openssl/crypto/o_time.c
Guido Vranken 7c120357e5 Remove obsolete comment
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/1613)
2017-02-14 14:52:24 -05:00

361 lines
11 KiB
C
Executable File

/*
* Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/e_os2.h>
#include <string.h>
#include <openssl/crypto.h>
#ifdef OPENSSL_SYS_VMS
# if __CRTL_VER >= 70000000 && \
(defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE)
# define VMS_GMTIME_OK
# endif
# ifndef VMS_GMTIME_OK
# include <libdtdef.h>
# include <lib$routines.h>
# include <lnmdef.h>
# include <starlet.h>
# include <descrip.h>
# include <stdlib.h>
# endif /* ndef VMS_GMTIME_OK */
/*
* Needed to pick up the correct definitions and declarations in some of the
* DEC C Header Files (*.H).
*/
# define __NEW_STARLET 1
# if (defined(__alpha) || defined(__ia64))
# include <iledef.h>
# else
/* VAX */
typedef struct _ile3 { /* Copied from ILEDEF.H for Alpha */
# pragma __nomember_alignment
unsigned short int ile3$w_length; /* Length of buffer in bytes */
unsigned short int ile3$w_code; /* Item code value */
void *ile3$ps_bufaddr; /* Buffer address */
unsigned short int *ile3$ps_retlen_addr; /* Address of word for returned length */
} ILE3;
# endif /* alpha || ia64 */
#endif /* OPENSSL_SYS_VMS */
struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
{
struct tm *ts = NULL;
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX)
if (gmtime_r(timer, result) == NULL)
return NULL;
ts = result;
#elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK)
ts = gmtime(timer);
if (ts == NULL)
return NULL;
memcpy(result, ts, sizeof(struct tm));
ts = result;
#endif
#if defined( OPENSSL_SYS_VMS) && !defined( VMS_GMTIME_OK)
if (ts == NULL) {
static $DESCRIPTOR(tabnam, "LNM$DCL_LOGICAL");
static $DESCRIPTOR(lognam, "SYS$TIMEZONE_DIFFERENTIAL");
char logvalue[256];
unsigned int reslen = 0;
# if __INITIAL_POINTER_SIZE == 64
ILEB_64 itemlist[2], *pitem;
# else
ILE3 itemlist[2], *pitem;
# endif
int status;
time_t t;
/*
* Setup an itemlist for the call to $TRNLNM - Translate Logical Name.
*/
pitem = itemlist;
# if __INITIAL_POINTER_SIZE == 64
pitem->ileb_64$w_mbo = 1;
pitem->ileb_64$w_code = LNM$_STRING;
pitem->ileb_64$l_mbmo = -1;
pitem->ileb_64$q_length = sizeof (logvalue);
pitem->ileb_64$pq_bufaddr = logvalue;
pitem->ileb_64$pq_retlen_addr = (unsigned __int64 *) &reslen;
pitem++;
/* Last item of the item list is null terminated */
pitem->ileb_64$q_length = pitem->ileb_64$w_code = 0;
# else
pitem->ile3$w_length = sizeof (logvalue);
pitem->ile3$w_code = LNM$_STRING;
pitem->ile3$ps_bufaddr = logvalue;
pitem->ile3$ps_retlen_addr = (unsigned short int *) &reslen;
pitem++;
/* Last item of the item list is null terminated */
pitem->ile3$w_length = pitem->ile3$w_code = 0;
# endif
/* Get the value for SYS$TIMEZONE_DIFFERENTIAL */
status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist);
if (!(status & 1))
return NULL;
logvalue[reslen] = '\0';
t = *timer;
/* The following is extracted from the DEC C header time.h */
/*
** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime
** have two implementations. One implementation is provided
** for compatibility and deals with time in terms of local time,
** the other __utc_* deals with time in terms of UTC.
*/
/*
* We use the same conditions as in said time.h to check if we should
* assume that t contains local time (and should therefore be
* adjusted) or UTC (and should therefore be left untouched).
*/
# if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE
/* Get the numerical value of the equivalence string */
status = atoi(logvalue);
/* and use it to move time to GMT */
t -= status;
# endif
/* then convert the result to the time structure */
/*
* Since there was no gmtime_r() to do this stuff for us, we have to
* do it the hard way.
*/
{
/*-
* The VMS epoch is the astronomical Smithsonian date,
if I remember correctly, which is November 17, 1858.
Furthermore, time is measure in tenths of microseconds
and stored in quadwords (64 bit integers). unix_epoch
below is January 1st 1970 expressed as a VMS time. The
following code was used to get this number:
#include <stdio.h>
#include <stdlib.h>
#include <lib$routines.h>
#include <starlet.h>
main()
{
unsigned long systime[2];
unsigned short epoch_values[7] =
{ 1970, 1, 1, 0, 0, 0, 0 };
lib$cvt_vectim(epoch_values, systime);
printf("%u %u", systime[0], systime[1]);
}
*/
unsigned long unix_epoch[2] = { 1273708544, 8164711 };
unsigned long deltatime[2];
unsigned long systime[2];
struct vms_vectime {
short year, month, day, hour, minute, second, centi_second;
} time_values;
long operation;
/*
* Turn the number of seconds since January 1st 1970 to an
* internal delta time. Note that lib$cvt_to_internal_time() will
* assume that t is signed, and will therefore break on 32-bit
* systems some time in 2038.
*/
operation = LIB$K_DELTA_SECONDS;
status = lib$cvt_to_internal_time(&operation, &t, deltatime);
/*
* Add the delta time with the Unix epoch and we have the current
* UTC time in internal format
*/
status = lib$add_times(unix_epoch, deltatime, systime);
/* Turn the internal time into a time vector */
status = sys$numtim(&time_values, systime);
/* Fill in the struct tm with the result */
result->tm_sec = time_values.second;
result->tm_min = time_values.minute;
result->tm_hour = time_values.hour;
result->tm_mday = time_values.day;
result->tm_mon = time_values.month - 1;
result->tm_year = time_values.year - 1900;
operation = LIB$K_DAY_OF_WEEK;
status = lib$cvt_from_internal_time(&operation,
&result->tm_wday, systime);
result->tm_wday %= 7;
operation = LIB$K_DAY_OF_YEAR;
status = lib$cvt_from_internal_time(&operation,
&result->tm_yday, systime);
result->tm_yday--;
result->tm_isdst = 0; /* There's no way to know... */
ts = result;
}
}
#endif
return ts;
}
/*
* Take a tm structure and add an offset to it. This avoids any OS issues
* with restricted date types and overflows which cause the year 2038
* problem.
*/
#define SECS_PER_DAY (24 * 60 * 60)
static long date_to_julian(int y, int m, int d);
static void julian_to_date(long jd, int *y, int *m, int *d);
static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
long *pday, int *psec);
int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
{
int time_sec, time_year, time_month, time_day;
long time_jd;
/* Convert time and offset into Julian day and seconds */
if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))
return 0;
/* Convert Julian day back to date */
julian_to_date(time_jd, &time_year, &time_month, &time_day);
if (time_year < 1900 || time_year > 9999)
return 0;
/* Update tm structure */
tm->tm_year = time_year - 1900;
tm->tm_mon = time_month - 1;
tm->tm_mday = time_day;
tm->tm_hour = time_sec / 3600;
tm->tm_min = (time_sec / 60) % 60;
tm->tm_sec = time_sec % 60;
return 1;
}
int OPENSSL_gmtime_diff(int *pday, int *psec,
const struct tm *from, const struct tm *to)
{
int from_sec, to_sec, diff_sec;
long from_jd, to_jd, diff_day;
if (!julian_adj(from, 0, 0, &from_jd, &from_sec))
return 0;
if (!julian_adj(to, 0, 0, &to_jd, &to_sec))
return 0;
diff_day = to_jd - from_jd;
diff_sec = to_sec - from_sec;
/* Adjust differences so both positive or both negative */
if (diff_day > 0 && diff_sec < 0) {
diff_day--;
diff_sec += SECS_PER_DAY;
}
if (diff_day < 0 && diff_sec > 0) {
diff_day++;
diff_sec -= SECS_PER_DAY;
}
if (pday)
*pday = (int)diff_day;
if (psec)
*psec = diff_sec;
return 1;
}
/* Convert tm structure and offset into julian day and seconds */
static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
long *pday, int *psec)
{
int offset_hms, offset_day;
long time_jd;
int time_year, time_month, time_day;
/* split offset into days and day seconds */
offset_day = offset_sec / SECS_PER_DAY;
/* Avoid sign issues with % operator */
offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
offset_day += off_day;
/* Add current time seconds to offset */
offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
/* Adjust day seconds if overflow */
if (offset_hms >= SECS_PER_DAY) {
offset_day++;
offset_hms -= SECS_PER_DAY;
} else if (offset_hms < 0) {
offset_day--;
offset_hms += SECS_PER_DAY;
}
/*
* Convert date of time structure into a Julian day number.
*/
time_year = tm->tm_year + 1900;
time_month = tm->tm_mon + 1;
time_day = tm->tm_mday;
time_jd = date_to_julian(time_year, time_month, time_day);
/* Work out Julian day of new date */
time_jd += offset_day;
if (time_jd < 0)
return 0;
*pday = time_jd;
*psec = offset_hms;
return 1;
}
/*
* Convert date to and from julian day Uses Fliegel & Van Flandern algorithm
*/
static long date_to_julian(int y, int m, int d)
{
return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
(367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
(3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;
}
static void julian_to_date(long jd, int *y, int *m, int *d)
{
long L = jd + 68569;
long n = (4 * L) / 146097;
long i, j;
L = L - (146097 * n + 3) / 4;
i = (4000 * (L + 1)) / 1461001;
L = L - (1461 * i) / 4 + 31;
j = (80 * L) / 2447;
*d = L - (2447 * j) / 80;
L = j / 11;
*m = j + 2 - (12 * L);
*y = 100 * (n - 49) + i + L;
}