openssl/ssl/ssl_ciph.c
Matt Caswell e376242d28 Remove all OPENSSL_NO_XXX from libssl where XXX is a crypto alg
We should no longer be relying on compile time checks in libssl for
the availability of crypto algorithms. The availability of crypto
algorithms should be determined at runtime based on what providers have
been loaded.

Fixes #13616

Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13916)
2021-02-05 15:22:43 +00:00

2221 lines
69 KiB
C

/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <ctype.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include <openssl/engine.h>
#include <openssl/crypto.h>
#include <openssl/conf.h>
#include <openssl/trace.h>
#include "internal/nelem.h"
#include "ssl_local.h"
#include "internal/thread_once.h"
#include "internal/cryptlib.h"
/* NB: make sure indices in these tables match values above */
typedef struct {
uint32_t mask;
int nid;
} ssl_cipher_table;
/* Table of NIDs for each cipher */
static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
{SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
{SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
{SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
{SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
{SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
{SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
{SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
{SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
{SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
{SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
{SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
{SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
{SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
{SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
{SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
{SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
{SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
{SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
{SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
{SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
{SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
{SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
{SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
{SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#ifndef OPENSSL_NO_COMP
static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
#endif
/* NB: make sure indices in this table matches values above */
static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
{SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
{SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
{SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
{SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
{SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
{SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
{SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
{SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
{SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
{0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
{0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
{0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
{SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
{SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
};
/* *INDENT-OFF* */
static const ssl_cipher_table ssl_cipher_table_kx[] = {
{SSL_kRSA, NID_kx_rsa},
{SSL_kECDHE, NID_kx_ecdhe},
{SSL_kDHE, NID_kx_dhe},
{SSL_kECDHEPSK, NID_kx_ecdhe_psk},
{SSL_kDHEPSK, NID_kx_dhe_psk},
{SSL_kRSAPSK, NID_kx_rsa_psk},
{SSL_kPSK, NID_kx_psk},
{SSL_kSRP, NID_kx_srp},
{SSL_kGOST, NID_kx_gost},
{SSL_kGOST18, NID_kx_gost18},
{SSL_kANY, NID_kx_any}
};
static const ssl_cipher_table ssl_cipher_table_auth[] = {
{SSL_aRSA, NID_auth_rsa},
{SSL_aECDSA, NID_auth_ecdsa},
{SSL_aPSK, NID_auth_psk},
{SSL_aDSS, NID_auth_dss},
{SSL_aGOST01, NID_auth_gost01},
{SSL_aGOST12, NID_auth_gost12},
{SSL_aSRP, NID_auth_srp},
{SSL_aNULL, NID_auth_null},
{SSL_aANY, NID_auth_any}
};
/* *INDENT-ON* */
/* Utility function for table lookup */
static int ssl_cipher_info_find(const ssl_cipher_table * table,
size_t table_cnt, uint32_t mask)
{
size_t i;
for (i = 0; i < table_cnt; i++, table++) {
if (table->mask == mask)
return (int)i;
}
return -1;
}
#define ssl_cipher_info_lookup(table, x) \
ssl_cipher_info_find(table, OSSL_NELEM(table), x)
/*
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
* found
*/
static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
/* MD5, SHA, GOST94, MAC89 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* SHA256, SHA384, GOST2012_256, MAC89-12 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* GOST2012_512 */
EVP_PKEY_HMAC,
/* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
/*
* Bump the ciphers to the top of the list.
* This rule isn't currently supported by the public cipherstring API.
*/
#define CIPHER_BUMP 6
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
/* "COMPLEMENTOFALL" */
{0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
/*
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
* ALL!)
*/
{0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
/*
* key exchange aliases (some of those using only a single bit here
* combine multiple key exchange algs according to the RFCs, e.g. kDHE
* combines DHE_DSS and DHE_RSA)
*/
{0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
{0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
{0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
{0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
{0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
{0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
{0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
{0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
{0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
/* server authentication aliases */
{0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
{0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
{0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
{0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
{0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
{0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
{0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
/* aliases combining key exchange and server authentication */
{0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
{0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
{0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
{0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
{0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
/* symmetric encryption aliases */
{0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
{0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
{0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
{0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
{0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
{0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_GOST, NULL, 0, 0, 0,
SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
{0, SSL_TXT_AES128, NULL, 0, 0, 0,
SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
{0, SSL_TXT_AES256, NULL, 0, 0, 0,
SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
{0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
{0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
{0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
{0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
{0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
{0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
{0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
{0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
{0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
{0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
{0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
{0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
/* MAC aliases */
{0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
{0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
{0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
{0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
{0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
{0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
/* protocol version aliases */
{0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
{0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
/* strength classes */
{0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
{0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
{0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
/* FIPS 140-2 approved ciphersuite */
{0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
/* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
{0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
{0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
};
/*
* Search for public key algorithm with given name and return its pkey_id if
* it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) > 0)
return pkey_id;
return 0;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
if (ameth) {
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) <= 0)
pkey_id = 0;
}
tls_engine_finish(tmpeng);
return pkey_id;
}
#endif
int ssl_load_ciphers(SSL_CTX *ctx)
{
size_t i;
const ssl_cipher_table *t;
EVP_KEYEXCH *kex = NULL;
EVP_SIGNATURE *sig = NULL;
ctx->disabled_enc_mask = 0;
for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
if (t->nid != NID_undef) {
const EVP_CIPHER *cipher
= ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
ctx->ssl_cipher_methods[i] = cipher;
if (cipher == NULL)
ctx->disabled_enc_mask |= t->mask;
}
}
ctx->disabled_mac_mask = 0;
for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
const EVP_MD *md
= ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
ctx->ssl_digest_methods[i] = md;
if (md == NULL) {
ctx->disabled_mac_mask |= t->mask;
} else {
int tmpsize = EVP_MD_size(md);
if (!ossl_assert(tmpsize >= 0))
return 0;
ctx->ssl_mac_secret_size[i] = tmpsize;
}
}
ctx->disabled_mkey_mask = 0;
ctx->disabled_auth_mask = 0;
/*
* We ignore any errors from the fetches below. They are expected to fail
* if theose algorithms are not available.
*/
ERR_set_mark();
sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
if (sig == NULL)
ctx->disabled_auth_mask |= SSL_aDSS;
else
EVP_SIGNATURE_free(sig);
kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
if (kex == NULL)
ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
else
EVP_KEYEXCH_free(kex);
kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
if (kex == NULL)
ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
else
EVP_KEYEXCH_free(kex);
sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
if (sig == NULL)
ctx->disabled_auth_mask |= SSL_aECDSA;
else
EVP_SIGNATURE_free(sig);
ERR_pop_to_mark();
#ifdef OPENSSL_NO_PSK
ctx->disabled_mkey_mask |= SSL_PSK;
ctx->disabled_auth_mask |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
ctx->disabled_mkey_mask |= SSL_kSRP;
#endif
/*
* Check for presence of GOST 34.10 algorithms, and if they are not
* present, disable appropriate auth and key exchange
*/
ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id(SN_id_Gost28147_89_MAC);
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_GOST89MAC;
ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
get_optional_pkey_id(SN_gost_mac_12);
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_GOST89MAC12;
ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
get_optional_pkey_id(SN_magma_mac);
if (ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
get_optional_pkey_id(SN_kuznyechik_mac);
if (ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
else
ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
if (!get_optional_pkey_id(SN_id_GostR3410_2001))
ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
ctx->disabled_auth_mask |= SSL_aGOST12;
if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
ctx->disabled_auth_mask |= SSL_aGOST12;
/*
* Disable GOST key exchange if no GOST signature algs are available *
*/
if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
(SSL_aGOST01 | SSL_aGOST12))
ctx->disabled_mkey_mask |= SSL_kGOST;
if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
ctx->disabled_mkey_mask |= SSL_kGOST18;
return 1;
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
{
SSL_COMP *comp = NULL;
COMP_METHOD *method = COMP_zlib();
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
comp = OPENSSL_malloc(sizeof(*comp));
if (comp != NULL) {
comp->method = method;
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = COMP_get_name(method);
sk_SSL_COMP_push(ssl_comp_methods, comp);
sk_SSL_COMP_sort(ssl_comp_methods);
}
}
return 1;
}
static int load_builtin_compressions(void)
{
return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
}
#endif
int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
const EVP_CIPHER **enc)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
if (i == -1) {
*enc = NULL;
} else {
if (i == SSL_ENC_NULL_IDX) {
/*
* We assume we don't care about this coming from an ENGINE so
* just do a normal EVP_CIPHER_fetch instead of
* ssl_evp_cipher_fetch()
*/
*enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
if (*enc == NULL)
return 0;
} else {
const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
if (cipher == NULL
|| !ssl_evp_cipher_up_ref(cipher))
return 0;
*enc = ctx->ssl_cipher_methods[i];
}
}
return 1;
}
int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
const EVP_CIPHER **enc, const EVP_MD **md,
int *mac_pkey_type, size_t *mac_secret_size,
SSL_COMP **comp, int use_etm)
{
int i;
const SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return 0;
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
if (!load_builtin_compressions()) {
/*
* Currently don't care, since a failure only means that
* ssl_comp_methods is NULL, which is perfectly OK
*/
}
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
}
/* If were only interested in comp then return success */
if ((enc == NULL) && (md == NULL))
return 1;
}
if ((enc == NULL) || (md == NULL))
return 0;
if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
return 0;
i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1) {
*md = NULL;
if (mac_pkey_type != NULL)
*mac_pkey_type = NID_undef;
if (mac_secret_size != NULL)
*mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
} else {
if (!ssl_evp_md_up_ref(ctx->ssl_digest_methods[i])) {
ssl_evp_cipher_free(*enc);
return 0;
}
*md = ctx->ssl_digest_methods[i];
if (mac_pkey_type != NULL)
*mac_pkey_type = ssl_mac_pkey_id[i];
if (mac_secret_size != NULL)
*mac_secret_size = ctx->ssl_mac_secret_size[i];
}
if ((*enc != NULL) &&
(*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
&& (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
const EVP_CIPHER *evp = NULL;
if (use_etm
|| s->ssl_version >> 8 != TLS1_VERSION_MAJOR
|| s->ssl_version < TLS1_VERSION)
return 1;
if (c->algorithm_enc == SSL_RC4
&& c->algorithm_mac == SSL_MD5)
evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
ctx->propq);
else if (c->algorithm_enc == SSL_AES128
&& c->algorithm_mac == SSL_SHA1)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_128_cbc_hmac_sha1,
ctx->propq);
else if (c->algorithm_enc == SSL_AES256
&& c->algorithm_mac == SSL_SHA1)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_256_cbc_hmac_sha1,
ctx->propq);
else if (c->algorithm_enc == SSL_AES128
&& c->algorithm_mac == SSL_SHA256)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_128_cbc_hmac_sha256,
ctx->propq);
else if (c->algorithm_enc == SSL_AES256
&& c->algorithm_mac == SSL_SHA256)
evp = ssl_evp_cipher_fetch(ctx->libctx,
NID_aes_256_cbc_hmac_sha256,
ctx->propq);
if (evp != NULL) {
ssl_evp_cipher_free(*enc);
ssl_evp_md_free(*md);
*enc = evp;
*md = NULL;
}
return 1;
}
return 0;
}
const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
{
idx &= SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return ctx->ssl_digest_methods[idx];
}
const EVP_MD *ssl_handshake_md(SSL *s)
{
return ssl_md(s->ctx, ssl_get_algorithm2(s));
}
const EVP_MD *ssl_prf_md(SSL *s)
{
return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL)
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head)
return;
if (curr == *tail)
*tail = curr->prev;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if (c == NULL || !c->valid)
continue;
if ((c->algorithm_mkey & disabled_mkey) ||
(c->algorithm_auth & disabled_auth) ||
(c->algorithm_enc & disabled_enc) ||
(c->algorithm_mac & disabled_mac))
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
c->min_tls == 0)
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
c->min_dtls == 0)
continue;
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
uint32_t mask_mkey = ~disabled_mkey;
uint32_t mask_auth = ~disabled_auth;
uint32_t mask_enc = ~disabled_enc;
uint32_t mask_mac = ~disabled_mac;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
uint32_t alg_auth, uint32_t alg_enc,
uint32_t alg_mac, int min_tls,
uint32_t algo_strength, int rule,
int32_t strength_bits, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
OSSL_TRACE_BEGIN(TLS_CIPHER){
BIO_printf(trc_out,
"Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
algo_strength, strength_bits);
}
if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
reverse = 1; /* needed to maintain sorting between currently
* deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last)
break;
curr = next;
if (curr == NULL)
break;
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0) {
if (strength_bits != cp->strength_bits)
continue;
} else {
if (trc_out != NULL) {
BIO_printf(trc_out,
"\nName: %s:"
"\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
cp->name, cp->algorithm_mkey, cp->algorithm_auth,
cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
cp->algo_strength);
}
if (cipher_id != 0 && (cipher_id != cp->id))
continue;
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (min_tls && (min_tls != cp->min_tls))
continue;
if ((algo_strength & SSL_STRONG_MASK)
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_DEFAULT_MASK)
&& !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
continue;
}
if (trc_out != NULL)
BIO_printf(trc_out, "Action = %d\n", rule);
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/*
* most recently deleted ciphersuites get best positions for
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
* in reverse to maintain the order)
*/
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
} else if (rule == CIPHER_BUMP) {
if (curr->active)
ll_append_head(&head, curr, &tail);
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
OSSL_TRACE_END(TLS_CIPHER);
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int32_t max_strength_bits;
int i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
if (number_uses == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
tail_p);
OPENSSL_free(number_uses);
return 1;
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list, CERT *c)
{
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
int min_tls;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
uint32_t cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for ( ; ; ) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
min_tls = 0;
algo_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-') || (ch == '.') || (ch == '='))
#else
while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
|| (ch == '='))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else {
multi = 0;
}
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j]) {
if (strncmp(buf, ca_list[j]->name, buflen) == 0
&& (ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey) {
if (alg_mkey) {
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) {
found = 0;
break;
}
} else {
alg_mkey = ca_list[j]->algorithm_mkey;
}
}
if (ca_list[j]->algorithm_auth) {
if (alg_auth) {
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) {
found = 0;
break;
}
} else {
alg_auth = ca_list[j]->algorithm_auth;
}
}
if (ca_list[j]->algorithm_enc) {
if (alg_enc) {
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) {
found = 0;
break;
}
} else {
alg_enc = ca_list[j]->algorithm_enc;
}
}
if (ca_list[j]->algorithm_mac) {
if (alg_mac) {
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) {
found = 0;
break;
}
} else {
alg_mac = ca_list[j]->algorithm_mac;
}
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
if (algo_strength & SSL_STRONG_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) {
found = 0;
break;
}
} else {
algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
}
if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
if (algo_strength & SSL_DEFAULT_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
~SSL_DEFAULT_MASK;
if (!(algo_strength & SSL_DEFAULT_MASK)) {
found = 0;
break;
}
} else {
algo_strength |=
ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
}
}
if (ca_list[j]->valid) {
/*
* explicit ciphersuite found; its protocol version does not
* become part of the search pattern!
*/
cipher_id = ca_list[j]->id;
} else {
/*
* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern
*/
if (ca_list[j]->min_tls) {
if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
found = 0;
break;
} else {
min_tls = ca_list[j]->min_tls;
}
}
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
ok = ssl_cipher_strength_sort(head_p, tail_p);
} else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
int level = buf[9] - '0';
if (level < 0 || level > 5) {
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
} else {
c->sec_level = level;
ok = 1;
}
} else {
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
}
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac,
min_tls, algo_strength, rule, -1, head_p,
tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return retval;
}
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
const char **prule_str)
{
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
} else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
suiteb_comb2 = 1;
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
}
if (suiteb_flags) {
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
c->cert_flags |= suiteb_flags;
} else {
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
}
if (!suiteb_flags)
return 1;
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
return 0;
}
switch (suiteb_flags) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
if (suiteb_comb2)
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
else
*prule_str =
"ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
break;
}
return 1;
}
static int ciphersuite_cb(const char *elem, int len, void *arg)
{
STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
const SSL_CIPHER *cipher;
/* Arbitrary sized temp buffer for the cipher name. Should be big enough */
char name[80];
if (len > (int)(sizeof(name) - 1))
/* Anyway return 1 so we can parse rest of the list */
return 1;
memcpy(name, elem, len);
name[len] = '\0';
cipher = ssl3_get_cipher_by_std_name(name);
if (cipher == NULL)
/* Ciphersuite not found but return 1 to parse rest of the list */
return 1;
if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
{
STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
if (newciphers == NULL)
return 0;
/* Parse the list. We explicitly allow an empty list */
if (*str != '\0'
&& (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
|| sk_SSL_CIPHER_num(newciphers) == 0)) {
ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
sk_SSL_CIPHER_free(newciphers);
return 0;
}
sk_SSL_CIPHER_free(*currciphers);
*currciphers = newciphers;
return 1;
}
static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *cipherstack)
{
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
return 0;
}
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return 1;
}
static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
{
int i;
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
if (tmp_cipher_list == NULL)
return 0;
/*
* Delete any existing TLSv1.3 ciphersuites. These are always first in the
* list.
*/
while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
&& sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
== TLS1_3_VERSION)
(void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
/* Insert the new TLSv1.3 ciphersuites */
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
sk_SSL_CIPHER_insert(tmp_cipher_list,
sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list))
return 0;
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = tmp_cipher_list;
return 1;
}
int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
{
int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
if (ret && ctx->cipher_list != NULL)
return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id,
ctx->tls13_ciphersuites);
return ret;
}
int SSL_set_ciphersuites(SSL *s, const char *str)
{
STACK_OF(SSL_CIPHER) *cipher_list;
int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
if (s->cipher_list == NULL) {
if ((cipher_list = SSL_get_ciphers(s)) != NULL)
s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
}
if (ret && s->cipher_list != NULL)
return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id,
s->tls13_ciphersuites);
return ret;
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str,
CERT *c)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
STACK_OF(SSL_CIPHER) *cipherstack;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
const SSL_METHOD *ssl_method = ctx->method;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
disabled_mkey = ctx->disabled_mkey_mask;
disabled_auth = ctx->disabled_auth_mask;
disabled_enc = ctx->disabled_enc_mask;
disabled_mac = ctx->disabled_mac_mask;
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
if (co_list == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return NULL; /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, co_list, &head, &tail);
/* Now arrange all ciphers by preference. */
/*
* Everything else being equal, prefer ephemeral ECDH over other key
* exchange mechanisms.
* For consistency, prefer ECDSA over RSA (though this only matters if the
* server has both certificates, and is using the DEFAULT, or a client
* preference).
*/
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
&tail);
/* Within each strength group, we prefer GCM over CHACHA... */
ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
/*
* ...and generally, our preferred cipher is AES.
* Note that AEADs will be bumped to take preference after sorting by
* strength.
*/
ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Move anonymous ciphers to the end. Usually, these will remain
* disabled. (For applications that allow them, they aren't too bad, but
* we prefer authenticated ciphers.)
*/
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* RC4 is sort-of broken -- move to the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class
*/
if (!ssl_cipher_strength_sort(&head, &tail)) {
OPENSSL_free(co_list);
return NULL;
}
/*
* Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
* TODO(openssl-team): is there an easier way to accomplish all this?
*/
ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
&head, &tail);
/*
* Irrespective of strength, enforce the following order:
* (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
* Within each group, ciphers remain sorted by strength and previous
* preference, i.e.,
* 1) ECDHE > DHE
* 2) GCM > CHACHA
* 3) AES > rest
* 4) TLS 1.2 > legacy
*
* Because we now bump ciphers to the top of the list, we proceed in
* reverse order of preference.
*/
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
&head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = OSSL_NELEM(cipher_aliases);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return NULL; /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
&head, &tail, ca_list, c);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (rule_p[0] != '\0'))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return NULL;
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return NULL;
}
/* Add TLSv1.3 ciphers first - we always prefer those if possible */
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
/* Don't include any TLSv1.3 ciphers that are disabled */
if ((sslc->algorithm_enc & disabled_enc) != 0
|| (ssl_cipher_table_mac[sslc->algorithm2
& SSL_HANDSHAKE_MAC_MASK].mask
& ctx->disabled_mac_mask) != 0)
continue;
if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
}
OSSL_TRACE_BEGIN(TLS_CIPHER) {
BIO_printf(trc_out, "cipher selection:\n");
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
if (curr->active) {
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
OPENSSL_free(co_list);
sk_SSL_CIPHER_free(cipherstack);
OSSL_TRACE_CANCEL(TLS_CIPHER);
return NULL;
}
if (trc_out != NULL)
BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
}
}
OPENSSL_free(co_list); /* Not needed any longer */
OSSL_TRACE_END(TLS_CIPHER);
if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
return cipherstack;
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
const char *ver;
const char *kx, *au, *enc, *mac;
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-9s Mac=%-4s\n";
if (buf == NULL) {
len = 128;
if ((buf = OPENSSL_malloc(len)) == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
} else if (len < 128) {
return NULL;
}
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
ver = ssl_protocol_to_string(cipher->min_tls);
switch (alg_mkey) {
case SSL_kRSA:
kx = "RSA";
break;
case SSL_kDHE:
kx = "DH";
break;
case SSL_kECDHE:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kRSAPSK:
kx = "RSAPSK";
break;
case SSL_kECDHEPSK:
kx = "ECDHEPSK";
break;
case SSL_kDHEPSK:
kx = "DHEPSK";
break;
case SSL_kSRP:
kx = "SRP";
break;
case SSL_kGOST:
kx = "GOST";
break;
case SSL_kGOST18:
kx = "GOST18";
break;
case SSL_kANY:
kx = "any";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aSRP:
au = "SRP";
break;
case SSL_aGOST01:
au = "GOST01";
break;
/* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
case (SSL_aGOST12 | SSL_aGOST01):
au = "GOST12";
break;
case SSL_aANY:
au = "any";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_DES:
enc = "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = "RC4(128)";
break;
case SSL_RC2:
enc = "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_AES128CCM:
enc = "AESCCM(128)";
break;
case SSL_AES256CCM:
enc = "AESCCM(256)";
break;
case SSL_AES128CCM8:
enc = "AESCCM8(128)";
break;
case SSL_AES256CCM8:
enc = "AESCCM8(256)";
break;
case SSL_CAMELLIA128:
enc = "Camellia(128)";
break;
case SSL_CAMELLIA256:
enc = "Camellia(256)";
break;
case SSL_ARIA128GCM:
enc = "ARIAGCM(128)";
break;
case SSL_ARIA256GCM:
enc = "ARIAGCM(256)";
break;
case SSL_SEED:
enc = "SEED(128)";
break;
case SSL_eGOST2814789CNT:
case SSL_eGOST2814789CNT12:
enc = "GOST89(256)";
break;
case SSL_MAGMA:
enc = "MAGMA";
break;
case SSL_KUZNYECHIK:
enc = "KUZNYECHIK";
break;
case SSL_CHACHA20POLY1305:
enc = "CHACHA20/POLY1305(256)";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
case SSL_GOST89MAC:
case SSL_GOST89MAC12:
mac = "GOST89";
break;
case SSL_GOST94:
mac = "GOST94";
break;
case SSL_GOST12_256:
case SSL_GOST12_512:
mac = "GOST2012";
break;
default:
mac = "unknown";
break;
}
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
return buf;
}
const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
if (c == NULL)
return "(NONE)";
/*
* Backwards-compatibility crutch. In almost all contexts we report TLS
* 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
*/
if (c->min_tls == TLS1_VERSION)
return "TLSv1.0";
return ssl_protocol_to_string(c->min_tls);
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->name;
return "(NONE)";
}
/* return the actual cipher being used in RFC standard name */
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->stdname;
return "(NONE)";
}
/* return the OpenSSL name based on given RFC standard name */
const char *OPENSSL_cipher_name(const char *stdname)
{
const SSL_CIPHER *c;
if (stdname == NULL)
return "(NONE)";
c = ssl3_get_cipher_by_std_name(stdname);
return SSL_CIPHER_get_name(c);
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = (int)c->alg_bits;
ret = (int)c->strength_bits;
}
return ret;
}
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
{
return c->id & 0xFFFF;
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return NULL;
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return ctmp;
}
return NULL;
}
#ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
return meths;
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
return 1;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return ssl_comp_methods;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = meths;
return old_meths;
}
static void cmeth_free(SSL_COMP *cm)
{
OPENSSL_free(cm);
}
void ssl_comp_free_compression_methods_int(void)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = NULL;
sk_SSL_COMP_pop_free(old_meths, cmeth_free);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || COMP_get_type(cm) == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 1;
}
comp = OPENSSL_malloc(sizeof(*comp));
if (comp == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return 1;
}
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
return 1;
}
if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
return 1;
}
return 0;
}
#endif
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
#ifndef OPENSSL_NO_COMP
return comp ? COMP_get_name(comp) : NULL;
#else
return NULL;
#endif
}
const char *SSL_COMP_get0_name(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->name;
#else
return NULL;
#endif
}
int SSL_COMP_get_id(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->id;
#else
return -1;
#endif
}
const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
int all)
{
const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
if (c == NULL || (!all && c->valid == 0))
return NULL;
return c;
}
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
{
return ssl->method->get_cipher_by_char(ptr);
}
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return NID_undef;
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
if (i == -1)
return NID_undef;
return ssl_cipher_table_cipher[i].nid;
}
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1)
return NID_undef;
return ssl_cipher_table_mac[i].nid;
}
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
if (i == -1)
return NID_undef;
return ssl_cipher_table_kx[i].nid;
}
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
if (i == -1)
return NID_undef;
return ssl_cipher_table_auth[i].nid;
}
const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
{
int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
}
int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
{
return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
}
int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
size_t *int_overhead, size_t *blocksize,
size_t *ext_overhead)
{
size_t mac = 0, in = 0, blk = 0, out = 0;
/* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
* because there are no handy #defines for those. */
if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
} else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
} else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
out = 16;
} else if (c->algorithm_mac & SSL_AEAD) {
/* We're supposed to have handled all the AEAD modes above */
return 0;
} else {
/* Non-AEAD modes. Calculate MAC/cipher overhead separately */
int digest_nid = SSL_CIPHER_get_digest_nid(c);
const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
if (e_md == NULL)
return 0;
mac = EVP_MD_size(e_md);
if (c->algorithm_enc != SSL_eNULL) {
int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
/* If it wasn't AEAD or SSL_eNULL, we expect it to be a
known CBC cipher. */
if (e_ciph == NULL ||
EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
return 0;
in = 1; /* padding length byte */
out = EVP_CIPHER_iv_length(e_ciph);
blk = EVP_CIPHER_block_size(e_ciph);
}
}
*mac_overhead = mac;
*int_overhead = in;
*blocksize = blk;
*ext_overhead = out;
return 1;
}
int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
{
const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
return 1;
return 0;
}
/*
* Default list of TLSv1.2 (and earlier) ciphers
* SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
* Update both macro and function simultaneously
*/
const char *OSSL_default_cipher_list(void)
{
return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
}
/*
* Default list of TLSv1.3 (and later) ciphers
* TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
* Update both macro and function simultaneously
*/
const char *OSSL_default_ciphersuites(void)
{
return "TLS_AES_256_GCM_SHA384:"
"TLS_CHACHA20_POLY1305_SHA256:"
"TLS_AES_128_GCM_SHA256";
}