openssl/crypto/evp/m_sha3.c
Richard Levitte 4a8b0c55c0 Following the license change, modify the boilerplates in crypto/evp/
[skip ci]

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7794)
2018-12-06 14:54:57 +01:00

437 lines
14 KiB
C

/*
* Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include "internal/evp_int.h"
#include "evp_locl.h"
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
size_t r);
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
#define KECCAK1600_WIDTH 1600
typedef struct {
uint64_t A[5][5];
size_t block_size; /* cached ctx->digest->block_size */
size_t md_size; /* output length, variable in XOF */
size_t num; /* used bytes in below buffer */
unsigned char buf[KECCAK1600_WIDTH / 8 - 32];
unsigned char pad;
} KECCAK1600_CTX;
static int init(EVP_MD_CTX *evp_ctx, unsigned char pad)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
size_t bsz = evp_ctx->digest->block_size;
if (bsz <= sizeof(ctx->buf)) {
memset(ctx->A, 0, sizeof(ctx->A));
ctx->num = 0;
ctx->block_size = bsz;
ctx->md_size = evp_ctx->digest->md_size;
ctx->pad = pad;
return 1;
}
return 0;
}
static int sha3_init(EVP_MD_CTX *evp_ctx)
{
return init(evp_ctx, '\x06');
}
static int shake_init(EVP_MD_CTX *evp_ctx)
{
return init(evp_ctx, '\x1f');
}
static int kmac_init(EVP_MD_CTX *evp_ctx)
{
return init(evp_ctx, '\x04');
}
static int sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
const unsigned char *inp = _inp;
size_t bsz = ctx->block_size;
size_t num, rem;
if (len == 0)
return 1;
if ((num = ctx->num) != 0) { /* process intermediate buffer? */
rem = bsz - num;
if (len < rem) {
memcpy(ctx->buf + num, inp, len);
ctx->num += len;
return 1;
}
/*
* We have enough data to fill or overflow the intermediate
* buffer. So we append |rem| bytes and process the block,
* leaving the rest for later processing...
*/
memcpy(ctx->buf + num, inp, rem);
inp += rem, len -= rem;
(void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
ctx->num = 0;
/* ctx->buf is processed, ctx->num is guaranteed to be zero */
}
if (len >= bsz)
rem = SHA3_absorb(ctx->A, inp, len, bsz);
else
rem = len;
if (rem) {
memcpy(ctx->buf, inp + len - rem, rem);
ctx->num = rem;
}
return 1;
}
static int sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
size_t bsz = ctx->block_size;
size_t num = ctx->num;
/*
* Pad the data with 10*1. Note that |num| can be |bsz - 1|
* in which case both byte operations below are performed on
* same byte...
*/
memset(ctx->buf + num, 0, bsz - num);
ctx->buf[num] = ctx->pad;
ctx->buf[bsz - 1] |= 0x80;
(void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz);
SHA3_squeeze(ctx->A, md, ctx->md_size, bsz);
return 1;
}
static int shake_ctrl(EVP_MD_CTX *evp_ctx, int cmd, int p1, void *p2)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
switch (cmd) {
case EVP_MD_CTRL_XOF_LEN:
ctx->md_size = p1;
return 1;
default:
return 0;
}
}
#if defined(OPENSSL_CPUID_OBJ) && defined(__s390__) && defined(KECCAK1600_ASM)
/*
* IBM S390X support
*/
# include "s390x_arch.h"
# define S390X_SHA3_FC(ctx) ((ctx)->pad)
# define S390X_sha3_224_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHA3_224)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHA3_224)))
# define S390X_sha3_256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHA3_256)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHA3_256)))
# define S390X_sha3_384_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHA3_384)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHA3_384)))
# define S390X_sha3_512_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHA3_512)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHA3_512)))
# define S390X_shake128_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHAKE_128)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHAKE_128)))
# define S390X_shake256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \
S390X_CAPBIT(S390X_SHAKE_256)) && \
(OPENSSL_s390xcap_P.klmd[0] & \
S390X_CAPBIT(S390X_SHAKE_256)))
/* Convert md-size to block-size. */
# define S390X_KECCAK1600_BSZ(n) ((KECCAK1600_WIDTH - ((n) << 1)) >> 3)
static int s390x_sha3_init(EVP_MD_CTX *evp_ctx)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
const size_t bsz = evp_ctx->digest->block_size;
/*-
* KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
* function code.
*/
switch (bsz) {
case S390X_KECCAK1600_BSZ(224):
ctx->pad = S390X_SHA3_224;
break;
case S390X_KECCAK1600_BSZ(256):
ctx->pad = S390X_SHA3_256;
break;
case S390X_KECCAK1600_BSZ(384):
ctx->pad = S390X_SHA3_384;
break;
case S390X_KECCAK1600_BSZ(512):
ctx->pad = S390X_SHA3_512;
break;
default:
return 0;
}
memset(ctx->A, 0, sizeof(ctx->A));
ctx->num = 0;
ctx->block_size = bsz;
ctx->md_size = evp_ctx->digest->md_size;
return 1;
}
static int s390x_shake_init(EVP_MD_CTX *evp_ctx)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
const size_t bsz = evp_ctx->digest->block_size;
/*-
* KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD
* function code.
*/
switch (bsz) {
case S390X_KECCAK1600_BSZ(128):
ctx->pad = S390X_SHAKE_128;
break;
case S390X_KECCAK1600_BSZ(256):
ctx->pad = S390X_SHAKE_256;
break;
default:
return 0;
}
memset(ctx->A, 0, sizeof(ctx->A));
ctx->num = 0;
ctx->block_size = bsz;
ctx->md_size = evp_ctx->digest->md_size;
return 1;
}
static int s390x_sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
const unsigned char *inp = _inp;
const size_t bsz = ctx->block_size;
size_t num, rem;
if (len == 0)
return 1;
if ((num = ctx->num) != 0) {
rem = bsz - num;
if (len < rem) {
memcpy(ctx->buf + num, inp, len);
ctx->num += len;
return 1;
}
memcpy(ctx->buf + num, inp, rem);
inp += rem;
len -= rem;
s390x_kimd(ctx->buf, bsz, ctx->pad, ctx->A);
ctx->num = 0;
}
rem = len % bsz;
s390x_kimd(inp, len - rem, ctx->pad, ctx->A);
if (rem) {
memcpy(ctx->buf, inp + len - rem, rem);
ctx->num = rem;
}
return 1;
}
static int s390x_sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
s390x_klmd(ctx->buf, ctx->num, NULL, 0, ctx->pad, ctx->A);
memcpy(md, ctx->A, ctx->md_size);
return 1;
}
static int s390x_shake_final(EVP_MD_CTX *evp_ctx, unsigned char *md)
{
KECCAK1600_CTX *ctx = evp_ctx->md_data;
s390x_klmd(ctx->buf, ctx->num, md, ctx->md_size, ctx->pad, ctx->A);
return 1;
}
# define EVP_MD_SHA3(bitlen) \
const EVP_MD *EVP_sha3_##bitlen(void) \
{ \
static const EVP_MD s390x_sha3_##bitlen##_md = { \
NID_sha3_##bitlen, \
NID_RSA_SHA3_##bitlen, \
bitlen / 8, \
EVP_MD_FLAG_DIGALGID_ABSENT, \
s390x_sha3_init, \
s390x_sha3_update, \
s390x_sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
}; \
static const EVP_MD sha3_##bitlen##_md = { \
NID_sha3_##bitlen, \
NID_RSA_SHA3_##bitlen, \
bitlen / 8, \
EVP_MD_FLAG_DIGALGID_ABSENT, \
sha3_init, \
sha3_update, \
sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
}; \
return S390X_sha3_##bitlen##_CAPABLE ? \
&s390x_sha3_##bitlen##_md : \
&sha3_##bitlen##_md; \
}
# define EVP_MD_SHAKE(bitlen) \
const EVP_MD *EVP_shake##bitlen(void) \
{ \
static const EVP_MD s390x_shake##bitlen##_md = { \
NID_shake##bitlen, \
0, \
bitlen / 8, \
EVP_MD_FLAG_XOF, \
s390x_shake_init, \
s390x_sha3_update, \
s390x_shake_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
shake_ctrl \
}; \
static const EVP_MD shake##bitlen##_md = { \
NID_shake##bitlen, \
0, \
bitlen / 8, \
EVP_MD_FLAG_XOF, \
shake_init, \
sha3_update, \
sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
shake_ctrl \
}; \
return S390X_shake##bitlen##_CAPABLE ? \
&s390x_shake##bitlen##_md : \
&shake##bitlen##_md; \
}
#else
# define EVP_MD_SHA3(bitlen) \
const EVP_MD *EVP_sha3_##bitlen(void) \
{ \
static const EVP_MD sha3_##bitlen##_md = { \
NID_sha3_##bitlen, \
NID_RSA_SHA3_##bitlen, \
bitlen / 8, \
EVP_MD_FLAG_DIGALGID_ABSENT, \
sha3_init, \
sha3_update, \
sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
}; \
return &sha3_##bitlen##_md; \
}
# define EVP_MD_SHAKE(bitlen) \
const EVP_MD *EVP_shake##bitlen(void) \
{ \
static const EVP_MD shake##bitlen##_md = { \
NID_shake##bitlen, \
0, \
bitlen / 8, \
EVP_MD_FLAG_XOF, \
shake_init, \
sha3_update, \
sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
shake_ctrl \
}; \
return &shake##bitlen##_md; \
}
#endif
EVP_MD_SHA3(224)
EVP_MD_SHA3(256)
EVP_MD_SHA3(384)
EVP_MD_SHA3(512)
EVP_MD_SHAKE(128)
EVP_MD_SHAKE(256)
# define EVP_MD_KECCAK_KMAC(bitlen) \
const EVP_MD *evp_keccak_kmac##bitlen(void) \
{ \
static const EVP_MD kmac_##bitlen##_md = { \
-1, \
0, \
2 * bitlen / 8, \
EVP_MD_FLAG_XOF, \
kmac_init, \
sha3_update, \
sha3_final, \
NULL, \
NULL, \
(KECCAK1600_WIDTH - bitlen * 2) / 8, \
sizeof(KECCAK1600_CTX), \
shake_ctrl \
}; \
return &kmac_##bitlen##_md; \
}
EVP_MD_KECCAK_KMAC(128)
EVP_MD_KECCAK_KMAC(256)