{"ffdh2048", NID_ffdhe2048, 2048},
{"ffdh3072", NID_ffdhe3072, 3072},
{"ffdh4096", NID_ffdhe4096, 4096},
{"ffdh6144", NID_ffdhe6144, 6144},
{"ffdh8192", NID_ffdhe8192, 8192}
};
uint8_t ffdh_doit[FFDH_NUM] = { 0 };
#endif /* OPENSSL_NO_DH */
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
uint8_t dsa_doit[DSA_NUM] = { 0 };
#endif
#ifndef OPENSSL_NO_EC
typedef struct ec_curve_st {
const char *name;
unsigned int nid;
unsigned int bits;
size_t sigsize; /* only used for EdDSA curves */
} EC_CURVE;
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the |ecdh_choices| and |ecdsa_choices|
* lists accordingly.
*/
static const EC_CURVE ec_curves[EC_NUM] = {
/* Prime Curves */
{"secp160r1", NID_secp160r1, 160},
{"nistp192", NID_X9_62_prime192v1, 192},
{"nistp224", NID_secp224r1, 224},
{"nistp256", NID_X9_62_prime256v1, 256},
{"nistp384", NID_secp384r1, 384},
{"nistp521", NID_secp521r1, 521},
# ifndef OPENSSL_NO_EC2M
/* Binary Curves */
{"nistk163", NID_sect163k1, 163},
{"nistk233", NID_sect233k1, 233},
{"nistk283", NID_sect283k1, 283},
{"nistk409", NID_sect409k1, 409},
{"nistk571", NID_sect571k1, 571},
{"nistb163", NID_sect163r2, 163},
{"nistb233", NID_sect233r1, 233},
{"nistb283", NID_sect283r1, 283},
{"nistb409", NID_sect409r1, 409},
{"nistb571", NID_sect571r1, 571},
# endif
{"brainpoolP256r1", NID_brainpoolP256r1, 256},
{"brainpoolP256t1", NID_brainpoolP256t1, 256},
{"brainpoolP384r1", NID_brainpoolP384r1, 384},
{"brainpoolP384t1", NID_brainpoolP384t1, 384},
{"brainpoolP512r1", NID_brainpoolP512r1, 512},
{"brainpoolP512t1", NID_brainpoolP512t1, 512},
/* Other and ECDH only ones */
{"X25519", NID_X25519, 253},
{"X448", NID_X448, 448}
};
static const EC_CURVE ed_curves[EdDSA_NUM] = {
/* EdDSA */
{"Ed25519", NID_ED25519, 253, 64},
{"Ed448", NID_ED448, 456, 114}
};
# ifndef OPENSSL_NO_SM2
static const EC_CURVE sm2_curves[SM2_NUM] = {
/* SM2 */
{"CurveSM2", NID_sm2, 256}
};
uint8_t sm2_doit[SM2_NUM] = { 0 };
# endif
uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
uint8_t ecdh_doit[EC_NUM] = { 0 };
uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
/* checks declarated curves against choices list. */
OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448);
OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0);
OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448);
OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0);
OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1);
OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0);
# ifndef OPENSSL_NO_SM2
OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2);
OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0);
# endif
#endif /* ndef OPENSSL_NO_EC */
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
evp_md = NULL;
evp_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cipher == NULL)
evp_md = EVP_get_digestbyname(opt_arg());
if (evp_cipher == NULL && evp_md == NULL) {
BIO_printf(bio_err,
"%s: %s is an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP] = 1;
break;
case OPT_HMAC:
#ifndef OPENSSL_NO_DEPRECATED_3_0
evp_hmac_md = EVP_get_digestbyname(opt_arg());
if (evp_hmac_md == NULL) {
BIO_printf(bio_err, "%s: %s is an unknown digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP_HMAC] = 1;
break;
#endif
case OPT_CMAC:
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
evp_cmac_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cmac_cipher == NULL) {
BIO_printf(bio_err, "%s: %s is an unknown cipher\n",
prog, opt_arg());
goto end;
}
doit[D_EVP_CMAC] = 1;
#endif
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
/*
* In a forked execution, an engine might need to be
* initialised by each child process, not by the parent.
* So store the name here and run setup_engine() later on.
*/
engine_id = opt_arg();
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
case OPT_ASYNCJOBS:
#ifndef OPENSSL_NO_ASYNC
async_jobs = atoi(opt_arg());
if (!ASYNC_is_capable()) {
BIO_printf(bio_err,
"%s: async_jobs specified but async not supported\n",
prog);
goto opterr;
}
if (async_jobs > 99999) {
BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
goto opterr;
}
#endif
break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
#ifdef OPENSSL_NO_MULTIBLOCK
BIO_printf(bio_err,
"%s: -mb specified but multi-block support is disabled\n",
prog);
goto end;
#endif
break;
case OPT_R_CASES:
if (!opt_rand(o))
goto end;
break;
case OPT_PROV_CASES:
if (!opt_provider(o))
goto end;
break;
case OPT_PRIMES:
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (!opt_int(opt_arg(), &primes))
goto end;
#endif
break;
case OPT_SECONDS:
seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
= seconds.ecdh = seconds.eddsa
= seconds.sm2 = seconds.ffdh = atoi(opt_arg());
break;
case OPT_BYTES:
lengths_single = atoi(opt_arg());
lengths = &lengths_single;
size_num = 1;
break;
case OPT_AEAD:
aead = 1;
break;
}
}
argc = opt_num_rest();
argv = opt_rest();
/* Remaining arguments are algorithms. */
for (; *argv; argv++) {
const char *algo = *argv;
if (opt_found(algo, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (strcmp(algo, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
continue;
}
#endif
if (strcmp(algo, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
continue;
}
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (strcmp(algo, "openssl") == 0) /* just for compatibility */
continue;
if (strncmp(algo, "rsa", 3) == 0) {
if (algo[3] == '\0') {
memset(rsa_doit, 1, sizeof(rsa_doit));
continue;
}
if (opt_found(algo, rsa_choices, &i)) {
rsa_doit[i] = 1;
continue;
}
}
#endif
#ifndef OPENSSL_NO_DH
if (strncmp(algo, "ffdh", 4) == 0) {
if (algo[4] == '\0') {
memset(ffdh_doit, 1, sizeof(ffdh_doit));
continue;
}
if (opt_found(algo, ffdh_choices, &i)) {
ffdh_doit[i] = 2;
continue;
}
}
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (strncmp(algo, "dsa", 3) == 0) {
if (algo[3] == '\0') {
memset(dsa_doit, 1, sizeof(dsa_doit));
continue;
}
if (opt_found(algo, dsa_choices, &i)) {
dsa_doit[i] = 2;
continue;
}
}
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (strcmp(algo, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
continue;
}
#endif
#if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (strcmp(algo, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_EC
if (strncmp(algo, "ecdsa", 5) == 0) {
if (algo[5] == '\0') {
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
continue;
}
if (opt_found(algo, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
continue;
}
}
if (strncmp(algo, "ecdh", 4) == 0) {
if (algo[4] == '\0') {
memset(ecdh_doit, 1, sizeof(ecdh_doit));
continue;
}
if (opt_found(algo, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
continue;
}
}
if (strcmp(algo, "eddsa") == 0) {
memset(eddsa_doit, 1, sizeof(eddsa_doit));
continue;
}
if (opt_found(algo, eddsa_choices, &i)) {
eddsa_doit[i] = 2;
continue;
}
# ifndef OPENSSL_NO_SM2
if (strcmp(algo, "sm2") == 0) {
memset(sm2_doit, 1, sizeof(sm2_doit));
continue;
}
if (opt_found(algo, sm2_choices, &i)) {
sm2_doit[i] = 2;
continue;
}
# endif
#endif /* OPENSSL_NO_EC */
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo);
goto end;
}
/* Sanity checks */
if (aead) {
if (evp_cipher == NULL) {
BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
goto end;
} else if (!(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_AEAD_CIPHER)) {
BIO_printf(bio_err, "%s is not an AEAD cipher\n",
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
}
}
if (multiblock) {
if (evp_cipher == NULL) {
BIO_printf(bio_err,"-mb can be used only with a multi-block"
" capable cipher\n");
goto end;
} else if (!(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not a multi-block capable\n",
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
} else if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with -mb");
goto end;
}
}
/* Initialize the job pool if async mode is enabled */
if (async_jobs > 0) {
async_init = ASYNC_init_thread(async_jobs, async_jobs);
if (!async_init) {
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
goto end;
}
}
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
loopargs =
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
for (i = 0; i < loopargs_len; i++) {
if (async_jobs > 0) {
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
if (loopargs[i].wait_ctx == NULL) {
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
goto end;
}
}
buflen = lengths[size_num - 1];
if (buflen < 36) /* size of random vector in RSA benchmark */
buflen = 36;
buflen += MAX_MISALIGNMENT + 1;
loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
memset(loopargs[i].buf_malloc, 0, buflen);
memset(loopargs[i].buf2_malloc, 0, buflen);
/* Align the start of buffers on a 64 byte boundary */
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
#ifndef OPENSSL_NO_EC
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#endif
#ifndef OPENSSL_NO_DH
loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a");
loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b");
#endif
}
#ifndef NO_FORK
if (multi && do_multi(multi, size_num))
goto show_res;
#endif
/* Initialize the engine after the fork */
e = setup_engine(engine_id, 0);
/* No parameters; turn on everything. */
if (argc == 0 && !doit[D_EVP] && !doit[D_EVP_HMAC] && !doit[D_EVP_CMAC]) {
memset(doit, 1, sizeof(doit));
doit[D_EVP] = doit[D_EVP_HMAC] = doit[D_EVP_CMAC] = 0;
#if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
doit[D_MDC2] = 0;
#endif
#if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
doit[D_MD4] = 0;
#endif
#if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0)
doit[D_RMD160] = 0;
#endif
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
memset(rsa_doit, 1, sizeof(rsa_doit));
#endif
#ifndef OPENSSL_NO_DH
memset(ffdh_doit, 1, sizeof(ffdh_doit));
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
memset(dsa_doit, 1, sizeof(dsa_doit));
#endif
#ifndef OPENSSL_NO_EC
memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
memset(ecdh_doit, 1, sizeof(ecdh_doit));
memset(eddsa_doit, 1, sizeof(eddsa_doit));
# ifndef OPENSSL_NO_SM2
memset(sm2_doit, 1, sizeof(sm2_doit));
# endif
#endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (i = 0; i < loopargs_len; i++) {
if (primes > RSA_DEFAULT_PRIME_NUM) {
/* for multi-prime RSA, skip this */
break;
}
for (k = 0; k < RSA_NUM; k++) {
const unsigned char *p = rsa_keys[k].data;
loopargs[i].rsa_key[k] =
d2i_RSAPrivateKey(NULL, &p, rsa_keys[k].length);
if (loopargs[i].rsa_key[k] == NULL) {
BIO_printf(bio_err,
"internal error loading RSA key number %d\n", k);
goto end;
}
}
}
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (i = 0; i < loopargs_len; i++) {
loopargs[i].dsa_key[0] = get_dsa(512);
loopargs[i].dsa_key[1] = get_dsa(1024);
loopargs[i].dsa_key[2] = get_dsa(2048);
}
#endif
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_DES] || doit[D_EDE3_DES]) {
static DES_cblock keys[] = {
{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }, /* keys[0] */
{ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }, /* keys[1] */
{ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 } /* keys[3] */
};
DES_set_key_unchecked(&keys[0], &sch[0]);
DES_set_key_unchecked(&keys[1], &sch[1]);
DES_set_key_unchecked(&keys[2], &sch[2]);
}
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
#endif
#if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_128_CML] || doit[D_CBC_192_CML] || doit[D_CBC_256_CML]) {
Camellia_set_key(key16, 128, &camellia_ks[0]);
Camellia_set_key(key24, 192, &camellia_ks[1]);
Camellia_set_key(key32, 256, &camellia_ks[2]);
}
#endif
#if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_IDEA])
IDEA_set_encrypt_key(key16, &idea_ks);
#endif
#if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_SEED])
SEED_set_key(key16, &seed_ks);
#endif
#if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_RC4])
RC4_set_key(&rc4_ks, 16, key16);
#endif
#if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_RC2])
RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_RC5])
if (!RC5_32_set_key(&rc5_ks, 16, key16, 12)) {
BIO_printf(bio_err, "Failed setting RC5 key\n");
goto end;
}
#endif
#if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_BF])
BF_set_key(&bf_ks, 16, key16);
#endif
#if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_CAST])
CAST_set_key(&cast_ks, 16, key16);
#endif
#ifndef SIGALRM
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
(DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_EVP][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
c[D_RAND][0] = count;
c[D_EVP_HMAC][0] = count;
c[D_EVP_CMAC][0] = count;
for (i = 1; i < size_num; i++) {
long l0 = (long)lengths[0];
long l1 = (long)lengths[i];
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
c[D_EVP][i] = = c[D_EVP][0] * 4 * l0 / l1;
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
c[D_EVP_HMAC][i] = = c[D_EVP_HMAC][0] * 4 * l0 / l1;
c[D_EVP_CMAC][i] = = c[D_EVP_CMAC][0] * 4 * l0 / l1;
l0 = (long)lengths[i - 1];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
rsa_c[i][1] = 20;
}
}
}
# endif
# if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
dsa_doit[i] = 0;
else {
if (dsa_c[i][0] == 0) {
dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_EC
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
# ifndef OPENSSL_NO_EC2M
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i][0] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
# endif
ecdh_c[R_EC_P160][0] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
# ifndef OPENSSL_NO_EC2M
ecdh_c[R_EC_K163][0] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
# endif
/* repeated code good to factorize */
ecdh_c[R_EC_BRP256R1][0] = count / 1000;
for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) {
ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
ecdh_c[R_EC_BRP256T1][0] = count / 1000;
for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) {
ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
ecdh_doit[i] = 0;
else {
if (ecdh_c[i][0] == 0) {
ecdh_c[i][0] = 1;
}
}
}
/* default iteration count for the last two EC Curves */
ecdh_c[R_EC_X25519][0] = count / 1800;
ecdh_c[R_EC_X448][0] = count / 7200;
eddsa_c[R_EC_Ed25519][0] = count / 1800;
eddsa_c[R_EC_Ed448][0] = count / 7200;
# ifndef OPENSSL_NO_SM2
sm2_c[R_EC_SM2P256][0] = count / 1800;
# endif
# endif /* OPENSSL_NO_EC */
# ifndef OPENSSL_NO_DH
ffdh_c[R_FFDH_2048][0] = count / 1000;
for (i = R_FFDH_3072; i <= R_FFDH_8192; i++) {
ffdh_c[i][0] = ffdh_c[i - 1][0] / 2;
if (ffdh_doit[i] <= 1 && ffdh_c[i][0] == 0) {
ffdh_doit[i] = 0;
} else {
if (ffdh_c[i][0] == 0)
ffdh_c[i][0] = 1;
}
}
# endif /* OPENSSL_NO_DH */
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#elif SIGALRM > 0
signal(SIGALRM, alarmed);
#endif /* SIGALRM */
#if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_MD2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD2, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_MDC2]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MDC2, testnum, count, d);
if (count < 0)
break;
}
}
#endif
#if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_MD4]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD4, testnum, count, d);
if (count < 0)
break;
}
}
#endif
#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_MD5]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, MD5_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD5, testnum, count, d);
}
}
# ifndef OPENSSL_NO_DEPRECATED_3_0
if (doit[D_HMAC]) {
static const char hmac_key[] = "This is a key...";
int len = strlen(hmac_key);
for (i = 0; i < loopargs_len; i++) {
loopargs[i].hctx = HMAC_CTX_new();
if (loopargs[i].hctx == NULL) {
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
exit(1);
}
HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_HMAC, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
HMAC_CTX_free(loopargs[i].hctx);
}
# endif
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (doit[D_SHA1]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA1, testnum, count, d);
}
}
if (doit[D_SHA256]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA256], c[D_SHA256][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA256, testnum, count, d);
}
}
if (doit[D_SHA512]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_SHA512], c[D_SHA512][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA512, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_WHIRLPOOL]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_RMD160]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RMD160], c[D_RMD160][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
print_result(D_RMD160, testnum, count, d);
if (count < 0)
break;
}
}
#endif
#if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_RC4]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, RC4_loop, loopargs);
d = Time_F(STOP);
print_result(D_RC4, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_DES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_DES, testnum, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_EDE3_DES, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (doit[D_CBC_128_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_128_AES, testnum, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_192_AES, testnum, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_256_AES, testnum, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_128_AES, testnum, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_192_AES, testnum, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count =
run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_256_AES, testnum, count, d);
}
}
if (doit[D_GHASH]) {
for (i = 0; i < loopargs_len; i++) {
loopargs[i].gcm_ctx =
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
(unsigned char *)"0123456789ab", 12);
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_GHASH], c[D_GHASH][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
d = Time_F(STOP);
print_result(D_GHASH, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
}
#endif /* OPENSSL_NO_DEPRECATED_3_0 */
#if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_128_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_128_CML]);
doit[D_CBC_128_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_128_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks[0],
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, testnum, count, d);
}
}
if (doit[D_CBC_192_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_192_CML]);
doit[D_CBC_192_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0; COND(c[D_CBC_192_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks[1],
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, testnum, count, d);
}
}
if (doit[D_CBC_256_CML]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_256_CML]);
doit[D_CBC_256_CML] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_256_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &camellia_ks[2],
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_IDEA]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_IDEA]);
doit[D_CBC_IDEA] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_IDEA][testnum]); count++)
IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_SEED]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_SEED]);
doit[D_CBC_SEED] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_SEED][testnum]); count++)
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_RC2]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_RC2]);
doit[D_CBC_RC2] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0; COND(c[D_CBC_RC2][testnum]); count++)
RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_RC5]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_RC5]);
doit[D_CBC_RC5] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
lengths[testnum], seconds.sym);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0; COND(c[D_CBC_RC5][testnum]); count++)
RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_BF]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_BF]);
doit[D_CBC_BF] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_BF][testnum]); count++)
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_CBC_CAST]) {
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported with %s\n",
names[D_CBC_CAST]);
doit[D_CBC_CAST] = 0;
}
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
lengths[testnum], seconds.sym);
Time_F(START);
for (count = 0; COND(c[D_CBC_CAST][testnum]); count++)
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(size_t)lengths[testnum], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, testnum, count, d);
}
}
#endif
if (doit[D_RAND]) {
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
d = Time_F(STOP);
print_result(D_RAND, testnum, count, d);
}
}
if (doit[D_EVP]) {
if (evp_cipher != NULL) {
int (*loopfunc) (void *) = EVP_Update_loop;
if (multiblock && (EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
multiblock_speed(evp_cipher, lengths_single, &seconds);
ret = 0;
goto end;
}
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
loopfunc = EVP_Update_loop_ccm;
} else if (aead && (EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_AEAD_CIPHER)) {
loopfunc = EVP_Update_loop_aead;
if (lengths == lengths_list) {
lengths = aead_lengths_list;
size_num = OSSL_NELEM(aead_lengths_list);
}
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
seconds.sym);
for (k = 0; k < loopargs_len; k++) {
loopargs[k].ctx = EVP_CIPHER_CTX_new();
if (loopargs[k].ctx == NULL) {
BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n");
exit(1);
}
if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL,
NULL, iv, decrypt ? 0 : 1)) {
BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
ERR_print_errors(bio_err);
exit(1);
}
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
loopargs[k].key = app_malloc(keylen, "evp_cipher key");
EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
loopargs[k].key, NULL, -1)) {
BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
ERR_print_errors(bio_err);
exit(1);
}
OPENSSL_clear_free(loopargs[k].key, keylen);
/* SIV mode only allows for a single Update operation */
if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_SIV_MODE)
EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_SET_SPEED, 1, NULL);
}
Time_F(START);
count = run_benchmark(async_jobs, loopfunc, loopargs);
d = Time_F(STOP);
for (k = 0; k < loopargs_len; k++) {
EVP_CIPHER_CTX_free(loopargs[k].ctx);
}
print_result(D_EVP, testnum, count, d);
}
} else if (evp_md != NULL) {
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP, testnum, count, d);
}
}
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (doit[D_EVP_HMAC] && evp_hmac_md != NULL) {
const char *md_name = OBJ_nid2ln(EVP_MD_type(evp_hmac_md));
evp_hmac_name = app_malloc(sizeof("HMAC()") + strlen(md_name),
"HMAC name");
sprintf(evp_hmac_name, "HMAC(%s)", md_name);
names[D_EVP_HMAC] = evp_hmac_name;
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP_HMAC], c[D_EVP_HMAC][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_HMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP_HMAC, testnum, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
if (doit[D_EVP_CMAC] && evp_cmac_cipher != NULL) {
const char *cipher_name = OBJ_nid2ln(EVP_CIPHER_type(evp_cmac_cipher));
evp_cmac_name = app_malloc(sizeof("CMAC()") + strlen(cipher_name),
"CMAC name");
sprintf(evp_cmac_name, "CMAC(%s)", cipher_name);
names[D_EVP_CMAC] = evp_cmac_name;
for (i = 0; i < loopargs_len; i++) {
loopargs[i].cmac_ctx = CMAC_CTX_new();
if (loopargs[i].cmac_ctx == NULL) {
BIO_printf(bio_err, "CMAC malloc failure, exiting...");
exit(1);
}
}
for (testnum = 0; testnum < size_num; testnum++) {
print_message(names[D_EVP_CMAC], c[D_EVP_CMAC][testnum], lengths[testnum],
seconds.sym);
Time_F(START);
count = run_benchmark(async_jobs, EVP_CMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_EVP_CMAC, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
CMAC_CTX_free(loopargs[i].cmac_ctx);
}
#endif
for (i = 0; i < loopargs_len; i++)
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
goto end;
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (testnum = 0; testnum < RSA_NUM; testnum++) {
int st = 0;
if (!rsa_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
if (primes > RSA_DEFAULT_PRIME_NUM) {
/* we haven't set keys yet, generate multi-prime RSA keys */
BIGNUM *bn = BN_new();
if (bn == NULL)
goto end;
if (!BN_set_word(bn, RSA_F4)) {
BN_free(bn);
goto end;
}
BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
rsa_choices[testnum].name);
loopargs[i].rsa_key[testnum] = RSA_new();
if (loopargs[i].rsa_key[testnum] == NULL) {
BN_free(bn);
goto end;
}
if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
rsa_keys[testnum].bits,
primes, bn, NULL)) {
BN_free(bn);
goto end;
}
BN_free(bn);
}
st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
&loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[testnum][0], rsa_keys[testnum].bits,
seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %u bits private RSA's in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[testnum][1], rsa_keys[testnum].bits,
seconds.rsa);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %u bits public RSA's in %.2fs\n",
count, rsa_keys[testnum].bits, d);
rsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(rsa_doit, testnum);
}
}
#endif /* OPENSSL_NO_RSA */
for (i = 0; i < loopargs_len; i++)
if (RAND_bytes(loopargs[i].buf, 36) <= 0)
goto end;
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (testnum = 0; testnum < DSA_NUM; testnum++) {
int st = 0;
if (!dsa_doit[testnum])
continue;
/* DSA_generate_key(dsa_key[testnum]); */
/* DSA_sign_setup(dsa_key[testnum],NULL); */
for (i = 0; i < loopargs_len; i++) {
st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
&loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[testnum][0], dsa_bits[testnum],
seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%u:%.2f\n"
: "%ld %u bits DSA signs in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[testnum][1], dsa_bits[testnum],
seconds.dsa);
Time_F(START);
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%u:%.2f\n"
: "%ld %u bits DSA verify in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(dsa_doit, testnum);
}
}
#endif /* OPENSSL_NO_DSA */
#ifndef OPENSSL_NO_EC
# ifndef OPENSSL_NO_DEPRECATED_3_0
for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
int st = 1;
if (!ecdsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].ecdsa[testnum] =
EC_KEY_new_by_curve_name(ec_curves[testnum].nid);
if (loopargs[i].ecdsa[testnum] == NULL) {
st = 0;
break;
}
}
if (st == 0) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform ECDSA signature test */
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
&loopargs[i].siglen,
loopargs[i].ecdsa[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[testnum][0],
ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%u:%.2f\n" :
"%ld %u bits ECDSA signs in %.2fs \n",
count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
/* Perform ECDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen,
loopargs[i].ecdsa[testnum]);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[testnum][1],
ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%u:%.2f\n"
: "%ld %u bits ECDSA verify in %.2fs\n",
count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ecdsa_doit, testnum);
}
}
}
# endif
for (testnum = 0; testnum < EC_NUM; testnum++) {
int ecdh_checks = 1;
if (!ecdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY_CTX *kctx = NULL;
EVP_PKEY_CTX *test_ctx = NULL;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *key_A = NULL;
EVP_PKEY *key_B = NULL;
size_t outlen;
size_t test_outlen;
/* Ensure that the error queue is empty */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
ERR_print_errors(bio_err);
}
/* Let's try to create a ctx directly from the NID: this works for
* curves like Curve25519 that are not implemented through the low
* level EC interface.
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
* then we set the curve by NID before deriving the actual keygen
* ctx for that specific curve. */
kctx = EVP_PKEY_CTX_new_id(ec_curves[testnum].nid, NULL); /* keygen ctx from NID */
if (!kctx) {
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *params = NULL;
/* If we reach this code EVP_PKEY_CTX_new_id() failed and a
* "int_ctx_new:unsupported algorithm" error was added to the
* error queue.
* We remove it from the error queue as we are handling it. */
unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
if (error == ERR_peek_last_error() && /* oldest and latest errors match */
/* check that the error origin matches */
ERR_GET_LIB(error) == ERR_LIB_EVP &&
ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
ERR_get_error(); /* pop error from queue */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"Unhandled error in the error queue during ECDH init.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Create the context for parameter generation */
if (!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
/* Initialise the parameter generation */
!EVP_PKEY_paramgen_init(pctx) ||
/* Set the curve by NID */
!EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
ec_curves
[testnum].nid) ||
/* Create the parameter object params */
!EVP_PKEY_paramgen(pctx, &params)) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH EC params init failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Create the context for the key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
EVP_PKEY_free(params);
params = NULL;
EVP_PKEY_CTX_free(pctx);
pctx = NULL;
}
if (kctx == NULL || /* keygen ctx is not null */
EVP_PKEY_keygen_init(kctx) <= 0/* init keygen ctx */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH keygen failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
if (EVP_PKEY_keygen(kctx, &key_A) <= 0 || /* generate secret key A */
EVP_PKEY_keygen(kctx, &key_B) <= 0 || /* generate secret key B */
!(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
EVP_PKEY_derive_init(ctx) <= 0 || /* init derivation ctx */
EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 || /* set peer pubkey in ctx */
EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 || /* determine max length */
outlen == 0 || /* ensure outlen is a valid size */
outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Here we perform a test run, comparing the output of a*B and b*A;
* we try this here and assume that further EVP_PKEY_derive calls
* never fail, so we can skip checks in the actually benchmarked
* code, for maximum performance. */
if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
!EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
!EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
!EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
!EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
!EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
test_outlen != outlen /* compare output length */ ) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
if (CRYPTO_memcmp(loopargs[i].secret_a,
loopargs[i].secret_b, outlen)) {
ecdh_checks = 0;
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
loopargs[i].ecdh_ctx[testnum] = ctx;
loopargs[i].outlen[testnum] = outlen;
EVP_PKEY_free(key_A);
EVP_PKEY_free(key_B);
EVP_PKEY_CTX_free(kctx);
kctx = NULL;
EVP_PKEY_CTX_free(test_ctx);
test_ctx = NULL;
}
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
ecdh_c[testnum][0],
ec_curves[testnum].bits, seconds.ecdh);
Time_F(START);
count =
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %u-bits ECDH ops in %.2fs\n", count,
ec_curves[testnum].bits, d);
ecdh_results[testnum][0] = (double)count / d;
rsa_count = count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ecdh_doit, testnum);
}
}
for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
int st = 1;
EVP_PKEY *ed_pkey = NULL;
EVP_PKEY_CTX *ed_pctx = NULL;
if (!eddsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
if (loopargs[i].eddsa_ctx[testnum] == NULL) {
st = 0;
break;
}
loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new();
if (loopargs[i].eddsa_ctx2[testnum] == NULL) {
st = 0;
break;
}
if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid, NULL))
== NULL
|| EVP_PKEY_keygen_init(ed_pctx) <= 0
|| EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
st = 0;
EVP_PKEY_CTX_free(ed_pctx);
break;
}
EVP_PKEY_CTX_free(ed_pctx);
if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
NULL, ed_pkey)) {
st = 0;
EVP_PKEY_free(ed_pkey);
break;
}
if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL,
NULL, NULL, ed_pkey)) {
st = 0;
EVP_PKEY_free(ed_pkey);
break;
}
EVP_PKEY_free(ed_pkey);
}
if (st == 0) {
BIO_printf(bio_err, "EdDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform EdDSA signature test */
loopargs[i].sigsize = ed_curves[testnum].sigsize;
st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
loopargs[i].buf2, &loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"EdDSA sign failure. No EdDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", ed_curves[testnum].name,
eddsa_c[testnum][0],
ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R8:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s signs in %.2fs \n",
count, ed_curves[testnum].bits,
ed_curves[testnum].name, d);
eddsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
/* Perform EdDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum],
loopargs[i].buf2, loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"EdDSA verify failure. No EdDSA verify will be done.\n");
ERR_print_errors(bio_err);
eddsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", ed_curves[testnum].name,
eddsa_c[testnum][1],
ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R9:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify in %.2fs\n",
count, ed_curves[testnum].bits,
ed_curves[testnum].name, d);
eddsa_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(eddsa_doit, testnum);
}
}
}
# ifndef OPENSSL_NO_SM2
for (testnum = 0; testnum < SM2_NUM; testnum++) {
int st = 1;
EVP_PKEY *sm2_pkey = NULL;
if (!sm2_doit[testnum])
continue; /* Ignore Curve */
/* Init signing and verification */
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY_CTX *sm2_pctx = NULL;
EVP_PKEY_CTX *sm2_vfy_pctx = NULL;
EVP_PKEY_CTX *pctx = NULL;
st = 0;
loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new();
loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new();
if (loopargs[i].sm2_ctx[testnum] == NULL
|| loopargs[i].sm2_vfy_ctx[testnum] == NULL)
break;
/* SM2 keys are generated as normal EC keys with a special curve */
st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) == NULL
|| EVP_PKEY_keygen_init(pctx) <= 0
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
sm2_curves[testnum].nid) <= 0
|| EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
EVP_PKEY_CTX_free(pctx);
if (st == 0)
break;
st = 0; /* set back to zero */
/* attach it sooner to rely on main final cleanup */
loopargs[i].sm2_pkey[testnum] = sm2_pkey;
loopargs[i].sigsize = EVP_PKEY_size(sm2_pkey);
sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) {
EVP_PKEY_CTX_free(sm2_vfy_pctx);
break;
}
/* attach them directly to respective ctx */
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx);
EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx);
/*
* No need to allow user to set an explicit ID here, just use
* the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D.
*/
if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1
|| EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1)
break;
if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL,
EVP_sm3(), NULL, sm2_pkey))
break;
if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL,
EVP_sm3(), NULL, sm2_pkey))
break;
st = 1; /* mark loop as succeeded */
}
if (st == 0) {
BIO_printf(bio_err, "SM2 init failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
size_t sm2_sigsize = loopargs[i].sigsize;
/* Perform SM2 signature test */
st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum],
loopargs[i].buf2, &sm2_sigsize,
loopargs[i].buf, 20);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"SM2 sign failure. No SM2 sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", sm2_curves[testnum].name,
sm2_c[testnum][0],
sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R10:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s signs in %.2fs \n",
count, sm2_curves[testnum].bits,
sm2_curves[testnum].name, d);
sm2_results[testnum][0] = (double)count / d;
rsa_count = count;
}
/* Perform SM2 verification test */
for (i = 0; i < loopargs_len; i++) {
st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum],
loopargs[i].buf2, loopargs[i].sigsize,
loopargs[i].buf, 20);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"SM2 verify failure. No SM2 verify will be done.\n");
ERR_print_errors(bio_err);
sm2_doit[testnum] = 0;
} else {
pkey_print_message("verify", sm2_curves[testnum].name,
sm2_c[testnum][1],
sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R11:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify in %.2fs\n",
count, sm2_curves[testnum].bits,
sm2_curves[testnum].name, d);
sm2_results[testnum][1] = (double)count / d;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < SM2_NUM; testnum++)
sm2_doit[testnum] = 0;
}
}
}
# endif /* OPENSSL_NO_SM2 */
#endif /* OPENSSL_NO_EC */
#ifndef OPENSSL_NO_DH
for (testnum = 0; testnum < FFDH_NUM; testnum++) {
int ffdh_checks = 1;
if (!ffdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
EVP_PKEY *pkey_A = NULL;
EVP_PKEY *pkey_B = NULL;
EVP_PKEY_CTX *ffdh_ctx = NULL;
EVP_PKEY_CTX *test_ctx = NULL;
size_t secret_size;
size_t test_out;
/* Ensure that the error queue is empty */
if (ERR_peek_error()) {
BIO_printf(bio_err,
"WARNING: the error queue contains previous unhandled errors.\n");
ERR_print_errors(bio_err);
}
pkey_A = EVP_PKEY_new();
if (!pkey_A) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
pkey_B = EVP_PKEY_new();
if (!pkey_B) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL);
if (!ffdh_ctx) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) {
BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) {
BIO_printf(bio_err, "Error setting DH key size for keygen.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 ||
EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) {
BIO_printf(bio_err, "FFDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
EVP_PKEY_CTX_free(ffdh_ctx);
/* check if the derivation works correctly both ways so that
* we know if future derive calls will fail, and we can skip
* error checking in benchmarked code */
ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL);
if (!ffdh_ctx) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) {
BIO_printf(bio_err, "FFDH derivation context init failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) {
BIO_printf(bio_err, "Assigning peer key for derivation failed.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) {
BIO_printf(bio_err, "Checking size of shared secret failed.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (secret_size > MAX_FFDH_SIZE) {
BIO_printf(bio_err, "Assertion failure: shared secret too large.\n");
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (EVP_PKEY_derive(ffdh_ctx,
loopargs[i].secret_ff_a,
&secret_size) <= 0) {
BIO_printf(bio_err, "Shared secret derive failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
/* Now check from side B */
test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL);
if (!test_ctx) {
BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
if (!EVP_PKEY_derive_init(test_ctx) ||
!EVP_PKEY_derive_set_peer(test_ctx, pkey_A) ||
!EVP_PKEY_derive(test_ctx, NULL, &test_out) ||
!EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) ||
test_out != secret_size) {
BIO_printf(bio_err, "FFDH computation failure.\n");
rsa_count = 1;
ffdh_checks = 0;
break;
}
/* compare the computed secrets */
if (CRYPTO_memcmp(loopargs[i].secret_ff_a,
loopargs[i].secret_ff_b, secret_size)) {
BIO_printf(bio_err, "FFDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
ffdh_checks = 0;
break;
}
loopargs[i].ffdh_ctx[testnum] = ffdh_ctx;
EVP_PKEY_free(pkey_A);
pkey_A = NULL;
EVP_PKEY_free(pkey_B);
pkey_B = NULL;
EVP_PKEY_CTX_free(test_ctx);
test_ctx = NULL;
}
if (ffdh_checks != 0) {
pkey_print_message("", "ffdh", ffdh_c[testnum][0],
ffdh_params[testnum].bits, seconds.ffdh);
Time_F(START);
count =
run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R12:%ld:%d:%.2f\n" :
"%ld %u-bits FFDH ops in %.2fs\n", count,
ffdh_params[testnum].bits, d);
ffdh_results[testnum][0] = (double)count / d;
rsa_count = count;
};
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
stop_it(ffdh_doit, testnum);
}
}
#endif /* OPENSSL_NO_DH */
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING));
printf("built on: %s\n", OpenSSL_version(OPENSSL_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
#if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0)
printf("%s ", MD2_options());
#endif
#if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0)
printf("%s ", RC4_options());
#endif
#if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0)
printf("%s ", DES_options());
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
printf("%s ", AES_options());
#endif
#if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
printf("%s ", IDEA_options());
#endif
#if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0)
printf("%s ", BF_options());
#endif
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO));
}
if (pr_header) {
if (mr)
printf("+H");
else {
printf
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (testnum = 0; testnum < size_num; testnum++)
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
printf("+F:%u:%s", k, names[k]);
else
printf("%-13s", names[k]);
for (testnum = 0; testnum < size_num; testnum++) {
if (results[k][testnum] > 10000 && !mr)
printf(" %11.2fk", results[k][testnum] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
}
printf("\n");
}
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
testnum = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
rsa_results[k][0], rsa_results[k][1]);
}
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
testnum = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
dsa_results[k][0], dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
testnum = 1;
for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
if (!ecdsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, ec_curves[k].bits,
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
ecdsa_results[k][0], ecdsa_results[k][1]);
}
testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (testnum && !mr) {
printf("%30sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, ec_curves[k].bits,
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
}
testnum = 1;
for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
if (!eddsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F6:%u:%u:%s:%f:%f\n",
k, ed_curves[k].bits, ed_curves[k].name,
eddsa_results[k][0], eddsa_results[k][1]);
else
printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
ed_curves[k].bits, ed_curves[k].name,
1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
eddsa_results[k][0], eddsa_results[k][1]);
}
# ifndef OPENSSL_NO_SM2
testnum = 1;
for (k = 0; k < OSSL_NELEM(sm2_doit); k++) {
if (!sm2_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F7:%u:%u:%s:%f:%f\n",
k, sm2_curves[k].bits, sm2_curves[k].name,
sm2_results[k][0], sm2_results[k][1]);
else
printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
sm2_curves[k].bits, sm2_curves[k].name,
1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
sm2_results[k][0], sm2_results[k][1]);
}
# endif
#endif /* OPENSSL_NO_EC */
#ifndef OPENSSL_NO_DH
testnum = 1;
for (k = 0; k < FFDH_NUM; k++) {
if (!ffdh_doit[k])
continue;
if (testnum && !mr) {
printf("%23sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F8:%u:%u:%f:%f\n",
k, ffdh_params[k].bits,
ffdh_results[k][0], 1.0 / ffdh_results[k][0]);
else
printf("%4u bits ffdh %8.4fs %8.1f\n",
ffdh_params[k].bits,
1.0 / ffdh_results[k][0], ffdh_results[k][0]);
}
#endif /* OPENSSL_NO_DH */
ret = 0;
end:
ERR_print_errors(bio_err);
for (i = 0; i < loopargs_len; i++) {
OPENSSL_free(loopargs[i].buf_malloc);
OPENSSL_free(loopargs[i].buf2_malloc);
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (k = 0; k < RSA_NUM; k++)
RSA_free(loopargs[i].rsa_key[k]);
#endif
#ifndef OPENSSL_NO_DH
OPENSSL_free(loopargs[i].secret_ff_a);
OPENSSL_free(loopargs[i].secret_ff_b);
for (k = 0; k < FFDH_NUM; k++) {
EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]);
}
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
for (k = 0; k < DSA_NUM; k++)
DSA_free(loopargs[i].dsa_key[k]);
#endif
#ifndef OPENSSL_NO_EC
for (k = 0; k < ECDSA_NUM; k++)
EC_KEY_free(loopargs[i].ecdsa[k]);
for (k = 0; k < EC_NUM; k++)
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
for (k = 0; k < EdDSA_NUM; k++) {
EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]);
}
# ifndef OPENSSL_NO_SM2
for (k = 0; k < SM2_NUM; k++) {
EVP_PKEY_CTX *pctx = NULL;
/* free signing ctx */
if (loopargs[i].sm2_ctx[k] != NULL
&& (pctx = EVP_MD_CTX_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL)
EVP_PKEY_CTX_free(pctx);
EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]);
/* free verification ctx */
if (loopargs[i].sm2_vfy_ctx[k] != NULL
&& (pctx = EVP_MD_CTX_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL)
EVP_PKEY_CTX_free(pctx);
EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]);
/* free pkey */
EVP_PKEY_free(loopargs[i].sm2_pkey[k]);
}
# endif
OPENSSL_free(loopargs[i].secret_a);
OPENSSL_free(loopargs[i].secret_b);
#endif
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
OPENSSL_free(evp_hmac_name);
#endif
#if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0)
OPENSSL_free(evp_cmac_name);
#endif
if (async_jobs > 0) {
for (i = 0; i < loopargs_len; i++)
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
}
if (async_init) {
ASYNC_cleanup_thread();
}
OPENSSL_free(loopargs);
release_engine(e);
return ret;
}
static void print_message(const char *s, long num, int length, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, tm, length);
(void)BIO_flush(bio_err);
run = 1;
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
unsigned int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
run = 1;
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %u bits %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
#endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
if (count == -1) {
BIO_printf(bio_err, "%s error!\n", names[alg]);
ERR_print_errors(bio_err);
/* exit(1); disable exit until default provider enabled */
return;
}
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof(isdelim));
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi, int size_num)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
OPENSSL_free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof(buf), f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err,
"Don't understand line '%s' from child %d\n", buf,
n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (strncmp(buf, "+F:", 3) == 0) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < size_num; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
}
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
else if (strncmp(buf, "+F2:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
rsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
rsa_results[k][1] += d;
}
#endif
#if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0)
else if (strncmp(buf, "+F3:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
dsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
dsa_results[k][1] += d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F4:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
ecdsa_results[k][1] += d;
} else if (strncmp(buf, "+F5:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ecdh_results[k][0] += d;
} else if (strncmp(buf, "+F6:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
eddsa_results[k][0] += d;
d = atof(sstrsep(&p, sep));
eddsa_results[k][1] += d;
}
# ifndef OPENSSL_NO_SM2
else if (strncmp(buf, "+F7:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
sm2_results[k][0] += d;
d = atof(sstrsep(&p, sep));
sm2_results[k][1] += d;
}
# endif /* OPENSSL_NO_SM2 */
# endif /* OPENSSL_NO_EC */
# ifndef OPENSSL_NO_DH
else if (strncmp(buf, "+F8:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
ffdh_results[k][0] += d;
}
# endif /* OPENSSL_NO_DH */
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
n);
}
fclose(f);
}
OPENSSL_free(fds);
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
const openssl_speed_sec_t *seconds)
{
static const int mblengths_list[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
const int *mblengths = mblengths_list;
int j, count, keylen, num = OSSL_NELEM(mblengths_list);
const char *alg_name;
unsigned char *inp, *out, *key, no_key[32], no_iv[16];
EVP_CIPHER_CTX *ctx;
double d = 0.0;
if (lengths_single) {
mblengths = &lengths_single;
num = 1;
}
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
keylen = EVP_CIPHER_CTX_key_length(ctx);
key = app_malloc(keylen, "evp_cipher key");
EVP_CIPHER_CTX_rand_key(ctx, key);
EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
OPENSSL_clear_free(key, keylen);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j], seconds->sym);
Time_F(START);
for (count = 0; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = (unsigned char)(len >> 8);
aad[12] = (unsigned char)(len);
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
OPENSSL_free(inp);
OPENSSL_free(out);
EVP_CIPHER_CTX_free(ctx);
}