openssl/test/evp_test.c
Pauli 4cceb185b1 Add a helper routine so that evp_test can compare memory without producing
spurious output when checking for error conditions.

Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6899)
2018-08-20 06:52:11 +10:00

2651 lines
70 KiB
C

/*
* Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/x509v3.h>
#include <openssl/pkcs12.h>
#include <openssl/kdf.h>
#include "internal/numbers.h"
#include "testutil.h"
#include "evp_test.h"
typedef struct evp_test_method_st EVP_TEST_METHOD;
/*
* Structure holding test information
*/
typedef struct evp_test_st {
STANZA s; /* Common test stanza */
char *name;
int skip; /* Current test should be skipped */
const EVP_TEST_METHOD *meth; /* method for this test */
const char *err, *aux_err; /* Error string for test */
char *expected_err; /* Expected error value of test */
char *func; /* Expected error function string */
char *reason; /* Expected error reason string */
void *data; /* test specific data */
} EVP_TEST;
/*
* Test method structure
*/
struct evp_test_method_st {
/* Name of test as it appears in file */
const char *name;
/* Initialise test for "alg" */
int (*init) (EVP_TEST * t, const char *alg);
/* Clean up method */
void (*cleanup) (EVP_TEST * t);
/* Test specific name value pair processing */
int (*parse) (EVP_TEST * t, const char *name, const char *value);
/* Run the test itself */
int (*run_test) (EVP_TEST * t);
};
/*
* Linked list of named keys.
*/
typedef struct key_list_st {
char *name;
EVP_PKEY *key;
struct key_list_st *next;
} KEY_LIST;
/*
* List of public and private keys
*/
static KEY_LIST *private_keys;
static KEY_LIST *public_keys;
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
/*
* Compare two memory regions for equality, returning zero if they differ.
* However, if there is expected to be an error and the actual error
* matches then the memory is expected to be different so handle this
* case without producing unnecessary test framework output.
*/
static int memory_err_compare(EVP_TEST *t, const char *err,
const void *expected, size_t expected_len,
const void *got, size_t got_len)
{
int r;
if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
r = !TEST_mem_ne(expected, expected_len, got, got_len);
else
r = TEST_mem_eq(expected, expected_len, got, got_len);
if (!r)
t->err = err;
return r;
}
/*
* Structure used to hold a list of blocks of memory to test
* calls to "update" like functions.
*/
struct evp_test_buffer_st {
unsigned char *buf;
size_t buflen;
size_t count;
int count_set;
};
static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
{
if (db != NULL) {
OPENSSL_free(db->buf);
OPENSSL_free(db);
}
}
/*
* append buffer to a list
*/
static int evp_test_buffer_append(const char *value,
STACK_OF(EVP_TEST_BUFFER) **sk)
{
EVP_TEST_BUFFER *db = NULL;
if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
goto err;
if (!parse_bin(value, &db->buf, &db->buflen))
goto err;
db->count = 1;
db->count_set = 0;
if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
goto err;
if (!sk_EVP_TEST_BUFFER_push(*sk, db))
goto err;
return 1;
err:
evp_test_buffer_free(db);
return 0;
}
/*
* replace last buffer in list with copies of itself
*/
static int evp_test_buffer_ncopy(const char *value,
STACK_OF(EVP_TEST_BUFFER) *sk)
{
EVP_TEST_BUFFER *db;
unsigned char *tbuf, *p;
size_t tbuflen;
int ncopy = atoi(value);
int i;
if (ncopy <= 0)
return 0;
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
return 0;
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
tbuflen = db->buflen * ncopy;
if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
return 0;
for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
memcpy(p, db->buf, db->buflen);
OPENSSL_free(db->buf);
db->buf = tbuf;
db->buflen = tbuflen;
return 1;
}
/*
* set repeat count for last buffer in list
*/
static int evp_test_buffer_set_count(const char *value,
STACK_OF(EVP_TEST_BUFFER) *sk)
{
EVP_TEST_BUFFER *db;
int count = atoi(value);
if (count <= 0)
return 0;
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
return 0;
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
if (db->count_set != 0)
return 0;
db->count = (size_t)count;
db->count_set = 1;
return 1;
}
/*
* call "fn" with each element of the list in turn
*/
static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
int (*fn)(void *ctx,
const unsigned char *buf,
size_t buflen),
void *ctx)
{
int i;
for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
size_t j;
for (j = 0; j < tb->count; j++) {
if (fn(ctx, tb->buf, tb->buflen) <= 0)
return 0;
}
}
return 1;
}
/*
* Unescape some sequences in string literals (only \n for now).
* Return an allocated buffer, set |out_len|. If |input_len|
* is zero, get an empty buffer but set length to zero.
*/
static unsigned char* unescape(const char *input, size_t input_len,
size_t *out_len)
{
unsigned char *ret, *p;
size_t i;
if (input_len == 0) {
*out_len = 0;
return OPENSSL_zalloc(1);
}
/* Escaping is non-expanding; over-allocate original size for simplicity. */
if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
return NULL;
for (i = 0; i < input_len; i++) {
if (*input == '\\') {
if (i == input_len - 1 || *++input != 'n') {
TEST_error("Bad escape sequence in file");
goto err;
}
*p++ = '\n';
i++;
input++;
} else {
*p++ = *input++;
}
}
*out_len = p - ret;
return ret;
err:
OPENSSL_free(ret);
return NULL;
}
/*
* For a hex string "value" convert to a binary allocated buffer.
* Return 1 on success or 0 on failure.
*/
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
{
long len;
/* Check for NULL literal */
if (strcmp(value, "NULL") == 0) {
*buf = NULL;
*buflen = 0;
return 1;
}
/* Check for empty value */
if (*value == '\0') {
/*
* Don't return NULL for zero length buffer. This is needed for
* some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
* buffer even if the key length is 0, in order to detect key reset.
*/
*buf = OPENSSL_malloc(1);
if (*buf == NULL)
return 0;
**buf = 0;
*buflen = 0;
return 1;
}
/* Check for string literal */
if (value[0] == '"') {
size_t vlen = strlen(++value);
if (vlen == 0 || value[vlen - 1] != '"')
return 0;
vlen--;
*buf = unescape(value, vlen, buflen);
return *buf == NULL ? 0 : 1;
}
/* Otherwise assume as hex literal and convert it to binary buffer */
if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
TEST_info("Can't convert %s", value);
TEST_openssl_errors();
return -1;
}
/* Size of input buffer means we'll never overflow */
*buflen = len;
return 1;
}
/**
*** MESSAGE DIGEST TESTS
**/
typedef struct digest_data_st {
/* Digest this test is for */
const EVP_MD *digest;
/* Input to digest */
STACK_OF(EVP_TEST_BUFFER) *input;
/* Expected output */
unsigned char *output;
size_t output_len;
} DIGEST_DATA;
static int digest_test_init(EVP_TEST *t, const char *alg)
{
DIGEST_DATA *mdat;
const EVP_MD *digest;
if ((digest = EVP_get_digestbyname(alg)) == NULL) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
return 0;
t->data = mdat;
mdat->digest = digest;
return 1;
}
static void digest_test_cleanup(EVP_TEST *t)
{
DIGEST_DATA *mdat = t->data;
sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
OPENSSL_free(mdat->output);
}
static int digest_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
DIGEST_DATA *mdata = t->data;
if (strcmp(keyword, "Input") == 0)
return evp_test_buffer_append(value, &mdata->input);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
if (strcmp(keyword, "Count") == 0)
return evp_test_buffer_set_count(value, mdata->input);
if (strcmp(keyword, "Ncopy") == 0)
return evp_test_buffer_ncopy(value, mdata->input);
return 0;
}
static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
{
return EVP_DigestUpdate(ctx, buf, buflen);
}
static int digest_test_run(EVP_TEST *t)
{
DIGEST_DATA *expected = t->data;
EVP_MD_CTX *mctx;
unsigned char *got = NULL;
unsigned int got_len;
t->err = "TEST_FAILURE";
if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
goto err;
got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
expected->output_len : EVP_MAX_MD_SIZE);
if (!TEST_ptr(got))
goto err;
if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
t->err = "DIGESTINIT_ERROR";
goto err;
}
if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
t->err = "DIGESTUPDATE_ERROR";
goto err;
}
if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
got_len = expected->output_len;
if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
t->err = "DIGESTFINALXOF_ERROR";
goto err;
}
} else {
if (!EVP_DigestFinal(mctx, got, &got_len)) {
t->err = "DIGESTFINAL_ERROR";
goto err;
}
}
if (!TEST_int_eq(expected->output_len, got_len)) {
t->err = "DIGEST_LENGTH_MISMATCH";
goto err;
}
if (!memory_err_compare(t, "DIGEST_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
EVP_MD_CTX_free(mctx);
return 1;
}
static const EVP_TEST_METHOD digest_test_method = {
"Digest",
digest_test_init,
digest_test_cleanup,
digest_test_parse,
digest_test_run
};
/**
*** CIPHER TESTS
**/
typedef struct cipher_data_st {
const EVP_CIPHER *cipher;
int enc;
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
int aead;
unsigned char *key;
size_t key_len;
unsigned char *iv;
size_t iv_len;
unsigned char *plaintext;
size_t plaintext_len;
unsigned char *ciphertext;
size_t ciphertext_len;
/* GCM, CCM only */
unsigned char *aad;
size_t aad_len;
unsigned char *tag;
size_t tag_len;
} CIPHER_DATA;
static int cipher_test_init(EVP_TEST *t, const char *alg)
{
const EVP_CIPHER *cipher;
CIPHER_DATA *cdat;
int m;
if ((cipher = EVP_get_cipherbyname(alg)) == NULL) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
cdat = OPENSSL_zalloc(sizeof(*cdat));
cdat->cipher = cipher;
cdat->enc = -1;
m = EVP_CIPHER_mode(cipher);
if (m == EVP_CIPH_GCM_MODE
|| m == EVP_CIPH_OCB_MODE
|| m == EVP_CIPH_CCM_MODE)
cdat->aead = EVP_CIPHER_mode(cipher);
else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
cdat->aead = -1;
else
cdat->aead = 0;
t->data = cdat;
return 1;
}
static void cipher_test_cleanup(EVP_TEST *t)
{
CIPHER_DATA *cdat = t->data;
OPENSSL_free(cdat->key);
OPENSSL_free(cdat->iv);
OPENSSL_free(cdat->ciphertext);
OPENSSL_free(cdat->plaintext);
OPENSSL_free(cdat->aad);
OPENSSL_free(cdat->tag);
}
static int cipher_test_parse(EVP_TEST *t, const char *keyword,
const char *value)
{
CIPHER_DATA *cdat = t->data;
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &cdat->key, &cdat->key_len);
if (strcmp(keyword, "IV") == 0)
return parse_bin(value, &cdat->iv, &cdat->iv_len);
if (strcmp(keyword, "Plaintext") == 0)
return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
if (strcmp(keyword, "Ciphertext") == 0)
return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
if (cdat->aead) {
if (strcmp(keyword, "AAD") == 0)
return parse_bin(value, &cdat->aad, &cdat->aad_len);
if (strcmp(keyword, "Tag") == 0)
return parse_bin(value, &cdat->tag, &cdat->tag_len);
}
if (strcmp(keyword, "Operation") == 0) {
if (strcmp(value, "ENCRYPT") == 0)
cdat->enc = 1;
else if (strcmp(value, "DECRYPT") == 0)
cdat->enc = 0;
else
return 0;
return 1;
}
return 0;
}
static int cipher_test_enc(EVP_TEST *t, int enc,
size_t out_misalign, size_t inp_misalign, int frag)
{
CIPHER_DATA *expected = t->data;
unsigned char *in, *expected_out, *tmp = NULL;
size_t in_len, out_len, donelen = 0;
int ok = 0, tmplen, chunklen, tmpflen;
EVP_CIPHER_CTX *ctx = NULL;
t->err = "TEST_FAILURE";
if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
goto err;
EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
if (enc) {
in = expected->plaintext;
in_len = expected->plaintext_len;
expected_out = expected->ciphertext;
out_len = expected->ciphertext_len;
} else {
in = expected->ciphertext;
in_len = expected->ciphertext_len;
expected_out = expected->plaintext;
out_len = expected->plaintext_len;
}
if (inp_misalign == (size_t)-1) {
/*
* Exercise in-place encryption
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign, in, in_len);
} else {
inp_misalign += 16 - ((out_misalign + in_len) & 15);
/*
* 'tmp' will store both output and copy of input. We make the copy
* of input to specifically aligned part of 'tmp'. So we just
* figured out how much padding would ensure the required alignment,
* now we allocate extended buffer and finally copy the input just
* past inp_misalign in expression below. Output will be written
* past out_misalign...
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign + in_len);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign, in, in_len);
}
if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) {
t->err = "CIPHERINIT_ERROR";
goto err;
}
if (expected->iv) {
if (expected->aead) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
expected->iv_len, 0)) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
} else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
}
if (expected->aead) {
unsigned char *tag;
/*
* If encrypting or OCB just set tag length initially, otherwise
* set tag length and value.
*/
if (enc || expected->aead == EVP_CIPH_OCB_MODE) {
t->err = "TAG_LENGTH_SET_ERROR";
tag = NULL;
} else {
t->err = "TAG_SET_ERROR";
tag = expected->tag;
}
if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
expected->tag_len, tag))
goto err;
}
}
if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) {
t->err = "INVALID_KEY_LENGTH";
goto err;
}
if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) {
t->err = "KEY_SET_ERROR";
goto err;
}
if (!enc && expected->aead == EVP_CIPH_OCB_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
expected->tag_len, expected->tag)) {
t->err = "TAG_SET_ERROR";
goto err;
}
}
if (expected->aead == EVP_CIPH_CCM_MODE) {
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
goto err;
}
}
if (expected->aad) {
t->err = "AAD_SET_ERROR";
if (!frag) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad,
expected->aad_len))
goto err;
} else {
/*
* Supply the AAD in chunks less than the block size where possible
*/
if (expected->aad_len > 0) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, 1))
goto err;
donelen++;
}
if (expected->aad_len > 2) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
expected->aad + donelen,
expected->aad_len - 2))
goto err;
donelen += expected->aad_len - 2;
}
if (expected->aad_len > 1
&& !EVP_CipherUpdate(ctx, NULL, &chunklen,
expected->aad + donelen, 1))
goto err;
}
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
t->err = "CIPHERUPDATE_ERROR";
tmplen = 0;
if (!frag) {
/* We supply the data all in one go */
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
goto err;
} else {
/* Supply the data in chunks less than the block size where possible */
if (in_len > 0) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
goto err;
tmplen += chunklen;
in++;
in_len--;
}
if (in_len > 1) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, in_len - 1))
goto err;
tmplen += chunklen;
in += in_len - 1;
in_len = 1;
}
if (in_len > 0 ) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, 1))
goto err;
tmplen += chunklen;
}
}
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
t->err = "CIPHERFINAL_ERROR";
goto err;
}
if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
tmp + out_misalign, tmplen + tmpflen))
goto err;
if (enc && expected->aead) {
unsigned char rtag[16];
if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
t->err = "TAG_LENGTH_INTERNAL_ERROR";
goto err;
}
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
expected->tag_len, rtag)) {
t->err = "TAG_RETRIEVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
expected->tag, expected->tag_len,
rtag, expected->tag_len))
goto err;
}
t->err = NULL;
ok = 1;
err:
OPENSSL_free(tmp);
EVP_CIPHER_CTX_free(ctx);
return ok;
}
static int cipher_test_run(EVP_TEST *t)
{
CIPHER_DATA *cdat = t->data;
int rv, frag = 0;
size_t out_misalign, inp_misalign;
if (!cdat->key) {
t->err = "NO_KEY";
return 0;
}
if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
/* IV is optional and usually omitted in wrap mode */
if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
t->err = "NO_IV";
return 0;
}
}
if (cdat->aead && !cdat->tag) {
t->err = "NO_TAG";
return 0;
}
for (out_misalign = 0; out_misalign <= 1;) {
static char aux_err[64];
t->aux_err = aux_err;
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
if (inp_misalign == (size_t)-1) {
/* kludge: inp_misalign == -1 means "exercise in-place" */
BIO_snprintf(aux_err, sizeof(aux_err),
"%s in-place, %sfragmented",
out_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
} else {
BIO_snprintf(aux_err, sizeof(aux_err),
"%s output and %s input, %sfragmented",
out_misalign ? "misaligned" : "aligned",
inp_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
}
if (cdat->enc) {
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
if (cdat->enc != 1) {
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
}
if (out_misalign == 1 && frag == 0) {
/*
* XTS, CCM and Wrap modes have special requirements about input
* lengths so we don't fragment for those
*/
if (cdat->aead == EVP_CIPH_CCM_MODE
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
break;
out_misalign = 0;
frag++;
} else {
out_misalign++;
}
}
t->aux_err = NULL;
return 1;
}
static const EVP_TEST_METHOD cipher_test_method = {
"Cipher",
cipher_test_init,
cipher_test_cleanup,
cipher_test_parse,
cipher_test_run
};
/**
*** MAC TESTS
**/
typedef struct mac_data_st {
/* MAC type */
int type;
/* Algorithm string for this MAC */
char *alg;
/* MAC key */
unsigned char *key;
size_t key_len;
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
} MAC_DATA;
static int mac_test_init(EVP_TEST *t, const char *alg)
{
int type;
MAC_DATA *mdat;
if (strcmp(alg, "HMAC") == 0) {
type = EVP_PKEY_HMAC;
} else if (strcmp(alg, "CMAC") == 0) {
#ifndef OPENSSL_NO_CMAC
type = EVP_PKEY_CMAC;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "Poly1305") == 0) {
#ifndef OPENSSL_NO_POLY1305
type = EVP_PKEY_POLY1305;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "SipHash") == 0) {
#ifndef OPENSSL_NO_SIPHASH
type = EVP_PKEY_SIPHASH;
#else
t->skip = 1;
return 1;
#endif
} else
return 0;
mdat = OPENSSL_zalloc(sizeof(*mdat));
mdat->type = type;
t->data = mdat;
return 1;
}
static void mac_test_cleanup(EVP_TEST *t)
{
MAC_DATA *mdat = t->data;
OPENSSL_free(mdat->alg);
OPENSSL_free(mdat->key);
OPENSSL_free(mdat->input);
OPENSSL_free(mdat->output);
}
static int mac_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
MAC_DATA *mdata = t->data;
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &mdata->key, &mdata->key_len);
if (strcmp(keyword, "Algorithm") == 0) {
mdata->alg = OPENSSL_strdup(value);
if (!mdata->alg)
return 0;
return 1;
}
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
return 0;
}
static int mac_test_run(EVP_TEST *t)
{
MAC_DATA *expected = t->data;
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
EVP_PKEY *key = NULL;
const EVP_MD *md = NULL;
unsigned char *got = NULL;
size_t got_len;
#ifdef OPENSSL_NO_DES
if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
/* Skip DES */
t->err = NULL;
goto err;
}
#endif
if (expected->type == EVP_PKEY_CMAC)
key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
EVP_get_cipherbyname(expected->alg));
else
key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
expected->key_len);
if (key == NULL) {
t->err = "MAC_KEY_CREATE_ERROR";
goto err;
}
if (expected->type == EVP_PKEY_HMAC) {
if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
t->err = "MAC_ALGORITHM_SET_ERROR";
goto err;
}
}
if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
t->err = "DIGESTSIGNINIT_ERROR";
goto err;
}
if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
t->err = "DIGESTSIGNUPDATE_ERROR";
goto err;
}
if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "TEST_FAILURE";
goto err;
}
if (!EVP_DigestSignFinal(mctx, got, &got_len)
|| !memory_err_compare(t, "TEST_MAC_ERR",
expected->output, expected->output_len,
got, got_len)) {
t->err = "TEST_MAC_ERR";
goto err;
}
t->err = NULL;
err:
EVP_MD_CTX_free(mctx);
OPENSSL_free(got);
EVP_PKEY_CTX_free(genctx);
EVP_PKEY_free(key);
return 1;
}
static const EVP_TEST_METHOD mac_test_method = {
"MAC",
mac_test_init,
mac_test_cleanup,
mac_test_parse,
mac_test_run
};
/**
*** PUBLIC KEY TESTS
*** These are all very similar and share much common code.
**/
typedef struct pkey_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Key operation to perform */
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen);
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
} PKEY_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int pkey_test_init(EVP_TEST *t, const char *name,
int use_public,
int (*keyopinit) (EVP_PKEY_CTX *ctx),
int (*keyop)(EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs,
size_t tbslen))
{
PKEY_DATA *kdata;
EVP_PKEY *pkey = NULL;
int rv = 0;
if (use_public)
rv = find_key(&pkey, name, public_keys);
if (rv == 0)
rv = find_key(&pkey, name, private_keys);
if (rv == 0 || pkey == NULL) {
t->skip = 1;
return 1;
}
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
EVP_PKEY_free(pkey);
return 0;
}
kdata->keyop = keyop;
if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
EVP_PKEY_free(pkey);
OPENSSL_free(kdata);
return 0;
}
if (keyopinit(kdata->ctx) <= 0)
t->err = "KEYOP_INIT_ERROR";
t->data = kdata;
return 1;
}
static void pkey_test_cleanup(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
OPENSSL_free(kdata->input);
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
const char *value)
{
int rv;
char *p, *tmpval;
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
return 0;
p = strchr(tmpval, ':');
if (p != NULL)
*p++ = '\0';
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
if (rv == -2) {
t->err = "PKEY_CTRL_INVALID";
rv = 1;
} else if (p != NULL && rv <= 0) {
/* If p has an OID and lookup fails assume disabled algorithm */
int nid = OBJ_sn2nid(p);
if (nid == NID_undef)
nid = OBJ_ln2nid(p);
if (nid != NID_undef
&& EVP_get_digestbynid(nid) == NULL
&& EVP_get_cipherbynid(nid) == NULL) {
t->skip = 1;
rv = 1;
} else {
t->err = "PKEY_CTRL_ERROR";
rv = 1;
}
}
OPENSSL_free(tmpval);
return rv > 0;
}
static int pkey_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &kdata->input, &kdata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pkey_test_run(EVP_TEST *t)
{
PKEY_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (expected->keyop(expected->ctx, NULL, &got_len,
expected->input, expected->input_len) <= 0
|| !TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "KEYOP_LENGTH_ERROR";
goto err;
}
if (expected->keyop(expected->ctx, got, &got_len,
expected->input, expected->input_len) <= 0) {
t->err = "KEYOP_ERROR";
goto err;
}
if (!memory_err_compare(t, "KEYOP_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static int sign_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
}
static const EVP_TEST_METHOD psign_test_method = {
"Sign",
sign_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_recover_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover);
}
static const EVP_TEST_METHOD pverify_recover_test_method = {
"VerifyRecover",
verify_recover_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int decrypt_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt);
}
static const EVP_TEST_METHOD pdecrypt_test_method = {
"Decrypt",
decrypt_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
}
static int verify_test_run(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
kdata->input, kdata->input_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD pverify_test_method = {
"Verify",
verify_test_init,
pkey_test_cleanup,
pkey_test_parse,
verify_test_run
};
static int pderive_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
}
static int pderive_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
if (strcmp(keyword, "PeerKey") == 0) {
EVP_PKEY *peer;
if (find_key(&peer, value, public_keys) == 0)
return 0;
if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
return 0;
return 1;
}
if (strcmp(keyword, "SharedSecret") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pderive_test_run(EVP_TEST *t)
{
PKEY_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
t->err = "DERIVE_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "DERIVE_ERROR";
goto err;
}
if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
t->err = "DERIVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD pderive_test_method = {
"Derive",
pderive_test_init,
pkey_test_cleanup,
pderive_test_parse,
pderive_test_run
};
/**
*** PBE TESTS
**/
typedef enum pbe_type_enum {
PBE_TYPE_INVALID = 0,
PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
} PBE_TYPE;
typedef struct pbe_data_st {
PBE_TYPE pbe_type;
/* scrypt parameters */
uint64_t N, r, p, maxmem;
/* PKCS#12 parameters */
int id, iter;
const EVP_MD *md;
/* password */
unsigned char *pass;
size_t pass_len;
/* salt */
unsigned char *salt;
size_t salt_len;
/* Expected output */
unsigned char *key;
size_t key_len;
} PBE_DATA;
#ifndef OPENSSL_NO_SCRYPT
/*
* Parse unsigned decimal 64 bit integer value
*/
static int parse_uint64(const char *value, uint64_t *pr)
{
const char *p = value;
if (!TEST_true(*p)) {
TEST_info("Invalid empty integer value");
return -1;
}
for (*pr = 0; *p; ) {
if (*pr > UINT64_MAX / 10) {
TEST_error("Integer overflow in string %s", value);
return -1;
}
*pr *= 10;
if (!TEST_true(isdigit((unsigned char)*p))) {
TEST_error("Invalid character in string %s", value);
return -1;
}
*pr += *p - '0';
p++;
}
return 1;
}
static int scrypt_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "N") == 0)
return parse_uint64(value, &pdata->N);
if (strcmp(keyword, "p") == 0)
return parse_uint64(value, &pdata->p);
if (strcmp(keyword, "r") == 0)
return parse_uint64(value, &pdata->r);
if (strcmp(keyword, "maxmem") == 0)
return parse_uint64(value, &pdata->maxmem);
return 0;
}
#endif
static int pbkdf2_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "iter") == 0) {
pdata->iter = atoi(value);
if (pdata->iter <= 0)
return -1;
return 1;
}
if (strcmp(keyword, "MD") == 0) {
pdata->md = EVP_get_digestbyname(value);
if (pdata->md == NULL)
return -1;
return 1;
}
return 0;
}
static int pkcs12_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "id") == 0) {
pdata->id = atoi(value);
if (pdata->id <= 0)
return -1;
return 1;
}
return pbkdf2_test_parse(t, keyword, value);
}
static int pbe_test_init(EVP_TEST *t, const char *alg)
{
PBE_DATA *pdat;
PBE_TYPE pbe_type = PBE_TYPE_INVALID;
if (strcmp(alg, "scrypt") == 0) {
#ifndef OPENSSL_NO_SCRYPT
pbe_type = PBE_TYPE_SCRYPT;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "pbkdf2") == 0) {
pbe_type = PBE_TYPE_PBKDF2;
} else if (strcmp(alg, "pkcs12") == 0) {
pbe_type = PBE_TYPE_PKCS12;
} else {
TEST_error("Unknown pbe algorithm %s", alg);
}
pdat = OPENSSL_zalloc(sizeof(*pdat));
pdat->pbe_type = pbe_type;
t->data = pdat;
return 1;
}
static void pbe_test_cleanup(EVP_TEST *t)
{
PBE_DATA *pdat = t->data;
OPENSSL_free(pdat->pass);
OPENSSL_free(pdat->salt);
OPENSSL_free(pdat->key);
}
static int pbe_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "Password") == 0)
return parse_bin(value, &pdata->pass, &pdata->pass_len);
if (strcmp(keyword, "Salt") == 0)
return parse_bin(value, &pdata->salt, &pdata->salt_len);
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &pdata->key, &pdata->key_len);
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
return pbkdf2_test_parse(t, keyword, value);
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
return pkcs12_test_parse(t, keyword, value);
#ifndef OPENSSL_NO_SCRYPT
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
return scrypt_test_parse(t, keyword, value);
#endif
return 0;
}
static int pbe_test_run(EVP_TEST *t)
{
PBE_DATA *expected = t->data;
unsigned char *key;
if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->pbe_type == PBE_TYPE_PBKDF2) {
if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
expected->salt, expected->salt_len,
expected->iter, expected->md,
expected->key_len, key) == 0) {
t->err = "PBKDF2_ERROR";
goto err;
}
#ifndef OPENSSL_NO_SCRYPT
} else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
expected->salt, expected->salt_len, expected->N,
expected->r, expected->p, expected->maxmem,
key, expected->key_len) == 0) {
t->err = "SCRYPT_ERROR";
goto err;
}
#endif
} else if (expected->pbe_type == PBE_TYPE_PKCS12) {
if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
expected->salt, expected->salt_len,
expected->id, expected->iter, expected->key_len,
key, expected->md) == 0) {
t->err = "PKCS12_ERROR";
goto err;
}
}
if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
key, expected->key_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(key);
return 1;
}
static const EVP_TEST_METHOD pbe_test_method = {
"PBE",
pbe_test_init,
pbe_test_cleanup,
pbe_test_parse,
pbe_test_run
};
/**
*** BASE64 TESTS
**/
typedef enum {
BASE64_CANONICAL_ENCODING = 0,
BASE64_VALID_ENCODING = 1,
BASE64_INVALID_ENCODING = 2
} base64_encoding_type;
typedef struct encode_data_st {
/* Input to encoding */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
base64_encoding_type encoding;
} ENCODE_DATA;
static int encode_test_init(EVP_TEST *t, const char *encoding)
{
ENCODE_DATA *edata;
if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
return 0;
if (strcmp(encoding, "canonical") == 0) {
edata->encoding = BASE64_CANONICAL_ENCODING;
} else if (strcmp(encoding, "valid") == 0) {
edata->encoding = BASE64_VALID_ENCODING;
} else if (strcmp(encoding, "invalid") == 0) {
edata->encoding = BASE64_INVALID_ENCODING;
if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
return 0;
} else {
TEST_error("Bad encoding: %s."
" Should be one of {canonical, valid, invalid}",
encoding);
return 0;
}
t->data = edata;
return 1;
}
static void encode_test_cleanup(EVP_TEST *t)
{
ENCODE_DATA *edata = t->data;
OPENSSL_free(edata->input);
OPENSSL_free(edata->output);
memset(edata, 0, sizeof(*edata));
}
static int encode_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
ENCODE_DATA *edata = t->data;
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &edata->input, &edata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &edata->output, &edata->output_len);
return 0;
}
static int encode_test_run(EVP_TEST *t)
{
ENCODE_DATA *expected = t->data;
unsigned char *encode_out = NULL, *decode_out = NULL;
int output_len, chunk_len;
EVP_ENCODE_CTX *decode_ctx;
if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->encoding == BASE64_CANONICAL_ENCODING) {
EVP_ENCODE_CTX *encode_ctx;
if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
|| !TEST_ptr(encode_out =
OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
goto err;
EVP_EncodeInit(encode_ctx);
EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
expected->input, expected->input_len);
output_len = chunk_len;
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
output_len += chunk_len;
EVP_ENCODE_CTX_free(encode_ctx);
if (!memory_err_compare(t, "BAD_ENCODING",
expected->output, expected->output_len,
encode_out, output_len))
goto err;
}
if (!TEST_ptr(decode_out =
OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
goto err;
EVP_DecodeInit(decode_ctx);
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
expected->output_len) < 0) {
t->err = "DECODE_ERROR";
goto err;
}
output_len = chunk_len;
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
t->err = "DECODE_ERROR";
goto err;
}
output_len += chunk_len;
if (expected->encoding != BASE64_INVALID_ENCODING
&& !memory_err_compare(t, "BAD_DECODING",
expected->input, expected->input_len,
decode_out, output_len)) {
t->err = "BAD_DECODING";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(encode_out);
OPENSSL_free(decode_out);
EVP_ENCODE_CTX_free(decode_ctx);
return 1;
}
static const EVP_TEST_METHOD encode_test_method = {
"Encoding",
encode_test_init,
encode_test_cleanup,
encode_test_parse,
encode_test_run,
};
/**
*** KDF TESTS
**/
typedef struct kdf_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Expected output */
unsigned char *output;
size_t output_len;
} KDF_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int kdf_test_init(EVP_TEST *t, const char *name)
{
KDF_DATA *kdata;
int kdf_nid = OBJ_sn2nid(name);
#ifdef OPENSSL_NO_SCRYPT
if (strcmp(name, "scrypt") == 0) {
t->skip = 1;
return 1;
}
#endif
if (kdf_nid == NID_undef)
kdf_nid = OBJ_ln2nid(name);
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
return 0;
kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
if (kdata->ctx == NULL) {
OPENSSL_free(kdata);
return 0;
}
if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
EVP_PKEY_CTX_free(kdata->ctx);
OPENSSL_free(kdata);
return 0;
}
t->data = kdata;
return 1;
}
static void kdf_test_cleanup(EVP_TEST *t)
{
KDF_DATA *kdata = t->data;
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int kdf_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
KDF_DATA *kdata = t->data;
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (strncmp(keyword, "Ctrl", 4) == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int kdf_test_run(EVP_TEST *t)
{
KDF_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len = expected->output_len;
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
t->err = "KDF_DERIVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "KDF_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD kdf_test_method = {
"KDF",
kdf_test_init,
kdf_test_cleanup,
kdf_test_parse,
kdf_test_run
};
/**
*** KEYPAIR TESTS
**/
typedef struct keypair_test_data_st {
EVP_PKEY *privk;
EVP_PKEY *pubk;
} KEYPAIR_TEST_DATA;
static int keypair_test_init(EVP_TEST *t, const char *pair)
{
KEYPAIR_TEST_DATA *data;
int rv = 0;
EVP_PKEY *pk = NULL, *pubk = NULL;
char *pub, *priv = NULL;
/* Split private and public names. */
if (!TEST_ptr(priv = OPENSSL_strdup(pair))
|| !TEST_ptr(pub = strchr(priv, ':'))) {
t->err = "PARSING_ERROR";
goto end;
}
*pub++ = '\0';
if (!TEST_true(find_key(&pk, priv, private_keys))) {
TEST_info("Can't find private key: %s", priv);
t->err = "MISSING_PRIVATE_KEY";
goto end;
}
if (!TEST_true(find_key(&pubk, pub, public_keys))) {
TEST_info("Can't find public key: %s", pub);
t->err = "MISSING_PUBLIC_KEY";
goto end;
}
if (pk == NULL && pubk == NULL) {
/* Both keys are listed but unsupported: skip this test */
t->skip = 1;
rv = 1;
goto end;
}
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
goto end;
data->privk = pk;
data->pubk = pubk;
t->data = data;
rv = 1;
t->err = NULL;
end:
OPENSSL_free(priv);
return rv;
}
static void keypair_test_cleanup(EVP_TEST *t)
{
OPENSSL_free(t->data);
t->data = NULL;
}
/*
* For tests that do not accept any custom keywords.
*/
static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
{
return 0;
}
static int keypair_test_run(EVP_TEST *t)
{
int rv = 0;
const KEYPAIR_TEST_DATA *pair = t->data;
if (pair->privk == NULL || pair->pubk == NULL) {
/*
* this can only happen if only one of the keys is not set
* which means that one of them was unsupported while the
* other isn't: hence a key type mismatch.
*/
t->err = "KEYPAIR_TYPE_MISMATCH";
rv = 1;
goto end;
}
if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
if ( 0 == rv ) {
t->err = "KEYPAIR_MISMATCH";
} else if ( -1 == rv ) {
t->err = "KEYPAIR_TYPE_MISMATCH";
} else if ( -2 == rv ) {
t->err = "UNSUPPORTED_KEY_COMPARISON";
} else {
TEST_error("Unexpected error in key comparison");
rv = 0;
goto end;
}
rv = 1;
goto end;
}
rv = 1;
t->err = NULL;
end:
return rv;
}
static const EVP_TEST_METHOD keypair_test_method = {
"PrivPubKeyPair",
keypair_test_init,
keypair_test_cleanup,
void_test_parse,
keypair_test_run
};
/**
*** KEYGEN TEST
**/
typedef struct keygen_test_data_st {
EVP_PKEY_CTX *genctx; /* Keygen context to use */
char *keyname; /* Key name to store key or NULL */
} KEYGEN_TEST_DATA;
static int keygen_test_init(EVP_TEST *t, const char *alg)
{
KEYGEN_TEST_DATA *data;
EVP_PKEY_CTX *genctx;
int nid = OBJ_sn2nid(alg);
if (nid == NID_undef) {
nid = OBJ_ln2nid(alg);
if (nid == NID_undef)
return 0;
}
if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
/* assume algorithm disabled */
t->skip = 1;
return 1;
}
if (EVP_PKEY_keygen_init(genctx) <= 0) {
t->err = "KEYGEN_INIT_ERROR";
goto err;
}
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
goto err;
data->genctx = genctx;
data->keyname = NULL;
t->data = data;
t->err = NULL;
return 1;
err:
EVP_PKEY_CTX_free(genctx);
return 0;
}
static void keygen_test_cleanup(EVP_TEST *t)
{
KEYGEN_TEST_DATA *keygen = t->data;
EVP_PKEY_CTX_free(keygen->genctx);
OPENSSL_free(keygen->keyname);
OPENSSL_free(t->data);
t->data = NULL;
}
static int keygen_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
KEYGEN_TEST_DATA *keygen = t->data;
if (strcmp(keyword, "KeyName") == 0)
return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, keygen->genctx, value);
return 0;
}
static int keygen_test_run(EVP_TEST *t)
{
KEYGEN_TEST_DATA *keygen = t->data;
EVP_PKEY *pkey = NULL;
t->err = NULL;
if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
t->err = "KEYGEN_GENERATE_ERROR";
goto err;
}
if (keygen->keyname != NULL) {
KEY_LIST *key;
if (find_key(NULL, keygen->keyname, private_keys)) {
TEST_info("Duplicate key %s", keygen->keyname);
goto err;
}
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
goto err;
key->name = keygen->keyname;
keygen->keyname = NULL;
key->key = pkey;
key->next = private_keys;
private_keys = key;
} else {
EVP_PKEY_free(pkey);
}
return 1;
err:
EVP_PKEY_free(pkey);
return 0;
}
static const EVP_TEST_METHOD keygen_test_method = {
"KeyGen",
keygen_test_init,
keygen_test_cleanup,
keygen_test_parse,
keygen_test_run,
};
/**
*** DIGEST SIGN+VERIFY TESTS
**/
typedef struct {
int is_verify; /* Set to 1 if verifying */
int is_oneshot; /* Set to 1 for one shot operation */
const EVP_MD *md; /* Digest to use */
EVP_MD_CTX *ctx; /* Digest context */
EVP_PKEY_CTX *pctx;
STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
unsigned char *osin; /* Input data if one shot */
size_t osin_len; /* Input length data if one shot */
unsigned char *output; /* Expected output */
size_t output_len; /* Expected output length */
} DIGESTSIGN_DATA;
static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
int is_oneshot)
{
const EVP_MD *md = NULL;
DIGESTSIGN_DATA *mdat;
if (strcmp(alg, "NULL") != 0) {
if ((md = EVP_get_digestbyname(alg)) == NULL) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
}
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
return 0;
mdat->md = md;
if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
OPENSSL_free(mdat);
return 0;
}
mdat->is_verify = is_verify;
mdat->is_oneshot = is_oneshot;
t->data = mdat;
return 1;
}
static int digestsign_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 0, 0);
}
static void digestsigver_test_cleanup(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
EVP_MD_CTX_free(mdata->ctx);
sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
OPENSSL_free(mdata->osin);
OPENSSL_free(mdata->output);
OPENSSL_free(mdata);
t->data = NULL;
}
static int digestsigver_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
DIGESTSIGN_DATA *mdata = t->data;
if (strcmp(keyword, "Key") == 0) {
EVP_PKEY *pkey = NULL;
int rv = 0;
if (mdata->is_verify)
rv = find_key(&pkey, value, public_keys);
if (rv == 0)
rv = find_key(&pkey, value, private_keys);
if (rv == 0 || pkey == NULL) {
t->skip = 1;
return 1;
}
if (mdata->is_verify) {
if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
NULL, pkey))
t->err = "DIGESTVERIFYINIT_ERROR";
return 1;
}
if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
pkey))
t->err = "DIGESTSIGNINIT_ERROR";
return 1;
}
if (strcmp(keyword, "Input") == 0) {
if (mdata->is_oneshot)
return parse_bin(value, &mdata->osin, &mdata->osin_len);
return evp_test_buffer_append(value, &mdata->input);
}
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
if (!mdata->is_oneshot) {
if (strcmp(keyword, "Count") == 0)
return evp_test_buffer_set_count(value, mdata->input);
if (strcmp(keyword, "Ncopy") == 0)
return evp_test_buffer_ncopy(value, mdata->input);
}
if (strcmp(keyword, "Ctrl") == 0) {
if (mdata->pctx == NULL)
return 0;
return pkey_test_ctrl(t, mdata->pctx, value);
}
return 0;
}
static int digestsign_update_fn(void *ctx, const unsigned char *buf,
size_t buflen)
{
return EVP_DigestSignUpdate(ctx, buf, buflen);
}
static int digestsign_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
expected->ctx)) {
t->err = "DIGESTUPDATE_ERROR";
goto err;
}
if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "MALLOC_FAILURE";
goto err;
}
if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
t->err = "DIGESTSIGNFINAL_ERROR";
goto err;
}
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD digestsign_test_method = {
"DigestSign",
digestsign_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
digestsign_test_run
};
static int digestverify_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 1, 0);
}
static int digestverify_update_fn(void *ctx, const unsigned char *buf,
size_t buflen)
{
return EVP_DigestVerifyUpdate(ctx, buf, buflen);
}
static int digestverify_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
t->err = "DIGESTUPDATE_ERROR";
return 1;
}
if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
mdata->output_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD digestverify_test_method = {
"DigestVerify",
digestverify_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
digestverify_test_run
};
static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 0, 1);
}
static int oneshot_digestsign_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
expected->osin, expected->osin_len)) {
t->err = "DIGESTSIGN_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "MALLOC_FAILURE";
goto err;
}
if (!EVP_DigestSign(expected->ctx, got, &got_len,
expected->osin, expected->osin_len)) {
t->err = "DIGESTSIGN_ERROR";
goto err;
}
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
"OneShotDigestSign",
oneshot_digestsign_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
oneshot_digestsign_test_run
};
static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 1, 1);
}
static int oneshot_digestverify_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
mdata->osin, mdata->osin_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
"OneShotDigestVerify",
oneshot_digestverify_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
oneshot_digestverify_test_run
};
/**
*** PARSING AND DISPATCH
**/
static const EVP_TEST_METHOD *evp_test_list[] = {
&cipher_test_method,
&digest_test_method,
&digestsign_test_method,
&digestverify_test_method,
&encode_test_method,
&kdf_test_method,
&keypair_test_method,
&keygen_test_method,
&mac_test_method,
&oneshot_digestsign_test_method,
&oneshot_digestverify_test_method,
&pbe_test_method,
&pdecrypt_test_method,
&pderive_test_method,
&psign_test_method,
&pverify_recover_test_method,
&pverify_test_method,
NULL
};
static const EVP_TEST_METHOD *find_test(const char *name)
{
const EVP_TEST_METHOD **tt;
for (tt = evp_test_list; *tt; tt++) {
if (strcmp(name, (*tt)->name) == 0)
return *tt;
}
return NULL;
}
static void clear_test(EVP_TEST *t)
{
test_clearstanza(&t->s);
ERR_clear_error();
if (t->data != NULL) {
if (t->meth != NULL)
t->meth->cleanup(t);
OPENSSL_free(t->data);
t->data = NULL;
}
OPENSSL_free(t->expected_err);
t->expected_err = NULL;
OPENSSL_free(t->func);
t->func = NULL;
OPENSSL_free(t->reason);
t->reason = NULL;
/* Text literal. */
t->err = NULL;
t->skip = 0;
t->meth = NULL;
}
/*
* Check for errors in the test structure; return 1 if okay, else 0.
*/
static int check_test_error(EVP_TEST *t)
{
unsigned long err;
const char *func;
const char *reason;
if (t->err == NULL && t->expected_err == NULL)
return 1;
if (t->err != NULL && t->expected_err == NULL) {
if (t->aux_err != NULL) {
TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
t->s.test_file, t->s.start, t->aux_err, t->err);
} else {
TEST_info("%s:%d: Source of above error; unexpected error %s",
t->s.test_file, t->s.start, t->err);
}
return 0;
}
if (t->err == NULL && t->expected_err != NULL) {
TEST_info("%s:%d: Succeeded but was expecting %s",
t->s.test_file, t->s.start, t->expected_err);
return 0;
}
if (strcmp(t->err, t->expected_err) != 0) {
TEST_info("%s:%d: Expected %s got %s",
t->s.test_file, t->s.start, t->expected_err, t->err);
return 0;
}
if (t->func == NULL && t->reason == NULL)
return 1;
if (t->func == NULL || t->reason == NULL) {
TEST_info("%s:%d: Test is missing function or reason code",
t->s.test_file, t->s.start);
return 0;
}
err = ERR_peek_error();
if (err == 0) {
TEST_info("%s:%d: Expected error \"%s:%s\" not set",
t->s.test_file, t->s.start, t->func, t->reason);
return 0;
}
func = ERR_func_error_string(err);
reason = ERR_reason_error_string(err);
if (func == NULL && reason == NULL) {
TEST_info("%s:%d: Expected error \"%s:%s\", no strings available."
" Assuming ok.",
t->s.test_file, t->s.start, t->func, t->reason);
return 1;
}
if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
return 1;
TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"",
t->s.test_file, t->s.start, t->func, t->reason, func, reason);
return 0;
}
/*
* Run a parsed test. Log a message and return 0 on error.
*/
static int run_test(EVP_TEST *t)
{
if (t->meth == NULL)
return 1;
t->s.numtests++;
if (t->skip) {
t->s.numskip++;
} else {
/* run the test */
if (t->err == NULL && t->meth->run_test(t) != 1) {
TEST_info("%s:%d %s error",
t->s.test_file, t->s.start, t->meth->name);
return 0;
}
if (!check_test_error(t)) {
TEST_openssl_errors();
t->s.errors++;
}
}
/* clean it up */
return 1;
}
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
{
for (; lst != NULL; lst = lst->next) {
if (strcmp(lst->name, name) == 0) {
if (ppk != NULL)
*ppk = lst->key;
return 1;
}
}
return 0;
}
static void free_key_list(KEY_LIST *lst)
{
while (lst != NULL) {
KEY_LIST *next = lst->next;
EVP_PKEY_free(lst->key);
OPENSSL_free(lst->name);
OPENSSL_free(lst);
lst = next;
}
}
/*
* Is the key type an unsupported algorithm?
*/
static int key_unsupported(void)
{
long err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_EVP
&& ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
ERR_clear_error();
return 1;
}
#ifndef OPENSSL_NO_EC
/*
* If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
* hint to an unsupported algorithm/curve (e.g. if binary EC support is
* disabled).
*/
if (ERR_GET_LIB(err) == ERR_LIB_EC
&& ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
ERR_clear_error();
return 1;
}
#endif /* OPENSSL_NO_EC */
return 0;
}
/*
* NULL out the value from |pp| but return it. This "steals" a pointer.
*/
static char *take_value(PAIR *pp)
{
char *p = pp->value;
pp->value = NULL;
return p;
}
/*
* Read and parse one test. Return 0 if failure, 1 if okay.
*/
static int parse(EVP_TEST *t)
{
KEY_LIST *key, **klist;
EVP_PKEY *pkey;
PAIR *pp;
int i;
top:
do {
if (BIO_eof(t->s.fp))
return EOF;
clear_test(t);
if (!test_readstanza(&t->s))
return 0;
} while (t->s.numpairs == 0);
pp = &t->s.pairs[0];
/* Are we adding a key? */
klist = NULL;
pkey = NULL;
if (strcmp(pp->key, "PrivateKey") == 0) {
pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
if (pkey == NULL && !key_unsupported()) {
EVP_PKEY_free(pkey);
TEST_info("Can't read private key %s", pp->value);
TEST_openssl_errors();
return 0;
}
klist = &private_keys;
} else if (strcmp(pp->key, "PublicKey") == 0) {
pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
if (pkey == NULL && !key_unsupported()) {
EVP_PKEY_free(pkey);
TEST_info("Can't read public key %s", pp->value);
TEST_openssl_errors();
return 0;
}
klist = &public_keys;
} else if (strcmp(pp->key, "PrivateKeyRaw") == 0
|| strcmp(pp->key, "PublicKeyRaw") == 0 ) {
char *strnid = NULL, *keydata = NULL;
unsigned char *keybin;
size_t keylen;
int nid;
if (strcmp(pp->key, "PrivateKeyRaw") == 0)
klist = &private_keys;
else
klist = &public_keys;
strnid = strchr(pp->value, ':');
if (strnid != NULL) {
*strnid++ = '\0';
keydata = strchr(strnid, ':');
if (keydata != NULL)
*keydata++ = '\0';
}
if (keydata == NULL) {
TEST_info("Failed to parse %s value", pp->key);
return 0;
}
nid = OBJ_txt2nid(strnid);
if (nid == NID_undef) {
TEST_info("Uncrecognised algorithm NID");
return 0;
}
if (!parse_bin(keydata, &keybin, &keylen)) {
TEST_info("Failed to create binary key");
return 0;
}
if (klist == &private_keys)
pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
else
pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
if (pkey == NULL && !key_unsupported()) {
TEST_info("Can't read %s data", pp->key);
OPENSSL_free(keybin);
TEST_openssl_errors();
return 0;
}
OPENSSL_free(keybin);
}
/* If we have a key add to list */
if (klist != NULL) {
if (find_key(NULL, pp->value, *klist)) {
TEST_info("Duplicate key %s", pp->value);
return 0;
}
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
return 0;
key->name = take_value(pp);
/* Hack to detect SM2 keys */
if(pkey != NULL && strstr(key->name, "SM2") != NULL) {
#ifdef OPENSSL_NO_SM2
EVP_PKEY_free(pkey);
pkey = NULL;
#else
EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2);
#endif
}
key->key = pkey;
key->next = *klist;
*klist = key;
/* Go back and start a new stanza. */
if (t->s.numpairs != 1)
TEST_info("Line %d: missing blank line\n", t->s.curr);
goto top;
}
/* Find the test, based on first keyword. */
if (!TEST_ptr(t->meth = find_test(pp->key)))
return 0;
if (!t->meth->init(t, pp->value)) {
TEST_error("unknown %s: %s\n", pp->key, pp->value);
return 0;
}
if (t->skip == 1) {
/* TEST_info("skipping %s %s", pp->key, pp->value); */
return 0;
}
for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
if (strcmp(pp->key, "Result") == 0) {
if (t->expected_err != NULL) {
TEST_info("Line %d: multiple result lines", t->s.curr);
return 0;
}
t->expected_err = take_value(pp);
} else if (strcmp(pp->key, "Function") == 0) {
if (t->func != NULL) {
TEST_info("Line %d: multiple function lines\n", t->s.curr);
return 0;
}
t->func = take_value(pp);
} else if (strcmp(pp->key, "Reason") == 0) {
if (t->reason != NULL) {
TEST_info("Line %d: multiple reason lines", t->s.curr);
return 0;
}
t->reason = take_value(pp);
} else {
/* Must be test specific line: try to parse it */
int rv = t->meth->parse(t, pp->key, pp->value);
if (rv == 0) {
TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
return 0;
}
if (rv < 0) {
TEST_info("Line %d: error processing keyword %s\n",
t->s.curr, pp->key);
return 0;
}
}
}
return 1;
}
static int run_file_tests(int i)
{
EVP_TEST *t;
const char *testfile = test_get_argument(i);
int c;
if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
return 0;
if (!test_start_file(&t->s, testfile)) {
OPENSSL_free(t);
return 0;
}
while (!BIO_eof(t->s.fp)) {
c = parse(t);
if (t->skip)
continue;
if (c == 0 || !run_test(t)) {
t->s.errors++;
break;
}
}
test_end_file(&t->s);
clear_test(t);
free_key_list(public_keys);
free_key_list(private_keys);
BIO_free(t->s.key);
c = t->s.errors;
OPENSSL_free(t);
return c == 0;
}
int setup_tests(void)
{
size_t n = test_get_argument_count();
if (n == 0) {
TEST_error("Usage: %s file...", test_get_program_name());
return 0;
}
ADD_ALL_TESTS(run_file_tests, n);
return 1;
}