mirror of
https://github.com/openssl/openssl.git
synced 2024-12-21 06:09:35 +08:00
b646179229
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
(cherry picked from commit 0ce7d1f355
)
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24034)
1626 lines
45 KiB
C
1626 lines
45 KiB
C
/*
|
|
* Copyright 2010-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <openssl/crypto.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/endian.h"
|
|
#include "crypto/modes.h"
|
|
|
|
#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
|
|
typedef size_t size_t_aX __attribute((__aligned__(1)));
|
|
#else
|
|
typedef size_t size_t_aX;
|
|
#endif
|
|
|
|
#if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
|
|
/* redefine, because alignment is ensured */
|
|
# undef GETU32
|
|
# define GETU32(p) BSWAP4(*(const u32 *)(p))
|
|
# undef PUTU32
|
|
# define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
|
|
#endif
|
|
|
|
/* RISC-V uses C implementation as a fallback. */
|
|
#if defined(__riscv)
|
|
# define INCLUDE_C_GMULT_4BIT
|
|
# define INCLUDE_C_GHASH_4BIT
|
|
#endif
|
|
|
|
#define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
|
|
#define REDUCE1BIT(V) do { \
|
|
if (sizeof(size_t)==8) { \
|
|
u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
|
|
V.lo = (V.hi<<63)|(V.lo>>1); \
|
|
V.hi = (V.hi>>1 )^T; \
|
|
} \
|
|
else { \
|
|
u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
|
|
V.lo = (V.hi<<63)|(V.lo>>1); \
|
|
V.hi = (V.hi>>1 )^((u64)T<<32); \
|
|
} \
|
|
} while(0)
|
|
|
|
/*-
|
|
*
|
|
* NOTE: TABLE_BITS and all non-4bit implementations have been removed in 3.1.
|
|
*
|
|
* Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
|
|
* never be set to 8. 8 is effectively reserved for testing purposes.
|
|
* TABLE_BITS>1 are lookup-table-driven implementations referred to as
|
|
* "Shoup's" in GCM specification. In other words OpenSSL does not cover
|
|
* whole spectrum of possible table driven implementations. Why? In
|
|
* non-"Shoup's" case memory access pattern is segmented in such manner,
|
|
* that it's trivial to see that cache timing information can reveal
|
|
* fair portion of intermediate hash value. Given that ciphertext is
|
|
* always available to attacker, it's possible for him to attempt to
|
|
* deduce secret parameter H and if successful, tamper with messages
|
|
* [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
|
|
* not as trivial, but there is no reason to believe that it's resistant
|
|
* to cache-timing attack. And the thing about "8-bit" implementation is
|
|
* that it consumes 16 (sixteen) times more memory, 4KB per individual
|
|
* key + 1KB shared. Well, on pros side it should be twice as fast as
|
|
* "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
|
|
* was observed to run ~75% faster, closer to 100% for commercial
|
|
* compilers... Yet "4-bit" procedure is preferred, because it's
|
|
* believed to provide better security-performance balance and adequate
|
|
* all-round performance. "All-round" refers to things like:
|
|
*
|
|
* - shorter setup time effectively improves overall timing for
|
|
* handling short messages;
|
|
* - larger table allocation can become unbearable because of VM
|
|
* subsystem penalties (for example on Windows large enough free
|
|
* results in VM working set trimming, meaning that consequent
|
|
* malloc would immediately incur working set expansion);
|
|
* - larger table has larger cache footprint, which can affect
|
|
* performance of other code paths (not necessarily even from same
|
|
* thread in Hyper-Threading world);
|
|
*
|
|
* Value of 1 is not appropriate for performance reasons.
|
|
*/
|
|
|
|
static void gcm_init_4bit(u128 Htable[16], const u64 H[2])
|
|
{
|
|
u128 V;
|
|
# if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
int i;
|
|
# endif
|
|
|
|
Htable[0].hi = 0;
|
|
Htable[0].lo = 0;
|
|
V.hi = H[0];
|
|
V.lo = H[1];
|
|
|
|
# if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
for (Htable[8] = V, i = 4; i > 0; i >>= 1) {
|
|
REDUCE1BIT(V);
|
|
Htable[i] = V;
|
|
}
|
|
|
|
for (i = 2; i < 16; i <<= 1) {
|
|
u128 *Hi = Htable + i;
|
|
int j;
|
|
for (V = *Hi, j = 1; j < i; ++j) {
|
|
Hi[j].hi = V.hi ^ Htable[j].hi;
|
|
Hi[j].lo = V.lo ^ Htable[j].lo;
|
|
}
|
|
}
|
|
# else
|
|
Htable[8] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[4] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[2] = V;
|
|
REDUCE1BIT(V);
|
|
Htable[1] = V;
|
|
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
|
|
V = Htable[4];
|
|
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
|
|
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
|
|
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
|
|
V = Htable[8];
|
|
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
|
|
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
|
|
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
|
|
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
|
|
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
|
|
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
|
|
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
|
|
# endif
|
|
# if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
|
|
/*
|
|
* ARM assembler expects specific dword order in Htable.
|
|
*/
|
|
{
|
|
int j;
|
|
DECLARE_IS_ENDIAN;
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
for (j = 0; j < 16; ++j) {
|
|
V = Htable[j];
|
|
Htable[j].hi = V.lo;
|
|
Htable[j].lo = V.hi;
|
|
} else
|
|
for (j = 0; j < 16; ++j) {
|
|
V = Htable[j];
|
|
Htable[j].hi = V.lo << 32 | V.lo >> 32;
|
|
Htable[j].lo = V.hi << 32 | V.hi >> 32;
|
|
}
|
|
}
|
|
# endif
|
|
}
|
|
|
|
# if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT)
|
|
static const size_t rem_4bit[16] = {
|
|
PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
|
|
PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
|
|
PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
|
|
PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)
|
|
};
|
|
|
|
static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
|
|
{
|
|
u128 Z;
|
|
int cnt = 15;
|
|
size_t rem, nlo, nhi;
|
|
DECLARE_IS_ENDIAN;
|
|
|
|
nlo = ((const u8 *)Xi)[15];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi = Htable[nlo].hi;
|
|
Z.lo = Htable[nlo].lo;
|
|
|
|
while (1) {
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nhi].hi;
|
|
Z.lo ^= Htable[nhi].lo;
|
|
|
|
if (--cnt < 0)
|
|
break;
|
|
|
|
nlo = ((const u8 *)Xi)[cnt];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN) {
|
|
# ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
# else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
# endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
}
|
|
|
|
# endif
|
|
|
|
# if !defined(GHASH_ASM) || defined(INCLUDE_C_GHASH_4BIT)
|
|
# if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
/*
|
|
* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
|
|
* details... Compiler-generated code doesn't seem to give any
|
|
* performance improvement, at least not on x86[_64]. It's here
|
|
* mostly as reference and a placeholder for possible future
|
|
* non-trivial optimization[s]...
|
|
*/
|
|
static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len)
|
|
{
|
|
u128 Z;
|
|
int cnt;
|
|
size_t rem, nlo, nhi;
|
|
DECLARE_IS_ENDIAN;
|
|
|
|
do {
|
|
cnt = 15;
|
|
nlo = ((const u8 *)Xi)[15];
|
|
nlo ^= inp[15];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
Z.hi = Htable[nlo].hi;
|
|
Z.lo = Htable[nlo].lo;
|
|
|
|
while (1) {
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nhi].hi;
|
|
Z.lo ^= Htable[nhi].lo;
|
|
|
|
if (--cnt < 0)
|
|
break;
|
|
|
|
nlo = ((const u8 *)Xi)[cnt];
|
|
nlo ^= inp[cnt];
|
|
nhi = nlo >> 4;
|
|
nlo &= 0xf;
|
|
|
|
rem = (size_t)Z.lo & 0xf;
|
|
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
|
|
Z.hi = (Z.hi >> 4);
|
|
if (sizeof(size_t) == 8)
|
|
Z.hi ^= rem_4bit[rem];
|
|
else
|
|
Z.hi ^= (u64)rem_4bit[rem] << 32;
|
|
|
|
Z.hi ^= Htable[nlo].hi;
|
|
Z.lo ^= Htable[nlo].lo;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN) {
|
|
# ifdef BSWAP8
|
|
Xi[0] = BSWAP8(Z.hi);
|
|
Xi[1] = BSWAP8(Z.lo);
|
|
# else
|
|
u8 *p = (u8 *)Xi;
|
|
u32 v;
|
|
v = (u32)(Z.hi >> 32);
|
|
PUTU32(p, v);
|
|
v = (u32)(Z.hi);
|
|
PUTU32(p + 4, v);
|
|
v = (u32)(Z.lo >> 32);
|
|
PUTU32(p + 8, v);
|
|
v = (u32)(Z.lo);
|
|
PUTU32(p + 12, v);
|
|
# endif
|
|
} else {
|
|
Xi[0] = Z.hi;
|
|
Xi[1] = Z.lo;
|
|
}
|
|
|
|
inp += 16;
|
|
/* Block size is 128 bits so len is a multiple of 16 */
|
|
len -= 16;
|
|
} while (len > 0);
|
|
}
|
|
# endif
|
|
# else
|
|
void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# endif
|
|
|
|
# define GCM_MUL(ctx) ctx->funcs.gmult(ctx->Xi.u,ctx->Htable)
|
|
# if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
# define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len)
|
|
/*
|
|
* GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing
|
|
* effect. In other words idea is to hash data while it's still in L1 cache
|
|
* after encryption pass...
|
|
*/
|
|
# define GHASH_CHUNK (3*1024)
|
|
# endif
|
|
|
|
#if (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ))
|
|
# if !defined(I386_ONLY) && \
|
|
(defined(__i386) || defined(__i386__) || \
|
|
defined(__x86_64) || defined(__x86_64__) || \
|
|
defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
|
|
# define GHASH_ASM_X86_OR_64
|
|
|
|
void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
|
|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
|
|
# define gcm_init_avx gcm_init_clmul
|
|
# define gcm_gmult_avx gcm_gmult_clmul
|
|
# define gcm_ghash_avx gcm_ghash_clmul
|
|
# else
|
|
void gcm_init_avx(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# endif
|
|
|
|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
|
|
# define GHASH_ASM_X86
|
|
void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
|
|
void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# endif
|
|
# elif defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(_M_ARM64)
|
|
# include "arm_arch.h"
|
|
# if __ARM_MAX_ARCH__>=7
|
|
# define GHASH_ASM_ARM
|
|
# define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL)
|
|
# if defined(__arm__) || defined(__arm)
|
|
# define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
|
|
# endif
|
|
void gcm_init_neon(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
void gcm_init_v8(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# endif
|
|
# elif defined(__sparc__) || defined(__sparc)
|
|
# include "crypto/sparc_arch.h"
|
|
# define GHASH_ASM_SPARC
|
|
void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__POWERPC__) || defined(_ARCH_PPC))
|
|
# include "crypto/ppc_arch.h"
|
|
# define GHASH_ASM_PPC
|
|
void gcm_init_p8(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
|
|
size_t len);
|
|
# elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64
|
|
# include "crypto/riscv_arch.h"
|
|
# define GHASH_ASM_RV64I
|
|
/* Zbc/Zbkc (scalar crypto with clmul) based routines. */
|
|
void gcm_init_rv64i_zbc(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len);
|
|
void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len);
|
|
/* zvkb/Zvbc (vector crypto with vclmul) based routines. */
|
|
void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len);
|
|
/* Zvkg (vector crypto with vgmul.vv and vghsh.vv). */
|
|
void gcm_init_rv64i_zvkg(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_init_rv64i_zvkg_zvkb(u128 Htable[16], const u64 Xi[2]);
|
|
void gcm_gmult_rv64i_zvkg(u64 Xi[2], const u128 Htable[16]);
|
|
void gcm_ghash_rv64i_zvkg(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len);
|
|
# endif
|
|
#endif
|
|
|
|
static void gcm_get_funcs(struct gcm_funcs_st *ctx)
|
|
{
|
|
/* set defaults -- overridden below as needed */
|
|
ctx->ginit = gcm_init_4bit;
|
|
#if !defined(GHASH_ASM)
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
#else
|
|
ctx->gmult = NULL;
|
|
#endif
|
|
#if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
#else
|
|
ctx->ghash = NULL;
|
|
#endif
|
|
|
|
#if defined(GHASH_ASM_X86_OR_64)
|
|
# if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
|
|
/* x86_64 */
|
|
if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */
|
|
if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
|
|
ctx->ginit = gcm_init_avx;
|
|
ctx->gmult = gcm_gmult_avx;
|
|
ctx->ghash = gcm_ghash_avx;
|
|
} else {
|
|
ctx->ginit = gcm_init_clmul;
|
|
ctx->gmult = gcm_gmult_clmul;
|
|
ctx->ghash = gcm_ghash_clmul;
|
|
}
|
|
return;
|
|
}
|
|
# endif
|
|
# if defined(GHASH_ASM_X86)
|
|
/* x86 only */
|
|
# if defined(OPENSSL_IA32_SSE2)
|
|
if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
|
|
ctx->gmult = gcm_gmult_4bit_mmx;
|
|
ctx->ghash = gcm_ghash_4bit_mmx;
|
|
return;
|
|
}
|
|
# else
|
|
if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */
|
|
ctx->gmult = gcm_gmult_4bit_mmx;
|
|
ctx->ghash = gcm_ghash_4bit_mmx;
|
|
return;
|
|
}
|
|
# endif
|
|
ctx->gmult = gcm_gmult_4bit_x86;
|
|
ctx->ghash = gcm_ghash_4bit_x86;
|
|
return;
|
|
# else
|
|
/* x86_64 fallback defaults */
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
return;
|
|
# endif
|
|
#elif defined(GHASH_ASM_ARM)
|
|
/* ARM defaults */
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
# ifdef PMULL_CAPABLE
|
|
if (PMULL_CAPABLE) {
|
|
ctx->ginit = (gcm_init_fn)gcm_init_v8;
|
|
ctx->gmult = gcm_gmult_v8;
|
|
ctx->ghash = gcm_ghash_v8;
|
|
}
|
|
# elif defined(NEON_CAPABLE)
|
|
if (NEON_CAPABLE) {
|
|
ctx->ginit = gcm_init_neon;
|
|
ctx->gmult = gcm_gmult_neon;
|
|
ctx->ghash = gcm_ghash_neon;
|
|
}
|
|
# endif
|
|
return;
|
|
#elif defined(GHASH_ASM_SPARC)
|
|
/* SPARC defaults */
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {
|
|
ctx->ginit = gcm_init_vis3;
|
|
ctx->gmult = gcm_gmult_vis3;
|
|
ctx->ghash = gcm_ghash_vis3;
|
|
}
|
|
return;
|
|
#elif defined(GHASH_ASM_PPC)
|
|
/* PowerPC does not define GHASH_ASM; defaults set above */
|
|
if (OPENSSL_ppccap_P & PPC_CRYPTO207) {
|
|
ctx->ginit = gcm_init_p8;
|
|
ctx->gmult = gcm_gmult_p8;
|
|
ctx->ghash = gcm_ghash_p8;
|
|
}
|
|
return;
|
|
#elif defined(GHASH_ASM_RV64I)
|
|
/* RISCV defaults */
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
|
|
if (RISCV_HAS_ZVKG() && riscv_vlen() >= 128) {
|
|
if (RISCV_HAS_ZVKB())
|
|
ctx->ginit = gcm_init_rv64i_zvkg_zvkb;
|
|
else
|
|
ctx->ginit = gcm_init_rv64i_zvkg;
|
|
ctx->gmult = gcm_gmult_rv64i_zvkg;
|
|
ctx->ghash = gcm_ghash_rv64i_zvkg;
|
|
} else if (RISCV_HAS_ZVKB() && RISCV_HAS_ZVBC() && riscv_vlen() >= 128) {
|
|
ctx->ginit = gcm_init_rv64i_zvkb_zvbc;
|
|
ctx->gmult = gcm_gmult_rv64i_zvkb_zvbc;
|
|
ctx->ghash = gcm_ghash_rv64i_zvkb_zvbc;
|
|
} else if (RISCV_HAS_ZBC()) {
|
|
if (RISCV_HAS_ZBKB()) {
|
|
ctx->ginit = gcm_init_rv64i_zbc__zbkb;
|
|
ctx->gmult = gcm_gmult_rv64i_zbc__zbkb;
|
|
ctx->ghash = gcm_ghash_rv64i_zbc__zbkb;
|
|
} else if (RISCV_HAS_ZBB()) {
|
|
ctx->ginit = gcm_init_rv64i_zbc__zbb;
|
|
ctx->gmult = gcm_gmult_rv64i_zbc;
|
|
ctx->ghash = gcm_ghash_rv64i_zbc;
|
|
} else {
|
|
ctx->ginit = gcm_init_rv64i_zbc;
|
|
ctx->gmult = gcm_gmult_rv64i_zbc;
|
|
ctx->ghash = gcm_ghash_rv64i_zbc;
|
|
}
|
|
}
|
|
return;
|
|
#elif defined(GHASH_ASM)
|
|
/* all other architectures use the generic names */
|
|
ctx->gmult = gcm_gmult_4bit;
|
|
ctx->ghash = gcm_ghash_4bit;
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2])
|
|
{
|
|
struct gcm_funcs_st funcs;
|
|
|
|
gcm_get_funcs(&funcs);
|
|
funcs.ginit(Htable, H);
|
|
}
|
|
|
|
void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
|
|
{
|
|
struct gcm_funcs_st funcs;
|
|
|
|
gcm_get_funcs(&funcs);
|
|
funcs.gmult(Xi, Htable);
|
|
}
|
|
|
|
void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
|
|
const u8 *inp, size_t len)
|
|
{
|
|
struct gcm_funcs_st funcs;
|
|
u64 tmp[2];
|
|
size_t i;
|
|
|
|
gcm_get_funcs(&funcs);
|
|
if (funcs.ghash != NULL) {
|
|
funcs.ghash(Xi, Htable, inp, len);
|
|
} else {
|
|
/* Emulate ghash if needed */
|
|
for (i = 0; i < len; i += 16) {
|
|
memcpy(tmp, &inp[i], sizeof(tmp));
|
|
Xi[0] ^= tmp[0];
|
|
Xi[1] ^= tmp[1];
|
|
funcs.gmult(Xi, Htable);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block)
|
|
{
|
|
DECLARE_IS_ENDIAN;
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
ctx->block = block;
|
|
ctx->key = key;
|
|
|
|
(*block) (ctx->H.c, ctx->H.c, key);
|
|
|
|
if (IS_LITTLE_ENDIAN) {
|
|
/* H is stored in host byte order */
|
|
#ifdef BSWAP8
|
|
ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
|
|
ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
|
|
#else
|
|
u8 *p = ctx->H.c;
|
|
u64 hi, lo;
|
|
hi = (u64)GETU32(p) << 32 | GETU32(p + 4);
|
|
lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
|
|
ctx->H.u[0] = hi;
|
|
ctx->H.u[1] = lo;
|
|
#endif
|
|
}
|
|
|
|
gcm_get_funcs(&ctx->funcs);
|
|
ctx->funcs.ginit(ctx->Htable, ctx->H.u);
|
|
}
|
|
|
|
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
|
|
size_t len)
|
|
{
|
|
DECLARE_IS_ENDIAN;
|
|
unsigned int ctr;
|
|
|
|
ctx->len.u[0] = 0; /* AAD length */
|
|
ctx->len.u[1] = 0; /* message length */
|
|
ctx->ares = 0;
|
|
ctx->mres = 0;
|
|
|
|
if (len == 12) {
|
|
memcpy(ctx->Yi.c, iv, 12);
|
|
ctx->Yi.c[12] = 0;
|
|
ctx->Yi.c[13] = 0;
|
|
ctx->Yi.c[14] = 0;
|
|
ctx->Yi.c[15] = 1;
|
|
ctr = 1;
|
|
} else {
|
|
size_t i;
|
|
u64 len0 = len;
|
|
|
|
/* Borrow ctx->Xi to calculate initial Yi */
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
|
|
while (len >= 16) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Xi.c[i] ^= iv[i];
|
|
GCM_MUL(ctx);
|
|
iv += 16;
|
|
len -= 16;
|
|
}
|
|
if (len) {
|
|
for (i = 0; i < len; ++i)
|
|
ctx->Xi.c[i] ^= iv[i];
|
|
GCM_MUL(ctx);
|
|
}
|
|
len0 <<= 3;
|
|
if (IS_LITTLE_ENDIAN) {
|
|
#ifdef BSWAP8
|
|
ctx->Xi.u[1] ^= BSWAP8(len0);
|
|
#else
|
|
ctx->Xi.c[8] ^= (u8)(len0 >> 56);
|
|
ctx->Xi.c[9] ^= (u8)(len0 >> 48);
|
|
ctx->Xi.c[10] ^= (u8)(len0 >> 40);
|
|
ctx->Xi.c[11] ^= (u8)(len0 >> 32);
|
|
ctx->Xi.c[12] ^= (u8)(len0 >> 24);
|
|
ctx->Xi.c[13] ^= (u8)(len0 >> 16);
|
|
ctx->Xi.c[14] ^= (u8)(len0 >> 8);
|
|
ctx->Xi.c[15] ^= (u8)(len0);
|
|
#endif
|
|
} else {
|
|
ctx->Xi.u[1] ^= len0;
|
|
}
|
|
|
|
GCM_MUL(ctx);
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctr = BSWAP4(ctx->Xi.d[3]);
|
|
#else
|
|
ctr = GETU32(ctx->Xi.c + 12);
|
|
#endif
|
|
else
|
|
ctr = ctx->Xi.d[3];
|
|
|
|
/* Copy borrowed Xi to Yi */
|
|
ctx->Yi.u[0] = ctx->Xi.u[0];
|
|
ctx->Yi.u[1] = ctx->Xi.u[1];
|
|
}
|
|
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
|
|
(*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
#else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
#endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
|
|
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
|
|
size_t len)
|
|
{
|
|
size_t i;
|
|
unsigned int n;
|
|
u64 alen = ctx->len.u[0];
|
|
|
|
if (ctx->len.u[1])
|
|
return -2;
|
|
|
|
alen += len;
|
|
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
|
return -1;
|
|
ctx->len.u[0] = alen;
|
|
|
|
n = ctx->ares;
|
|
if (n) {
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(aad++);
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0)
|
|
GCM_MUL(ctx);
|
|
else {
|
|
ctx->ares = n;
|
|
return 0;
|
|
}
|
|
}
|
|
#ifdef GHASH
|
|
if ((i = (len & (size_t)-16))) {
|
|
GHASH(ctx, aad, i);
|
|
aad += i;
|
|
len -= i;
|
|
}
|
|
#else
|
|
while (len >= 16) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Xi.c[i] ^= aad[i];
|
|
GCM_MUL(ctx);
|
|
aad += 16;
|
|
len -= 16;
|
|
}
|
|
#endif
|
|
if (len) {
|
|
n = (unsigned int)len;
|
|
for (i = 0; i < len; ++i)
|
|
ctx->Xi.c[i] ^= aad[i];
|
|
}
|
|
|
|
ctx->ares = n;
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
DECLARE_IS_ENDIAN;
|
|
unsigned int n, ctr, mres;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
mres = ctx->mres;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to encrypt finalizes GHASH(AAD) */
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (len == 0) {
|
|
GCM_MUL(ctx);
|
|
ctx->ares = 0;
|
|
return 0;
|
|
}
|
|
memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
mres = sizeof(ctx->Xi);
|
|
#else
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctr = BSWAP4(ctx->Yi.d[3]);
|
|
#else
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
#endif
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = mres % 16;
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0) { /* always true actually */
|
|
do {
|
|
if (n) {
|
|
# if defined(GHASH)
|
|
while (n && len) {
|
|
ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
# else
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GCM_MUL(ctx);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
# endif
|
|
}
|
|
# if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
|
|
break;
|
|
# endif
|
|
# if defined(GHASH)
|
|
if (len >= 16 && mres) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
}
|
|
# if defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
size_t j = GHASH_CHUNK;
|
|
|
|
while (j) {
|
|
size_t_aX *out_t = (size_t_aX *)out;
|
|
const size_t_aX *in_t = (const size_t_aX *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i)
|
|
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
|
|
out += 16;
|
|
in += 16;
|
|
j -= 16;
|
|
}
|
|
GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
# endif
|
|
if ((i = (len & (size_t)-16))) {
|
|
size_t j = i;
|
|
|
|
while (len >= 16) {
|
|
size_t_aX *out_t = (size_t_aX *)out;
|
|
const size_t_aX *in_t = (const size_t_aX *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i)
|
|
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
GHASH(ctx, out - j, j);
|
|
}
|
|
# else
|
|
while (len >= 16) {
|
|
size_t *out_t = (size_t *)out;
|
|
const size_t *in_t = (const size_t *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i)
|
|
ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
|
|
GCM_MUL(ctx);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
# endif
|
|
if (len) {
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
# if defined(GHASH)
|
|
while (len--) {
|
|
ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
# else
|
|
while (len--) {
|
|
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
mres = n;
|
|
# endif
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
} while (0);
|
|
}
|
|
#endif
|
|
for (i = 0; i < len; ++i) {
|
|
if (n == 0) {
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
#else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
#endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n];
|
|
n = (n + 1) % 16;
|
|
if (mres == sizeof(ctx->Xn)) {
|
|
GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
|
|
mres = 0;
|
|
}
|
|
#else
|
|
ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
|
|
mres = n = (n + 1) % 16;
|
|
if (n == 0)
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
DECLARE_IS_ENDIAN;
|
|
unsigned int n, ctr, mres;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
mres = ctx->mres;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to decrypt finalizes GHASH(AAD) */
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (len == 0) {
|
|
GCM_MUL(ctx);
|
|
ctx->ares = 0;
|
|
return 0;
|
|
}
|
|
memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
mres = sizeof(ctx->Xi);
|
|
#else
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctr = BSWAP4(ctx->Yi.d[3]);
|
|
#else
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
#endif
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = mres % 16;
|
|
#if !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
if (16 % sizeof(size_t) == 0) { /* always true actually */
|
|
do {
|
|
if (n) {
|
|
# if defined(GHASH)
|
|
while (n && len) {
|
|
*(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
# else
|
|
while (n && len) {
|
|
u8 c = *(in++);
|
|
*(out++) = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GCM_MUL(ctx);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
# endif
|
|
}
|
|
# if defined(STRICT_ALIGNMENT)
|
|
if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
|
|
break;
|
|
# endif
|
|
# if defined(GHASH)
|
|
if (len >= 16 && mres) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
}
|
|
# if defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
size_t j = GHASH_CHUNK;
|
|
|
|
GHASH(ctx, in, GHASH_CHUNK);
|
|
while (j) {
|
|
size_t_aX *out_t = (size_t_aX *)out;
|
|
const size_t_aX *in_t = (const size_t_aX *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i)
|
|
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
|
|
out += 16;
|
|
in += 16;
|
|
j -= 16;
|
|
}
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
# endif
|
|
if ((i = (len & (size_t)-16))) {
|
|
GHASH(ctx, in, i);
|
|
while (len >= 16) {
|
|
size_t_aX *out_t = (size_t_aX *)out;
|
|
const size_t_aX *in_t = (const size_t_aX *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i)
|
|
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
}
|
|
# else
|
|
while (len >= 16) {
|
|
size_t *out_t = (size_t *)out;
|
|
const size_t *in_t = (const size_t *)in;
|
|
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
for (i = 0; i < 16 / sizeof(size_t); ++i) {
|
|
size_t c = in_t[i];
|
|
out_t[i] = c ^ ctx->EKi.t[i];
|
|
ctx->Xi.t[i] ^= c;
|
|
}
|
|
GCM_MUL(ctx);
|
|
out += 16;
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
# endif
|
|
if (len) {
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
# if defined(GHASH)
|
|
while (len--) {
|
|
out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
# else
|
|
while (len--) {
|
|
u8 c = in[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
out[n] = c ^ ctx->EKi.c[n];
|
|
++n;
|
|
}
|
|
mres = n;
|
|
# endif
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
} while (0);
|
|
}
|
|
#endif
|
|
for (i = 0; i < len; ++i) {
|
|
u8 c;
|
|
if (n == 0) {
|
|
(*block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
#ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
#else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
#endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
}
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n];
|
|
n = (n + 1) % 16;
|
|
if (mres == sizeof(ctx->Xn)) {
|
|
GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
|
|
mres = 0;
|
|
}
|
|
#else
|
|
c = in[i];
|
|
out[i] = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
mres = n = (n + 1) % 16;
|
|
if (n == 0)
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len, ctr128_f stream)
|
|
{
|
|
#if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
return CRYPTO_gcm128_encrypt(ctx, in, out, len);
|
|
#else
|
|
DECLARE_IS_ENDIAN;
|
|
unsigned int n, ctr, mres;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
void *key = ctx->key;
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
mres = ctx->mres;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to encrypt finalizes GHASH(AAD) */
|
|
#if defined(GHASH)
|
|
if (len == 0) {
|
|
GCM_MUL(ctx);
|
|
ctx->ares = 0;
|
|
return 0;
|
|
}
|
|
memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
mres = sizeof(ctx->Xi);
|
|
#else
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctr = BSWAP4(ctx->Yi.d[3]);
|
|
# else
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
# endif
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = mres % 16;
|
|
if (n) {
|
|
# if defined(GHASH)
|
|
while (n && len) {
|
|
ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
# else
|
|
while (n && len) {
|
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GCM_MUL(ctx);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
# endif
|
|
}
|
|
# if defined(GHASH)
|
|
if (len >= 16 && mres) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
}
|
|
# if defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
(*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
|
|
ctr += GHASH_CHUNK / 16;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
GHASH(ctx, out, GHASH_CHUNK);
|
|
out += GHASH_CHUNK;
|
|
in += GHASH_CHUNK;
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
# endif
|
|
# endif
|
|
if ((i = (len & (size_t)-16))) {
|
|
size_t j = i / 16;
|
|
|
|
(*stream) (in, out, j, key, ctx->Yi.c);
|
|
ctr += (unsigned int)j;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
in += i;
|
|
len -= i;
|
|
# if defined(GHASH)
|
|
GHASH(ctx, out, i);
|
|
out += i;
|
|
# else
|
|
while (j--) {
|
|
for (i = 0; i < 16; ++i)
|
|
ctx->Xi.c[i] ^= out[i];
|
|
GCM_MUL(ctx);
|
|
out += 16;
|
|
}
|
|
# endif
|
|
}
|
|
if (len) {
|
|
(*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
# if defined(GHASH)
|
|
ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
|
|
# else
|
|
ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n];
|
|
# endif
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len, ctr128_f stream)
|
|
{
|
|
#if defined(OPENSSL_SMALL_FOOTPRINT)
|
|
return CRYPTO_gcm128_decrypt(ctx, in, out, len);
|
|
#else
|
|
DECLARE_IS_ENDIAN;
|
|
unsigned int n, ctr, mres;
|
|
size_t i;
|
|
u64 mlen = ctx->len.u[1];
|
|
void *key = ctx->key;
|
|
|
|
mlen += len;
|
|
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
|
return -1;
|
|
ctx->len.u[1] = mlen;
|
|
|
|
mres = ctx->mres;
|
|
|
|
if (ctx->ares) {
|
|
/* First call to decrypt finalizes GHASH(AAD) */
|
|
# if defined(GHASH)
|
|
if (len == 0) {
|
|
GCM_MUL(ctx);
|
|
ctx->ares = 0;
|
|
return 0;
|
|
}
|
|
memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
|
|
ctx->Xi.u[0] = 0;
|
|
ctx->Xi.u[1] = 0;
|
|
mres = sizeof(ctx->Xi);
|
|
# else
|
|
GCM_MUL(ctx);
|
|
# endif
|
|
ctx->ares = 0;
|
|
}
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctr = BSWAP4(ctx->Yi.d[3]);
|
|
# else
|
|
ctr = GETU32(ctx->Yi.c + 12);
|
|
# endif
|
|
else
|
|
ctr = ctx->Yi.d[3];
|
|
|
|
n = mres % 16;
|
|
if (n) {
|
|
# if defined(GHASH)
|
|
while (n && len) {
|
|
*(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = mres;
|
|
return 0;
|
|
}
|
|
# else
|
|
while (n && len) {
|
|
u8 c = *(in++);
|
|
*(out++) = c ^ ctx->EKi.c[n];
|
|
ctx->Xi.c[n] ^= c;
|
|
--len;
|
|
n = (n + 1) % 16;
|
|
}
|
|
if (n == 0) {
|
|
GCM_MUL(ctx);
|
|
mres = 0;
|
|
} else {
|
|
ctx->mres = n;
|
|
return 0;
|
|
}
|
|
# endif
|
|
}
|
|
# if defined(GHASH)
|
|
if (len >= 16 && mres) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
}
|
|
# if defined(GHASH_CHUNK)
|
|
while (len >= GHASH_CHUNK) {
|
|
GHASH(ctx, in, GHASH_CHUNK);
|
|
(*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
|
|
ctr += GHASH_CHUNK / 16;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
out += GHASH_CHUNK;
|
|
in += GHASH_CHUNK;
|
|
len -= GHASH_CHUNK;
|
|
}
|
|
# endif
|
|
# endif
|
|
if ((i = (len & (size_t)-16))) {
|
|
size_t j = i / 16;
|
|
|
|
# if defined(GHASH)
|
|
GHASH(ctx, in, i);
|
|
# else
|
|
while (j--) {
|
|
size_t k;
|
|
for (k = 0; k < 16; ++k)
|
|
ctx->Xi.c[k] ^= in[k];
|
|
GCM_MUL(ctx);
|
|
in += 16;
|
|
}
|
|
j = i / 16;
|
|
in -= i;
|
|
# endif
|
|
(*stream) (in, out, j, key, ctx->Yi.c);
|
|
ctr += (unsigned int)j;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
out += i;
|
|
in += i;
|
|
len -= i;
|
|
}
|
|
if (len) {
|
|
(*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
|
|
++ctr;
|
|
if (IS_LITTLE_ENDIAN)
|
|
# ifdef BSWAP4
|
|
ctx->Yi.d[3] = BSWAP4(ctr);
|
|
# else
|
|
PUTU32(ctx->Yi.c + 12, ctr);
|
|
# endif
|
|
else
|
|
ctx->Yi.d[3] = ctr;
|
|
while (len--) {
|
|
# if defined(GHASH)
|
|
out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
|
|
# else
|
|
u8 c = in[n];
|
|
ctx->Xi.c[mres++] ^= c;
|
|
out[n] = c ^ ctx->EKi.c[n];
|
|
# endif
|
|
++n;
|
|
}
|
|
}
|
|
|
|
ctx->mres = mres;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,
|
|
size_t len)
|
|
{
|
|
DECLARE_IS_ENDIAN;
|
|
u64 alen = ctx->len.u[0] << 3;
|
|
u64 clen = ctx->len.u[1] << 3;
|
|
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
u128 bitlen;
|
|
unsigned int mres = ctx->mres;
|
|
|
|
if (mres) {
|
|
unsigned blocks = (mres + 15) & -16;
|
|
|
|
memset(ctx->Xn + mres, 0, blocks - mres);
|
|
mres = blocks;
|
|
if (mres == sizeof(ctx->Xn)) {
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
mres = 0;
|
|
}
|
|
} else if (ctx->ares) {
|
|
GCM_MUL(ctx);
|
|
}
|
|
#else
|
|
if (ctx->mres || ctx->ares)
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
|
|
if (IS_LITTLE_ENDIAN) {
|
|
#ifdef BSWAP8
|
|
alen = BSWAP8(alen);
|
|
clen = BSWAP8(clen);
|
|
#else
|
|
u8 *p = ctx->len.c;
|
|
|
|
ctx->len.u[0] = alen;
|
|
ctx->len.u[1] = clen;
|
|
|
|
alen = (u64)GETU32(p) << 32 | GETU32(p + 4);
|
|
clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
|
|
#endif
|
|
}
|
|
|
|
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
bitlen.hi = alen;
|
|
bitlen.lo = clen;
|
|
memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen));
|
|
mres += sizeof(bitlen);
|
|
GHASH(ctx, ctx->Xn, mres);
|
|
#else
|
|
ctx->Xi.u[0] ^= alen;
|
|
ctx->Xi.u[1] ^= clen;
|
|
GCM_MUL(ctx);
|
|
#endif
|
|
|
|
ctx->Xi.u[0] ^= ctx->EK0.u[0];
|
|
ctx->Xi.u[1] ^= ctx->EK0.u[1];
|
|
|
|
if (tag && len <= sizeof(ctx->Xi))
|
|
return CRYPTO_memcmp(ctx->Xi.c, tag, len);
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
|
|
{
|
|
CRYPTO_gcm128_finish(ctx, NULL, 0);
|
|
memcpy(tag, ctx->Xi.c,
|
|
len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
|
|
}
|
|
|
|
GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
|
|
{
|
|
GCM128_CONTEXT *ret;
|
|
|
|
if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL)
|
|
CRYPTO_gcm128_init(ret, key, block);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
|
|
{
|
|
OPENSSL_clear_free(ctx, sizeof(*ctx));
|
|
}
|