mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
7ed6de997f
Reviewed-by: Neil Horman <nhorman@openssl.org> Release: yes
4979 lines
199 KiB
Perl
4979 lines
199 KiB
Perl
# Copyright 2021-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
# Copyright (c) 2021, Intel Corporation. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
#
|
|
# This implementation is based on the AES-GCM code (AVX512VAES + VPCLMULQDQ)
|
|
# from Intel(R) Multi-Buffer Crypto for IPsec Library v1.1
|
|
# (https://github.com/intel/intel-ipsec-mb).
|
|
# Original author is Tomasz Kantecki <tomasz.kantecki@intel.com>.
|
|
#
|
|
# References:
|
|
# [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
|
|
# Intel Architecture Processors. August, 2010.
|
|
# [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
|
|
# Intel Architecture Processors. October, 2012.
|
|
# [3] Shay Gueron et. al. Intel Carry-Less Multiplication Instruction and its
|
|
# Usage for Computing the GCM Mode. May, 2010.
|
|
#
|
|
#
|
|
# December 2021
|
|
#
|
|
# Initial release.
|
|
#
|
|
# GCM128_CONTEXT structure has storage for 16 hkeys only, but this
|
|
# implementation can use up to 48. To avoid extending the context size,
|
|
# precompute and store in the context first 16 hkeys only, and compute the rest
|
|
# on demand keeping them in the local frame.
|
|
#
|
|
#======================================================================
|
|
# $output is the last argument if it looks like a file (it has an extension)
|
|
# $flavour is the first argument if it doesn't look like a file
|
|
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
|
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
|
|
|
$win64 = 0;
|
|
$win64 = 1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
|
|
|
$avx512vaes = 0;
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/;
|
|
$dir = $1;
|
|
($xlate = "${dir}x86_64-xlate.pl" and -f $xlate)
|
|
or ($xlate = "${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate)
|
|
or die "can't locate x86_64-xlate.pl";
|
|
|
|
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
|
|
$avx512vaes = ($1 >= 2.30);
|
|
}
|
|
|
|
if (!$avx512vaes
|
|
&& $win64
|
|
&& ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/)
|
|
&& `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/)
|
|
{
|
|
$avx512vaes = ($1 == 2.13 && $2 >= 3) + ($1 >= 2.14);
|
|
}
|
|
|
|
if (!$avx512vaes && `$ENV{CC} -v 2>&1`
|
|
=~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
|
|
my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
|
|
if ($1) {
|
|
# Apple conditions, they use a different version series, see
|
|
# https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
|
|
# clang 7.0.0 is Apple clang 10.0.1
|
|
$avx512vaes = ($ver>=10.0001)
|
|
} else {
|
|
$avx512vaes = ($ver>=7.0);
|
|
}
|
|
}
|
|
|
|
open OUT, "| \"$^X\" \"$xlate\" $flavour \"$output\""
|
|
or die "can't call $xlate: $!";
|
|
*STDOUT = *OUT;
|
|
|
|
#======================================================================
|
|
if ($avx512vaes>0) { #<<<
|
|
|
|
$code .= <<___;
|
|
.extern OPENSSL_ia32cap_P
|
|
.globl ossl_vaes_vpclmulqdq_capable
|
|
.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent
|
|
.align 32
|
|
ossl_vaes_vpclmulqdq_capable:
|
|
mov OPENSSL_ia32cap_P+8(%rip), %rcx
|
|
# avx512vpclmulqdq + avx512vaes + avx512vl + avx512bw + avx512dq + avx512f
|
|
mov \$`1<<42|1<<41|1<<31|1<<30|1<<17|1<<16`,%rdx
|
|
xor %eax,%eax
|
|
and %rdx,%rcx
|
|
cmp %rdx,%rcx
|
|
cmove %rcx,%rax
|
|
ret
|
|
.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable
|
|
___
|
|
|
|
# ; Mapping key length -> AES rounds count
|
|
my %aes_rounds = (
|
|
128 => 9,
|
|
192 => 11,
|
|
256 => 13);
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Code generation control switches
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
# ; ABI-aware zeroing of volatile registers in EPILOG().
|
|
# ; Disabled due to performance reasons.
|
|
my $CLEAR_SCRATCH_REGISTERS = 0;
|
|
|
|
# ; Zero HKeys storage from the stack if they are stored there
|
|
my $CLEAR_HKEYS_STORAGE_ON_EXIT = 1;
|
|
|
|
# ; Enable / disable check of function arguments for null pointer
|
|
# ; Currently disabled, as this check is handled outside.
|
|
my $CHECK_FUNCTION_ARGUMENTS = 0;
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Global constants
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
# AES block size in bytes
|
|
my $AES_BLOCK_SIZE = 16;
|
|
|
|
# Storage capacity in elements
|
|
my $HKEYS_STORAGE_CAPACITY = 48;
|
|
my $LOCAL_STORAGE_CAPACITY = 48;
|
|
my $HKEYS_CONTEXT_CAPACITY = 16;
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Stack frame definition
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
# (1) -> +64(Win)/+48(Lin)-byte space for pushed GPRs
|
|
# (2) -> +8-byte space for 16-byte alignment of XMM storage
|
|
# (3) -> Frame pointer (%RBP)
|
|
# (4) -> +160-byte XMM storage (Windows only, zero on Linux)
|
|
# (5) -> +48-byte space for 64-byte alignment of %RSP from p.8
|
|
# (6) -> +768-byte LOCAL storage (optional, can be omitted in some functions)
|
|
# (7) -> +768-byte HKEYS storage
|
|
# (8) -> Stack pointer (%RSP) aligned on 64-byte boundary
|
|
|
|
my $GP_STORAGE = $win64 ? 8 * 8 : 8 * 6; # ; space for saved non-volatile GP registers (pushed on stack)
|
|
my $XMM_STORAGE = $win64 ? (10 * 16) : 0; # ; space for saved XMM registers
|
|
my $HKEYS_STORAGE = ($HKEYS_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for HKeys^i, i=1..48
|
|
my $LOCAL_STORAGE = ($LOCAL_STORAGE_CAPACITY * $AES_BLOCK_SIZE); # ; space for up to 48 AES blocks
|
|
|
|
my $STACK_HKEYS_OFFSET = 0;
|
|
my $STACK_LOCAL_OFFSET = ($STACK_HKEYS_OFFSET + $HKEYS_STORAGE);
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Function arguments abstraction
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
my ($arg1, $arg2, $arg3, $arg4, $arg5, $arg6, $arg7, $arg8, $arg9, $arg10, $arg11);
|
|
|
|
# ; Counter used for assembly label generation
|
|
my $label_count = 0;
|
|
|
|
# ; This implementation follows the convention: for non-leaf functions (they
|
|
# ; must call PROLOG) %rbp is used as a frame pointer, and has fixed offset from
|
|
# ; the function entry: $GP_STORAGE + [8 bytes alignment (Windows only)]. This
|
|
# ; helps to facilitate SEH handlers writing.
|
|
#
|
|
# ; Leaf functions here do not use more than 4 input arguments.
|
|
if ($win64) {
|
|
$arg1 = "%rcx";
|
|
$arg2 = "%rdx";
|
|
$arg3 = "%r8";
|
|
$arg4 = "%r9";
|
|
$arg5 = "`$GP_STORAGE + 8 + 8*5`(%rbp)"; # +8 - alignment bytes
|
|
$arg6 = "`$GP_STORAGE + 8 + 8*6`(%rbp)";
|
|
$arg7 = "`$GP_STORAGE + 8 + 8*7`(%rbp)";
|
|
$arg8 = "`$GP_STORAGE + 8 + 8*8`(%rbp)";
|
|
$arg9 = "`$GP_STORAGE + 8 + 8*9`(%rbp)";
|
|
$arg10 = "`$GP_STORAGE + 8 + 8*10`(%rbp)";
|
|
$arg11 = "`$GP_STORAGE + 8 + 8*11`(%rbp)";
|
|
} else {
|
|
$arg1 = "%rdi";
|
|
$arg2 = "%rsi";
|
|
$arg3 = "%rdx";
|
|
$arg4 = "%rcx";
|
|
$arg5 = "%r8";
|
|
$arg6 = "%r9";
|
|
$arg7 = "`$GP_STORAGE + 8*1`(%rbp)";
|
|
$arg8 = "`$GP_STORAGE + 8*2`(%rbp)";
|
|
$arg9 = "`$GP_STORAGE + 8*3`(%rbp)";
|
|
$arg10 = "`$GP_STORAGE + 8*4`(%rbp)";
|
|
$arg11 = "`$GP_STORAGE + 8*5`(%rbp)";
|
|
}
|
|
|
|
# ; Offsets in gcm128_context structure (see include/crypto/modes.h)
|
|
my $CTX_OFFSET_CurCount = (16 * 0); # ; (Yi) Current counter for generation of encryption key
|
|
my $CTX_OFFSET_PEncBlock = (16 * 1); # ; (repurposed EKi field) Partial block buffer
|
|
my $CTX_OFFSET_EK0 = (16 * 2); # ; (EK0) Encrypted Y0 counter (see gcm spec notation)
|
|
my $CTX_OFFSET_AadLen = (16 * 3); # ; (len.u[0]) Length of Hash which has been input
|
|
my $CTX_OFFSET_InLen = ((16 * 3) + 8); # ; (len.u[1]) Length of input data which will be encrypted or decrypted
|
|
my $CTX_OFFSET_AadHash = (16 * 4); # ; (Xi) Current hash
|
|
my $CTX_OFFSET_HTable = (16 * 6); # ; (Htable) Precomputed table (allows 16 values)
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Helper functions
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
sub BYTE {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%r[abcd]x/i) {
|
|
$reg =~ s/%r([abcd])x/%${1}l/i;
|
|
} elsif ($reg =~ /%r[sdb][ip]/i) {
|
|
$reg =~ s/%r([sdb][ip])/%${1}l/i;
|
|
} elsif ($reg =~ /%r[0-9]{1,2}/i) {
|
|
$reg =~ s/%(r[0-9]{1,2})/%${1}b/i;
|
|
} else {
|
|
die "BYTE: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
sub WORD {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%r[abcdsdb][xip]/i) {
|
|
$reg =~ s/%r([abcdsdb])([xip])/%${1}${2}/i;
|
|
} elsif ($reg =~ /%r[0-9]{1,2}/) {
|
|
$reg =~ s/%(r[0-9]{1,2})/%${1}w/i;
|
|
} else {
|
|
die "WORD: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
sub DWORD {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%r[abcdsdb][xip]/i) {
|
|
$reg =~ s/%r([abcdsdb])([xip])/%e${1}${2}/i;
|
|
} elsif ($reg =~ /%r[0-9]{1,2}/i) {
|
|
$reg =~ s/%(r[0-9]{1,2})/%${1}d/i;
|
|
} else {
|
|
die "DWORD: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
sub XWORD {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%[xyz]mm/i) {
|
|
$reg =~ s/%[xyz]mm/%xmm/i;
|
|
} else {
|
|
die "XWORD: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
sub YWORD {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%[xyz]mm/i) {
|
|
$reg =~ s/%[xyz]mm/%ymm/i;
|
|
} else {
|
|
die "YWORD: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
sub ZWORD {
|
|
my ($reg) = @_;
|
|
if ($reg =~ /%[xyz]mm/i) {
|
|
$reg =~ s/%[xyz]mm/%zmm/i;
|
|
} else {
|
|
die "ZWORD: unknown register: $reg\n";
|
|
}
|
|
return $reg;
|
|
}
|
|
|
|
# ; Helper function to construct effective address based on two kinds of
|
|
# ; offsets: numerical or located in the register
|
|
sub EffectiveAddress {
|
|
my ($base, $offset, $displacement) = @_;
|
|
$displacement = 0 if (!$displacement);
|
|
|
|
if ($offset =~ /^\d+\z/) { # numerical offset
|
|
return "`$offset + $displacement`($base)";
|
|
} else { # offset resides in register
|
|
return "$displacement($base,$offset,1)";
|
|
}
|
|
}
|
|
|
|
# ; Provides memory location of corresponding HashKey power
|
|
sub HashKeyByIdx {
|
|
my ($idx, $base) = @_;
|
|
my $base_str = ($base eq "%rsp") ? "frame" : "context";
|
|
|
|
my $offset = &HashKeyOffsetByIdx($idx, $base_str);
|
|
return "$offset($base)";
|
|
}
|
|
|
|
# ; Provides offset (in bytes) of corresponding HashKey power from the highest key in the storage
|
|
sub HashKeyOffsetByIdx {
|
|
my ($idx, $base) = @_;
|
|
die "HashKeyOffsetByIdx: base should be either 'frame' or 'context'; base = $base"
|
|
if (($base ne "frame") && ($base ne "context"));
|
|
|
|
my $offset_base;
|
|
my $offset_idx;
|
|
if ($base eq "frame") { # frame storage
|
|
die "HashKeyOffsetByIdx: idx out of bounds (1..48)! idx = $idx\n" if ($idx > $HKEYS_STORAGE_CAPACITY || $idx < 1);
|
|
$offset_base = $STACK_HKEYS_OFFSET;
|
|
$offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_STORAGE_CAPACITY - $idx));
|
|
} else { # context storage
|
|
die "HashKeyOffsetByIdx: idx out of bounds (1..16)! idx = $idx\n" if ($idx > $HKEYS_CONTEXT_CAPACITY || $idx < 1);
|
|
$offset_base = $CTX_OFFSET_HTable;
|
|
$offset_idx = ($AES_BLOCK_SIZE * ($HKEYS_CONTEXT_CAPACITY - $idx));
|
|
}
|
|
return $offset_base + $offset_idx;
|
|
}
|
|
|
|
# ; Creates local frame and does back up of non-volatile registers.
|
|
# ; Holds stack unwinding directives.
|
|
sub PROLOG {
|
|
my ($need_hkeys_stack_storage, $need_aes_stack_storage, $func_name) = @_;
|
|
|
|
my $DYNAMIC_STACK_ALLOC_SIZE = 0;
|
|
my $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE = $win64 ? 48 : 52;
|
|
|
|
if ($need_hkeys_stack_storage) {
|
|
$DYNAMIC_STACK_ALLOC_SIZE += $HKEYS_STORAGE;
|
|
}
|
|
|
|
if ($need_aes_stack_storage) {
|
|
if (!$need_hkeys_stack_storage) {
|
|
die "PROLOG: unsupported case - aes storage without hkeys one";
|
|
}
|
|
$DYNAMIC_STACK_ALLOC_SIZE += $LOCAL_STORAGE;
|
|
}
|
|
|
|
$code .= <<___;
|
|
push %rbx
|
|
.cfi_push %rbx
|
|
.L${func_name}_seh_push_rbx:
|
|
push %rbp
|
|
.cfi_push %rbp
|
|
.L${func_name}_seh_push_rbp:
|
|
push %r12
|
|
.cfi_push %r12
|
|
.L${func_name}_seh_push_r12:
|
|
push %r13
|
|
.cfi_push %r13
|
|
.L${func_name}_seh_push_r13:
|
|
push %r14
|
|
.cfi_push %r14
|
|
.L${func_name}_seh_push_r14:
|
|
push %r15
|
|
.cfi_push %r15
|
|
.L${func_name}_seh_push_r15:
|
|
___
|
|
|
|
if ($win64) {
|
|
$code .= <<___;
|
|
push %rdi
|
|
.L${func_name}_seh_push_rdi:
|
|
push %rsi
|
|
.L${func_name}_seh_push_rsi:
|
|
|
|
sub \$`$XMM_STORAGE+8`,%rsp # +8 alignment
|
|
.L${func_name}_seh_allocstack_xmm:
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
# ; %rbp contains stack pointer right after GP regs pushed at stack + [8
|
|
# ; bytes of alignment (Windows only)]. It serves as a frame pointer in SEH
|
|
# ; handlers. The requirement for a frame pointer is that its offset from
|
|
# ; RSP shall be multiple of 16, and not exceed 240 bytes. The frame pointer
|
|
# ; itself seems to be reasonable to use here, because later we do 64-byte stack
|
|
# ; alignment which gives us non-determinate offsets and complicates writing
|
|
# ; SEH handlers.
|
|
#
|
|
# ; It also serves as an anchor for retrieving stack arguments on both Linux
|
|
# ; and Windows.
|
|
lea `$XMM_STORAGE`(%rsp),%rbp
|
|
.cfi_def_cfa_register %rbp
|
|
.L${func_name}_seh_setfp:
|
|
___
|
|
if ($win64) {
|
|
|
|
# ; xmm6:xmm15 need to be preserved on Windows
|
|
foreach my $reg_idx (6 .. 15) {
|
|
my $xmm_reg_offset = ($reg_idx - 6) * 16;
|
|
$code .= <<___;
|
|
vmovdqu %xmm${reg_idx},$xmm_reg_offset(%rsp)
|
|
.L${func_name}_seh_save_xmm${reg_idx}:
|
|
___
|
|
}
|
|
}
|
|
|
|
$code .= <<___;
|
|
# Prolog ends here. Next stack allocation is treated as "dynamic".
|
|
.L${func_name}_seh_prolog_end:
|
|
___
|
|
|
|
if ($DYNAMIC_STACK_ALLOC_SIZE) {
|
|
$code .= <<___;
|
|
sub \$`$DYNAMIC_STACK_ALLOC_SIZE + $DYNAMIC_STACK_ALLOC_ALIGNMENT_SPACE`,%rsp
|
|
and \$(-64),%rsp
|
|
___
|
|
}
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Restore register content for the caller.
|
|
# ;;; And cleanup stack.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub EPILOG {
|
|
my ($hkeys_storage_on_stack, $payload_len) = @_;
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
if ($hkeys_storage_on_stack && $CLEAR_HKEYS_STORAGE_ON_EXIT) {
|
|
|
|
# ; There is no need in hkeys cleanup if payload len was small, i.e. no hkeys
|
|
# ; were stored in the local frame storage
|
|
$code .= <<___;
|
|
cmpq \$`16*16`,$payload_len
|
|
jbe .Lskip_hkeys_cleanup_${label_suffix}
|
|
vpxor %xmm0,%xmm0,%xmm0
|
|
___
|
|
for (my $i = 0; $i < int($HKEYS_STORAGE / 64); $i++) {
|
|
$code .= "vmovdqa64 %zmm0,`$STACK_HKEYS_OFFSET + 64*$i`(%rsp)\n";
|
|
}
|
|
$code .= ".Lskip_hkeys_cleanup_${label_suffix}:\n";
|
|
}
|
|
|
|
if ($CLEAR_SCRATCH_REGISTERS) {
|
|
&clear_scratch_gps_asm();
|
|
&clear_scratch_zmms_asm();
|
|
} else {
|
|
$code .= "vzeroupper\n";
|
|
}
|
|
|
|
if ($win64) {
|
|
|
|
# ; restore xmm15:xmm6
|
|
for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) {
|
|
my $xmm_reg_offset = -$XMM_STORAGE + ($reg_idx - 6) * 16;
|
|
$code .= <<___;
|
|
vmovdqu $xmm_reg_offset(%rbp),%xmm${reg_idx},
|
|
___
|
|
}
|
|
}
|
|
|
|
if ($win64) {
|
|
|
|
# Forming valid epilog for SEH with use of frame pointer.
|
|
# https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=msvc-160#epilog-code
|
|
$code .= "lea 8(%rbp),%rsp\n";
|
|
} else {
|
|
$code .= "lea (%rbp),%rsp\n";
|
|
$code .= ".cfi_def_cfa_register %rsp\n";
|
|
}
|
|
|
|
if ($win64) {
|
|
$code .= <<___;
|
|
pop %rsi
|
|
.cfi_pop %rsi
|
|
pop %rdi
|
|
.cfi_pop %rdi
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
pop %r15
|
|
.cfi_pop %r15
|
|
pop %r14
|
|
.cfi_pop %r14
|
|
pop %r13
|
|
.cfi_pop %r13
|
|
pop %r12
|
|
.cfi_pop %r12
|
|
pop %rbp
|
|
.cfi_pop %rbp
|
|
pop %rbx
|
|
.cfi_pop %rbx
|
|
___
|
|
}
|
|
|
|
# ; Clears all scratch ZMM registers
|
|
# ;
|
|
# ; It should be called before restoring the XMM registers
|
|
# ; for Windows (XMM6-XMM15).
|
|
# ;
|
|
sub clear_scratch_zmms_asm {
|
|
|
|
# ; On Linux, all ZMM registers are scratch registers
|
|
if (!$win64) {
|
|
$code .= "vzeroall\n";
|
|
} else {
|
|
foreach my $i (0 .. 5) {
|
|
$code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n";
|
|
}
|
|
}
|
|
foreach my $i (16 .. 31) {
|
|
$code .= "vpxorq %xmm${i},%xmm${i},%xmm${i}\n";
|
|
}
|
|
}
|
|
|
|
# Clears all scratch GP registers
|
|
sub clear_scratch_gps_asm {
|
|
foreach my $reg ("%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11") {
|
|
$code .= "xor $reg,$reg\n";
|
|
}
|
|
if (!$win64) {
|
|
foreach my $reg ("%rsi", "%rdi") {
|
|
$code .= "xor $reg,$reg\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
sub precompute_hkeys_on_stack {
|
|
my $GCM128_CTX = $_[0];
|
|
my $HKEYS_READY = $_[1];
|
|
my $ZTMP0 = $_[2];
|
|
my $ZTMP1 = $_[3];
|
|
my $ZTMP2 = $_[4];
|
|
my $ZTMP3 = $_[5];
|
|
my $ZTMP4 = $_[6];
|
|
my $ZTMP5 = $_[7];
|
|
my $ZTMP6 = $_[8];
|
|
my $HKEYS_RANGE = $_[9]; # ; "first16", "mid16", "all", "first32", "last32"
|
|
|
|
die "precompute_hkeys_on_stack: Unexpected value of HKEYS_RANGE: $HKEYS_RANGE"
|
|
if ($HKEYS_RANGE ne "first16"
|
|
&& $HKEYS_RANGE ne "mid16"
|
|
&& $HKEYS_RANGE ne "all"
|
|
&& $HKEYS_RANGE ne "first32"
|
|
&& $HKEYS_RANGE ne "last32");
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
test $HKEYS_READY,$HKEYS_READY
|
|
jnz .L_skip_hkeys_precomputation_${label_suffix}
|
|
___
|
|
|
|
if ($HKEYS_RANGE eq "first16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "all") {
|
|
|
|
# ; Fill the stack with the first 16 hkeys from the context
|
|
$code .= <<___;
|
|
# ; Move 16 hkeys from the context to stack
|
|
vmovdqu64 @{[HashKeyByIdx(4,$GCM128_CTX)]},$ZTMP0
|
|
vmovdqu64 $ZTMP0,@{[HashKeyByIdx(4,"%rsp")]}
|
|
|
|
vmovdqu64 @{[HashKeyByIdx(8,$GCM128_CTX)]},$ZTMP1
|
|
vmovdqu64 $ZTMP1,@{[HashKeyByIdx(8,"%rsp")]}
|
|
|
|
# ; broadcast HashKey^8
|
|
vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1
|
|
|
|
vmovdqu64 @{[HashKeyByIdx(12,$GCM128_CTX)]},$ZTMP2
|
|
vmovdqu64 $ZTMP2,@{[HashKeyByIdx(12,"%rsp")]}
|
|
|
|
vmovdqu64 @{[HashKeyByIdx(16,$GCM128_CTX)]},$ZTMP3
|
|
vmovdqu64 $ZTMP3,@{[HashKeyByIdx(16,"%rsp")]}
|
|
___
|
|
}
|
|
|
|
if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "last32") {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx(8,"%rsp")]},$ZTMP1
|
|
|
|
# ; broadcast HashKey^8
|
|
vshufi64x2 \$0x00,$ZTMP1,$ZTMP1,$ZTMP1
|
|
|
|
vmovdqu64 @{[HashKeyByIdx(12,"%rsp")]},$ZTMP2
|
|
vmovdqu64 @{[HashKeyByIdx(16,"%rsp")]},$ZTMP3
|
|
___
|
|
|
|
}
|
|
|
|
if ($HKEYS_RANGE eq "mid16" || $HKEYS_RANGE eq "first32" || $HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") {
|
|
|
|
# ; Precompute hkeys^i, i=17..32
|
|
my $i = 20;
|
|
foreach (1 .. int((32 - 16) / 8)) {
|
|
|
|
# ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n)
|
|
&GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
|
|
$code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
|
|
$i += 4;
|
|
|
|
# ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n)
|
|
&GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
|
|
$code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
|
|
$i += 4;
|
|
}
|
|
}
|
|
|
|
if ($HKEYS_RANGE eq "last32" || $HKEYS_RANGE eq "all") {
|
|
|
|
# ; Precompute hkeys^i, i=33..48 (HKEYS_STORAGE_CAPACITY = 48)
|
|
my $i = 36;
|
|
foreach (1 .. int((48 - 32) / 8)) {
|
|
|
|
# ;; compute HashKey^(4 + n), HashKey^(3 + n), ... HashKey^(1 + n)
|
|
&GHASH_MUL($ZTMP2, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
|
|
$code .= "vmovdqu64 $ZTMP2,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
|
|
$i += 4;
|
|
|
|
# ;; compute HashKey^(8 + n), HashKey^(7 + n), ... HashKey^(5 + n)
|
|
&GHASH_MUL($ZTMP3, $ZTMP1, $ZTMP4, $ZTMP5, $ZTMP6);
|
|
$code .= "vmovdqu64 $ZTMP3,@{[HashKeyByIdx($i,\"%rsp\")]}\n";
|
|
$i += 4;
|
|
}
|
|
}
|
|
|
|
$code .= ".L_skip_hkeys_precomputation_${label_suffix}:\n";
|
|
}
|
|
|
|
# ;; =============================================================================
|
|
# ;; Generic macro to produce code that executes $OPCODE instruction
|
|
# ;; on selected number of AES blocks (16 bytes long ) between 0 and 16.
|
|
# ;; All three operands of the instruction come from registers.
|
|
# ;; Note: if 3 blocks are left at the end instruction is produced to operate all
|
|
# ;; 4 blocks (full width of ZMM)
|
|
sub ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16 {
|
|
my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
|
|
my $OPCODE = $_[1]; # [in] instruction name
|
|
my @DST;
|
|
$DST[0] = $_[2]; # [out] destination ZMM register
|
|
$DST[1] = $_[3]; # [out] destination ZMM register
|
|
$DST[2] = $_[4]; # [out] destination ZMM register
|
|
$DST[3] = $_[5]; # [out] destination ZMM register
|
|
my @SRC1;
|
|
$SRC1[0] = $_[6]; # [in] source 1 ZMM register
|
|
$SRC1[1] = $_[7]; # [in] source 1 ZMM register
|
|
$SRC1[2] = $_[8]; # [in] source 1 ZMM register
|
|
$SRC1[3] = $_[9]; # [in] source 1 ZMM register
|
|
my @SRC2;
|
|
$SRC2[0] = $_[10]; # [in] source 2 ZMM register
|
|
$SRC2[1] = $_[11]; # [in] source 2 ZMM register
|
|
$SRC2[2] = $_[12]; # [in] source 2 ZMM register
|
|
$SRC2[3] = $_[13]; # [in] source 2 ZMM register
|
|
|
|
die "ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
|
|
if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
|
|
|
|
my $reg_idx = 0;
|
|
my $blocks_left = $NUM_BLOCKS;
|
|
|
|
foreach (1 .. ($NUM_BLOCKS / 4)) {
|
|
$code .= "$OPCODE $SRC2[$reg_idx],$SRC1[$reg_idx],$DST[$reg_idx]\n";
|
|
$reg_idx++;
|
|
$blocks_left -= 4;
|
|
}
|
|
|
|
my $DSTREG = $DST[$reg_idx];
|
|
my $SRC1REG = $SRC1[$reg_idx];
|
|
my $SRC2REG = $SRC2[$reg_idx];
|
|
|
|
if ($blocks_left == 1) {
|
|
$code .= "$OPCODE @{[XWORD($SRC2REG)]},@{[XWORD($SRC1REG)]},@{[XWORD($DSTREG)]}\n";
|
|
} elsif ($blocks_left == 2) {
|
|
$code .= "$OPCODE @{[YWORD($SRC2REG)]},@{[YWORD($SRC1REG)]},@{[YWORD($DSTREG)]}\n";
|
|
} elsif ($blocks_left == 3) {
|
|
$code .= "$OPCODE $SRC2REG,$SRC1REG,$DSTREG\n";
|
|
}
|
|
}
|
|
|
|
# ;; =============================================================================
|
|
# ;; Loads specified number of AES blocks into ZMM registers using mask register
|
|
# ;; for the last loaded register (xmm, ymm or zmm).
|
|
# ;; Loads take place at 1 byte granularity.
|
|
sub ZMM_LOAD_MASKED_BLOCKS_0_16 {
|
|
my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
|
|
my $INP = $_[1]; # [in] input data pointer to read from
|
|
my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical)
|
|
my @DST;
|
|
$DST[0] = $_[3]; # [out] ZMM register with loaded data
|
|
$DST[1] = $_[4]; # [out] ZMM register with loaded data
|
|
$DST[2] = $_[5]; # [out] ZMM register with loaded data
|
|
$DST[3] = $_[6]; # [out] ZMM register with loaded data
|
|
my $MASK = $_[7]; # [in] mask register
|
|
|
|
die "ZMM_LOAD_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
|
|
if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
|
|
|
|
my $src_offset = 0;
|
|
my $dst_idx = 0;
|
|
my $blocks_left = $NUM_BLOCKS;
|
|
|
|
if ($NUM_BLOCKS > 0) {
|
|
foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) {
|
|
$code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DST[$dst_idx]\n";
|
|
$src_offset += 64;
|
|
$dst_idx++;
|
|
$blocks_left -= 4;
|
|
}
|
|
}
|
|
|
|
my $DSTREG = $DST[$dst_idx];
|
|
|
|
if ($blocks_left == 1) {
|
|
$code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[XWORD($DSTREG)]}\{$MASK\}{z}\n";
|
|
} elsif ($blocks_left == 2) {
|
|
$code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},@{[YWORD($DSTREG)]}\{$MASK\}{z}\n";
|
|
} elsif (($blocks_left == 3 || $blocks_left == 4)) {
|
|
$code .= "vmovdqu8 @{[EffectiveAddress($INP,$DATA_OFFSET,$src_offset)]},$DSTREG\{$MASK\}{z}\n";
|
|
}
|
|
}
|
|
|
|
# ;; =============================================================================
|
|
# ;; Stores specified number of AES blocks from ZMM registers with mask register
|
|
# ;; for the last loaded register (xmm, ymm or zmm).
|
|
# ;; Stores take place at 1 byte granularity.
|
|
sub ZMM_STORE_MASKED_BLOCKS_0_16 {
|
|
my $NUM_BLOCKS = $_[0]; # [in] numerical value, number of AES blocks (0 to 16)
|
|
my $OUTP = $_[1]; # [in] output data pointer to write to
|
|
my $DATA_OFFSET = $_[2]; # [in] offset to the output pointer (GP or numerical)
|
|
my @SRC;
|
|
$SRC[0] = $_[3]; # [in] ZMM register with data to store
|
|
$SRC[1] = $_[4]; # [in] ZMM register with data to store
|
|
$SRC[2] = $_[5]; # [in] ZMM register with data to store
|
|
$SRC[3] = $_[6]; # [in] ZMM register with data to store
|
|
my $MASK = $_[7]; # [in] mask register
|
|
|
|
die "ZMM_STORE_MASKED_BLOCKS_0_16: num_blocks is out of bounds = $NUM_BLOCKS\n"
|
|
if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
|
|
|
|
my $dst_offset = 0;
|
|
my $src_idx = 0;
|
|
my $blocks_left = $NUM_BLOCKS;
|
|
|
|
if ($NUM_BLOCKS > 0) {
|
|
foreach (1 .. (int(($NUM_BLOCKS + 3) / 4) - 1)) {
|
|
$code .= "vmovdqu8 $SRC[$src_idx],`$dst_offset`($OUTP,$DATA_OFFSET,1)\n";
|
|
$dst_offset += 64;
|
|
$src_idx++;
|
|
$blocks_left -= 4;
|
|
}
|
|
}
|
|
|
|
my $SRCREG = $SRC[$src_idx];
|
|
|
|
if ($blocks_left == 1) {
|
|
$code .= "vmovdqu8 @{[XWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
|
|
} elsif ($blocks_left == 2) {
|
|
$code .= "vmovdqu8 @{[YWORD($SRCREG)]},`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
|
|
} elsif ($blocks_left == 3 || $blocks_left == 4) {
|
|
$code .= "vmovdqu8 $SRCREG,`$dst_offset`($OUTP,$DATA_OFFSET,1){$MASK}\n";
|
|
}
|
|
}
|
|
|
|
# ;;; ===========================================================================
|
|
# ;;; Handles AES encryption rounds
|
|
# ;;; It handles special cases: the last and first rounds
|
|
# ;;; Optionally, it performs XOR with data after the last AES round.
|
|
# ;;; Uses NROUNDS parameter to check what needs to be done for the current round.
|
|
# ;;; If 3 blocks are trailing then operation on whole ZMM is performed (4 blocks).
|
|
sub ZMM_AESENC_ROUND_BLOCKS_0_16 {
|
|
my $L0B0_3 = $_[0]; # [in/out] zmm; blocks 0 to 3
|
|
my $L0B4_7 = $_[1]; # [in/out] zmm; blocks 4 to 7
|
|
my $L0B8_11 = $_[2]; # [in/out] zmm; blocks 8 to 11
|
|
my $L0B12_15 = $_[3]; # [in/out] zmm; blocks 12 to 15
|
|
my $KEY = $_[4]; # [in] zmm containing round key
|
|
my $ROUND = $_[5]; # [in] round number
|
|
my $D0_3 = $_[6]; # [in] zmm or no_data; plain/cipher text blocks 0-3
|
|
my $D4_7 = $_[7]; # [in] zmm or no_data; plain/cipher text blocks 4-7
|
|
my $D8_11 = $_[8]; # [in] zmm or no_data; plain/cipher text blocks 8-11
|
|
my $D12_15 = $_[9]; # [in] zmm or no_data; plain/cipher text blocks 12-15
|
|
my $NUMBL = $_[10]; # [in] number of blocks; numerical value
|
|
my $NROUNDS = $_[11]; # [in] number of rounds; numerical value
|
|
|
|
# ;;; === first AES round
|
|
if ($ROUND < 1) {
|
|
|
|
# ;; round 0
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
|
|
$L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
|
|
}
|
|
|
|
# ;;; === middle AES rounds
|
|
if ($ROUND >= 1 && $ROUND <= $NROUNDS) {
|
|
|
|
# ;; rounds 1 to 9/11/13
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUMBL, "vaesenc", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
|
|
$L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
|
|
}
|
|
|
|
# ;;; === last AES round
|
|
if ($ROUND > $NROUNDS) {
|
|
|
|
# ;; the last round - mix enclast with text xor's
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUMBL, "vaesenclast", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
|
|
$L0B4_7, $L0B8_11, $L0B12_15, $KEY, $KEY, $KEY, $KEY);
|
|
|
|
# ;;; === XOR with data
|
|
if ( ($D0_3 ne "no_data")
|
|
&& ($D4_7 ne "no_data")
|
|
&& ($D8_11 ne "no_data")
|
|
&& ($D12_15 ne "no_data"))
|
|
{
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUMBL, "vpxorq", $L0B0_3, $L0B4_7, $L0B8_11, $L0B12_15, $L0B0_3,
|
|
$L0B4_7, $L0B8_11, $L0B12_15, $D0_3, $D4_7, $D8_11, $D12_15);
|
|
}
|
|
}
|
|
}
|
|
|
|
# ;;; Horizontal XOR - 4 x 128bits xored together
|
|
sub VHPXORI4x128 {
|
|
my $REG = $_[0]; # [in/out] ZMM with 4x128bits to xor; 128bit output
|
|
my $TMP = $_[1]; # [clobbered] ZMM temporary register
|
|
$code .= <<___;
|
|
vextracti64x4 \$1,$REG,@{[YWORD($TMP)]}
|
|
vpxorq @{[YWORD($TMP)]},@{[YWORD($REG)]},@{[YWORD($REG)]}
|
|
vextracti32x4 \$1,@{[YWORD($REG)]},@{[XWORD($TMP)]}
|
|
vpxorq @{[XWORD($TMP)]},@{[XWORD($REG)]},@{[XWORD($REG)]}
|
|
___
|
|
}
|
|
|
|
# ;;; AVX512 reduction macro
|
|
sub VCLMUL_REDUCE {
|
|
my $OUT = $_[0]; # [out] zmm/ymm/xmm: result (must not be $TMP1 or $HI128)
|
|
my $POLY = $_[1]; # [in] zmm/ymm/xmm: polynomial
|
|
my $HI128 = $_[2]; # [in] zmm/ymm/xmm: high 128b of hash to reduce
|
|
my $LO128 = $_[3]; # [in] zmm/ymm/xmm: low 128b of hash to reduce
|
|
my $TMP0 = $_[4]; # [in] zmm/ymm/xmm: temporary register
|
|
my $TMP1 = $_[5]; # [in] zmm/ymm/xmm: temporary register
|
|
|
|
$code .= <<___;
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; first phase of the reduction
|
|
vpclmulqdq \$0x01,$LO128,$POLY,$TMP0
|
|
vpslldq \$8,$TMP0,$TMP0 # ; shift-L 2 DWs
|
|
vpxorq $TMP0,$LO128,$TMP0 # ; first phase of the reduction complete
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; second phase of the reduction
|
|
vpclmulqdq \$0x00,$TMP0,$POLY,$TMP1
|
|
vpsrldq \$4,$TMP1,$TMP1 # ; shift-R only 1-DW to obtain 2-DWs shift-R
|
|
vpclmulqdq \$0x10,$TMP0,$POLY,$OUT
|
|
vpslldq \$4,$OUT,$OUT # ; shift-L 1-DW to obtain result with no shifts
|
|
vpternlogq \$0x96,$HI128,$TMP1,$OUT # ; OUT/GHASH = OUT xor TMP1 xor HI128
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
___
|
|
}
|
|
|
|
# ;; ===========================================================================
|
|
# ;; schoolbook multiply of 16 blocks (16 x 16 bytes)
|
|
# ;; - it is assumed that data read from $INPTR is already shuffled and
|
|
# ;; $INPTR address is 64 byte aligned
|
|
# ;; - there is an option to pass ready blocks through ZMM registers too.
|
|
# ;; 4 extra parameters need to be passed in such case and 21st ($ZTMP9) argument can be empty
|
|
sub GHASH_16 {
|
|
my $TYPE = $_[0]; # [in] ghash type: start (xor hash), mid, end (same as mid; no reduction),
|
|
# end_reduce (end with reduction), start_reduce
|
|
my $GH = $_[1]; # [in/out] ZMM ghash sum: high 128-bits
|
|
my $GM = $_[2]; # [in/out] ZMM ghash sum: middle 128-bits
|
|
my $GL = $_[3]; # [in/out] ZMM ghash sum: low 128-bits
|
|
my $INPTR = $_[4]; # [in] data input pointer
|
|
my $INOFF = $_[5]; # [in] data input offset
|
|
my $INDIS = $_[6]; # [in] data input displacement
|
|
my $HKPTR = $_[7]; # [in] hash key pointer
|
|
my $HKOFF = $_[8]; # [in] hash key offset (can be either numerical offset, or register containing offset)
|
|
my $HKDIS = $_[9]; # [in] hash key displacement
|
|
my $HASH = $_[10]; # [in/out] ZMM hash value in/out
|
|
my $ZTMP0 = $_[11]; # [clobbered] temporary ZMM
|
|
my $ZTMP1 = $_[12]; # [clobbered] temporary ZMM
|
|
my $ZTMP2 = $_[13]; # [clobbered] temporary ZMM
|
|
my $ZTMP3 = $_[14]; # [clobbered] temporary ZMM
|
|
my $ZTMP4 = $_[15]; # [clobbered] temporary ZMM
|
|
my $ZTMP5 = $_[16]; # [clobbered] temporary ZMM
|
|
my $ZTMP6 = $_[17]; # [clobbered] temporary ZMM
|
|
my $ZTMP7 = $_[18]; # [clobbered] temporary ZMM
|
|
my $ZTMP8 = $_[19]; # [clobbered] temporary ZMM
|
|
my $ZTMP9 = $_[20]; # [clobbered] temporary ZMM, can be empty if 4 extra parameters below are provided
|
|
my $DAT0 = $_[21]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
|
|
my $DAT1 = $_[22]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
|
|
my $DAT2 = $_[23]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
|
|
my $DAT3 = $_[24]; # [in] ZMM with 4 blocks of input data (INPTR, INOFF, INDIS unused)
|
|
|
|
my $start_ghash = 0;
|
|
my $do_reduction = 0;
|
|
if ($TYPE eq "start") {
|
|
$start_ghash = 1;
|
|
}
|
|
|
|
if ($TYPE eq "start_reduce") {
|
|
$start_ghash = 1;
|
|
$do_reduction = 1;
|
|
}
|
|
|
|
if ($TYPE eq "end_reduce") {
|
|
$do_reduction = 1;
|
|
}
|
|
|
|
# ;; ghash blocks 0-3
|
|
if (scalar(@_) == 21) {
|
|
$code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+0*64))]},$ZTMP9\n";
|
|
} else {
|
|
$ZTMP9 = $DAT0;
|
|
}
|
|
|
|
if ($start_ghash != 0) {
|
|
$code .= "vpxorq $HASH,$ZTMP9,$ZTMP9\n";
|
|
}
|
|
$code .= <<___;
|
|
vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+0*64))]},$ZTMP8
|
|
vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1
|
|
vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0
|
|
vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0
|
|
vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1
|
|
___
|
|
|
|
# ;; ghash blocks 4-7
|
|
if (scalar(@_) == 21) {
|
|
$code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+1*64))]},$ZTMP9\n";
|
|
} else {
|
|
$ZTMP9 = $DAT1;
|
|
}
|
|
$code .= <<___;
|
|
vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+1*64))]},$ZTMP8
|
|
vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1
|
|
vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0
|
|
vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0
|
|
vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1
|
|
___
|
|
|
|
# ;; update sums
|
|
if ($start_ghash != 0) {
|
|
$code .= <<___;
|
|
vpxorq $ZTMP6,$ZTMP2,$GM # ; GM = T0M1 + T1M1
|
|
vpxorq $ZTMP4,$ZTMP0,$GH # ; GH = T0H + T1H
|
|
vpxorq $ZTMP5,$ZTMP1,$GL # ; GL = T0L + T1L
|
|
vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM = T0M2 + T1M1
|
|
___
|
|
} else { # ;; mid, end, end_reduce
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1
|
|
vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H
|
|
vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L
|
|
vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1
|
|
___
|
|
}
|
|
|
|
# ;; ghash blocks 8-11
|
|
if (scalar(@_) == 21) {
|
|
$code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+2*64))]},$ZTMP9\n";
|
|
} else {
|
|
$ZTMP9 = $DAT2;
|
|
}
|
|
$code .= <<___;
|
|
vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+2*64))]},$ZTMP8
|
|
vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP0 # ; T0H = a1*b1
|
|
vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP1 # ; T0L = a0*b0
|
|
vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP2 # ; T0M1 = a1*b0
|
|
vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP3 # ; T0M2 = a0*b1
|
|
___
|
|
|
|
# ;; ghash blocks 12-15
|
|
if (scalar(@_) == 21) {
|
|
$code .= "vmovdqa64 @{[EffectiveAddress($INPTR,$INOFF,($INDIS+3*64))]},$ZTMP9\n";
|
|
} else {
|
|
$ZTMP9 = $DAT3;
|
|
}
|
|
$code .= <<___;
|
|
vmovdqu64 @{[EffectiveAddress($HKPTR,$HKOFF,($HKDIS+3*64))]},$ZTMP8
|
|
vpclmulqdq \$0x11,$ZTMP8,$ZTMP9,$ZTMP4 # ; T1H = a1*b1
|
|
vpclmulqdq \$0x00,$ZTMP8,$ZTMP9,$ZTMP5 # ; T1L = a0*b0
|
|
vpclmulqdq \$0x01,$ZTMP8,$ZTMP9,$ZTMP6 # ; T1M1 = a1*b0
|
|
vpclmulqdq \$0x10,$ZTMP8,$ZTMP9,$ZTMP7 # ; T1M2 = a0*b1
|
|
# ;; update sums
|
|
vpternlogq \$0x96,$ZTMP6,$ZTMP2,$GM # ; GM += T0M1 + T1M1
|
|
vpternlogq \$0x96,$ZTMP4,$ZTMP0,$GH # ; GH += T0H + T1H
|
|
vpternlogq \$0x96,$ZTMP5,$ZTMP1,$GL # ; GL += T0L + T1L
|
|
vpternlogq \$0x96,$ZTMP7,$ZTMP3,$GM # ; GM += T0M2 + T1M1
|
|
___
|
|
if ($do_reduction != 0) {
|
|
$code .= <<___;
|
|
# ;; integrate GM into GH and GL
|
|
vpsrldq \$8,$GM,$ZTMP0
|
|
vpslldq \$8,$GM,$ZTMP1
|
|
vpxorq $ZTMP0,$GH,$GH
|
|
vpxorq $ZTMP1,$GL,$GL
|
|
___
|
|
|
|
# ;; add GH and GL 128-bit words horizontally
|
|
&VHPXORI4x128($GH, $ZTMP0);
|
|
&VHPXORI4x128($GL, $ZTMP1);
|
|
|
|
# ;; reduction
|
|
$code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZTMP2)]}\n";
|
|
&VCLMUL_REDUCE(&XWORD($HASH), &XWORD($ZTMP2), &XWORD($GH), &XWORD($GL), &XWORD($ZTMP0), &XWORD($ZTMP1));
|
|
}
|
|
}
|
|
|
|
# ;; ===========================================================================
|
|
# ;; GHASH 1 to 16 blocks of cipher text
|
|
# ;; - performs reduction at the end
|
|
# ;; - it doesn't load the data and it assumed it is already loaded and shuffled
|
|
sub GHASH_1_TO_16 {
|
|
my $GCM128_CTX = $_[0]; # [in] pointer to expanded keys
|
|
my $GHASH = $_[1]; # [out] ghash output
|
|
my $T0H = $_[2]; # [clobbered] temporary ZMM
|
|
my $T0L = $_[3]; # [clobbered] temporary ZMM
|
|
my $T0M1 = $_[4]; # [clobbered] temporary ZMM
|
|
my $T0M2 = $_[5]; # [clobbered] temporary ZMM
|
|
my $T1H = $_[6]; # [clobbered] temporary ZMM
|
|
my $T1L = $_[7]; # [clobbered] temporary ZMM
|
|
my $T1M1 = $_[8]; # [clobbered] temporary ZMM
|
|
my $T1M2 = $_[9]; # [clobbered] temporary ZMM
|
|
my $HK = $_[10]; # [clobbered] temporary ZMM
|
|
my $AAD_HASH_IN = $_[11]; # [in] input hash value
|
|
my @CIPHER_IN;
|
|
$CIPHER_IN[0] = $_[12]; # [in] ZMM with cipher text blocks 0-3
|
|
$CIPHER_IN[1] = $_[13]; # [in] ZMM with cipher text blocks 4-7
|
|
$CIPHER_IN[2] = $_[14]; # [in] ZMM with cipher text blocks 8-11
|
|
$CIPHER_IN[3] = $_[15]; # [in] ZMM with cipher text blocks 12-15
|
|
my $NUM_BLOCKS = $_[16]; # [in] numerical value, number of blocks
|
|
my $GH = $_[17]; # [in] ZMM with hi product part
|
|
my $GM = $_[18]; # [in] ZMM with mid product part
|
|
my $GL = $_[19]; # [in] ZMM with lo product part
|
|
|
|
die "GHASH_1_TO_16: num_blocks is out of bounds = $NUM_BLOCKS\n" if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
|
|
|
|
if (scalar(@_) == 17) {
|
|
$code .= "vpxorq $AAD_HASH_IN,$CIPHER_IN[0],$CIPHER_IN[0]\n";
|
|
}
|
|
|
|
if ($NUM_BLOCKS == 16) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0
|
|
vpternlogq \$0x96,$T1H,$CIPHER_IN[0],$T0H
|
|
vpternlogq \$0x96,$T1L,$CIPHER_IN[1],$T0L
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1
|
|
vpternlogq \$0x96,$T1M1,$CIPHER_IN[0],$T0M1
|
|
vpternlogq \$0x96,$T1M2,$CIPHER_IN[1],$T0M2
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-3*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[3],$T1H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[3],$T1L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[3],$T1M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[3],$T1M2 # ; M2 = a0*b1
|
|
vpxorq $T1H,$T0H,$T1H
|
|
vpxorq $T1L,$T0L,$T1L
|
|
vpxorq $T1M1,$T0M1,$T1M1
|
|
vpxorq $T1M2,$T0M2,$T1M2
|
|
___
|
|
} elsif ($NUM_BLOCKS >= 12) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-2*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; L = a0*b0
|
|
vpternlogq \$0x96,$T0H,$CIPHER_IN[0],$T1H
|
|
vpternlogq \$0x96,$T0L,$CIPHER_IN[1],$T1L
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[2],$CIPHER_IN[0] # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[2],$CIPHER_IN[1] # ; M2 = a0*b1
|
|
vpternlogq \$0x96,$T0M1,$CIPHER_IN[0],$T1M1
|
|
vpternlogq \$0x96,$T0M2,$CIPHER_IN[1],$T1M2
|
|
___
|
|
} elsif ($NUM_BLOCKS >= 8) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T0H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T0L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T0M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T0M2 # ; M2 = a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS-1*4, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[1],$T1H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[1],$T1L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[1],$T1M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[1],$T1M2 # ; M2 = a0*b1
|
|
vpxorq $T1H,$T0H,$T1H
|
|
vpxorq $T1L,$T0L,$T1L
|
|
vpxorq $T1M1,$T0M1,$T1M1
|
|
vpxorq $T1M2,$T0M2,$T1M2
|
|
___
|
|
} elsif ($NUM_BLOCKS >= 4) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($NUM_BLOCKS, $GCM128_CTX)]},$HK
|
|
vpclmulqdq \$0x11,$HK,$CIPHER_IN[0],$T1H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$CIPHER_IN[0],$T1L # ; L = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$CIPHER_IN[0],$T1M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$CIPHER_IN[0],$T1M2 # ; M2 = a0*b1
|
|
___
|
|
}
|
|
|
|
# ;; T1H/L/M1/M2 - hold current product sums (provided $NUM_BLOCKS >= 4)
|
|
my $blocks_left = ($NUM_BLOCKS % 4);
|
|
if ($blocks_left > 0) {
|
|
|
|
# ;; =====================================================
|
|
# ;; There are 1, 2 or 3 blocks left to process.
|
|
# ;; It may also be that they are the only blocks to process.
|
|
|
|
# ;; Set hash key and register index position for the remaining 1 to 3 blocks
|
|
my $reg_idx = ($NUM_BLOCKS / 4);
|
|
my $REG_IN = $CIPHER_IN[$reg_idx];
|
|
|
|
if ($blocks_left == 1) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[XWORD($HK)]}
|
|
vpclmulqdq \$0x01,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M1)]} # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0M2)]} # ; M2 = a0*b1
|
|
vpclmulqdq \$0x11,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0H)]} # ; H = a1*b1
|
|
vpclmulqdq \$0x00,@{[XWORD($HK)]},@{[XWORD($REG_IN)]},@{[XWORD($T0L)]} # ; L = a0*b0
|
|
___
|
|
} elsif ($blocks_left == 2) {
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]}
|
|
vpclmulqdq \$0x01,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M1)]} # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0M2)]} # ; M2 = a0*b1
|
|
vpclmulqdq \$0x11,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0H)]} # ; H = a1*b1
|
|
vpclmulqdq \$0x00,@{[YWORD($HK)]},@{[YWORD($REG_IN)]},@{[YWORD($T0L)]} # ; L = a0*b0
|
|
___
|
|
} else { # ; blocks_left == 3
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx($blocks_left, $GCM128_CTX)]},@{[YWORD($HK)]}
|
|
vinserti64x2 \$2,@{[HashKeyByIdx($blocks_left-2, $GCM128_CTX)]},$HK,$HK
|
|
vpclmulqdq \$0x01,$HK,$REG_IN,$T0M1 # ; M1 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$REG_IN,$T0M2 # ; M2 = a0*b1
|
|
vpclmulqdq \$0x11,$HK,$REG_IN,$T0H # ; H = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$REG_IN,$T0L # ; L = a0*b0
|
|
___
|
|
}
|
|
|
|
if (scalar(@_) == 20) {
|
|
|
|
# ;; *** GH/GM/GL passed as arguments
|
|
if ($NUM_BLOCKS >= 4) {
|
|
$code .= <<___;
|
|
# ;; add ghash product sums from the first 4, 8 or 12 blocks
|
|
vpxorq $T1M1,$T0M1,$T0M1
|
|
vpternlogq \$0x96,$T1M2,$GM,$T0M2
|
|
vpternlogq \$0x96,$T1H,$GH,$T0H
|
|
vpternlogq \$0x96,$T1L,$GL,$T0L
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vpxorq $GM,$T0M1,$T0M1
|
|
vpxorq $GH,$T0H,$T0H
|
|
vpxorq $GL,$T0L,$T0L
|
|
___
|
|
}
|
|
} else {
|
|
|
|
# ;; *** GH/GM/GL NOT passed as arguments
|
|
if ($NUM_BLOCKS >= 4) {
|
|
$code .= <<___;
|
|
# ;; add ghash product sums from the first 4, 8 or 12 blocks
|
|
vpxorq $T1M1,$T0M1,$T0M1
|
|
vpxorq $T1M2,$T0M2,$T0M2
|
|
vpxorq $T1H,$T0H,$T0H
|
|
vpxorq $T1L,$T0L,$T0L
|
|
___
|
|
}
|
|
}
|
|
$code .= <<___;
|
|
# ;; integrate TM into TH and TL
|
|
vpxorq $T0M2,$T0M1,$T0M1
|
|
vpsrldq \$8,$T0M1,$T1M1
|
|
vpslldq \$8,$T0M1,$T1M2
|
|
vpxorq $T1M1,$T0H,$T0H
|
|
vpxorq $T1M2,$T0L,$T0L
|
|
___
|
|
} else {
|
|
|
|
# ;; =====================================================
|
|
# ;; number of blocks is 4, 8, 12 or 16
|
|
# ;; T1H/L/M1/M2 include product sums not T0H/L/M1/M2
|
|
if (scalar(@_) == 20) {
|
|
$code .= <<___;
|
|
# ;; *** GH/GM/GL passed as arguments
|
|
vpxorq $GM,$T1M1,$T1M1
|
|
vpxorq $GH,$T1H,$T1H
|
|
vpxorq $GL,$T1L,$T1L
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
# ;; integrate TM into TH and TL
|
|
vpxorq $T1M2,$T1M1,$T1M1
|
|
vpsrldq \$8,$T1M1,$T0M1
|
|
vpslldq \$8,$T1M1,$T0M2
|
|
vpxorq $T0M1,$T1H,$T0H
|
|
vpxorq $T0M2,$T1L,$T0L
|
|
___
|
|
}
|
|
|
|
# ;; add TH and TL 128-bit words horizontally
|
|
&VHPXORI4x128($T0H, $T1M1);
|
|
&VHPXORI4x128($T0L, $T1M2);
|
|
|
|
# ;; reduction
|
|
$code .= "vmovdqa64 POLY2(%rip),@{[XWORD($HK)]}\n";
|
|
&VCLMUL_REDUCE(
|
|
@{[XWORD($GHASH)]},
|
|
@{[XWORD($HK)]},
|
|
@{[XWORD($T0H)]},
|
|
@{[XWORD($T0L)]},
|
|
@{[XWORD($T0M1)]},
|
|
@{[XWORD($T0M2)]});
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; GHASH_MUL MACRO to implement: Data*HashKey mod (x^128 + x^127 + x^126 +x^121 + 1)
|
|
# ;; Input: A and B (128-bits each, bit-reflected)
|
|
# ;; Output: C = A*B*x mod poly, (i.e. >>1 )
|
|
# ;; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
|
|
# ;; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
|
|
# ;;
|
|
# ;; Refer to [3] for more details.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub GHASH_MUL {
|
|
my $GH = $_[0]; #; [in/out] xmm/ymm/zmm with multiply operand(s) (128-bits)
|
|
my $HK = $_[1]; #; [in] xmm/ymm/zmm with hash key value(s) (128-bits)
|
|
my $T1 = $_[2]; #; [clobbered] xmm/ymm/zmm
|
|
my $T2 = $_[3]; #; [clobbered] xmm/ymm/zmm
|
|
my $T3 = $_[4]; #; [clobbered] xmm/ymm/zmm
|
|
|
|
$code .= <<___;
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
vpclmulqdq \$0x11,$HK,$GH,$T1 # ; $T1 = a1*b1
|
|
vpclmulqdq \$0x00,$HK,$GH,$T2 # ; $T2 = a0*b0
|
|
vpclmulqdq \$0x01,$HK,$GH,$T3 # ; $T3 = a1*b0
|
|
vpclmulqdq \$0x10,$HK,$GH,$GH # ; $GH = a0*b1
|
|
vpxorq $T3,$GH,$GH
|
|
|
|
vpsrldq \$8,$GH,$T3 # ; shift-R $GH 2 DWs
|
|
vpslldq \$8,$GH,$GH # ; shift-L $GH 2 DWs
|
|
vpxorq $T3,$T1,$T1
|
|
vpxorq $T2,$GH,$GH
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;first phase of the reduction
|
|
vmovdqu64 POLY2(%rip),$T3
|
|
|
|
vpclmulqdq \$0x01,$GH,$T3,$T2
|
|
vpslldq \$8,$T2,$T2 # ; shift-L $T2 2 DWs
|
|
vpxorq $T2,$GH,$GH # ; first phase of the reduction complete
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;second phase of the reduction
|
|
vpclmulqdq \$0x00,$GH,$T3,$T2
|
|
vpsrldq \$4,$T2,$T2 # ; shift-R only 1-DW to obtain 2-DWs shift-R
|
|
vpclmulqdq \$0x10,$GH,$T3,$GH
|
|
vpslldq \$4,$GH,$GH # ; Shift-L 1-DW to obtain result with no shifts
|
|
# ; second phase of the reduction complete, the result is in $GH
|
|
vpternlogq \$0x96,$T2,$T1,$GH # ; GH = GH xor T1 xor T2
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; PRECOMPUTE computes HashKey_i
|
|
sub PRECOMPUTE {
|
|
my $GCM128_CTX = $_[0]; #; [in/out] context pointer, hkeys content updated
|
|
my $HK = $_[1]; #; [in] xmm, hash key
|
|
my $T1 = $_[2]; #; [clobbered] xmm
|
|
my $T2 = $_[3]; #; [clobbered] xmm
|
|
my $T3 = $_[4]; #; [clobbered] xmm
|
|
my $T4 = $_[5]; #; [clobbered] xmm
|
|
my $T5 = $_[6]; #; [clobbered] xmm
|
|
my $T6 = $_[7]; #; [clobbered] xmm
|
|
|
|
my $ZT1 = &ZWORD($T1);
|
|
my $ZT2 = &ZWORD($T2);
|
|
my $ZT3 = &ZWORD($T3);
|
|
my $ZT4 = &ZWORD($T4);
|
|
my $ZT5 = &ZWORD($T5);
|
|
my $ZT6 = &ZWORD($T6);
|
|
|
|
my $YT1 = &YWORD($T1);
|
|
my $YT2 = &YWORD($T2);
|
|
my $YT3 = &YWORD($T3);
|
|
my $YT4 = &YWORD($T4);
|
|
my $YT5 = &YWORD($T5);
|
|
my $YT6 = &YWORD($T6);
|
|
|
|
$code .= <<___;
|
|
vshufi32x4 \$0x00,@{[YWORD($HK)]},@{[YWORD($HK)]},$YT5
|
|
vmovdqa $YT5,$YT4
|
|
___
|
|
|
|
# ;; calculate HashKey^2<<1 mod poly
|
|
&GHASH_MUL($YT4, $YT5, $YT1, $YT2, $YT3);
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 $T4,@{[HashKeyByIdx(2,$GCM128_CTX)]}
|
|
vinserti64x2 \$1,$HK,$YT4,$YT5
|
|
vmovdqa64 $YT5,$YT6 # ;; YT6 = HashKey | HashKey^2
|
|
___
|
|
|
|
# ;; use 2x128-bit computation
|
|
# ;; calculate HashKey^4<<1 mod poly, HashKey^3<<1 mod poly
|
|
&GHASH_MUL($YT5, $YT4, $YT1, $YT2, $YT3); # ;; YT5 = HashKey^3 | HashKey^4
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 $YT5,@{[HashKeyByIdx(4,$GCM128_CTX)]}
|
|
|
|
vinserti64x4 \$1,$YT6,$ZT5,$ZT5 # ;; ZT5 = YT6 | YT5
|
|
|
|
# ;; switch to 4x128-bit computations now
|
|
vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^4 across all ZT4
|
|
vmovdqa64 $ZT5,$ZT6 # ;; save HashKey^4 to HashKey^1 in ZT6
|
|
___
|
|
|
|
# ;; calculate HashKey^5<<1 mod poly, HashKey^6<<1 mod poly, ... HashKey^8<<1 mod poly
|
|
&GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3);
|
|
$code .= <<___;
|
|
vmovdqu64 $ZT5,@{[HashKeyByIdx(8,$GCM128_CTX)]} # ;; HashKey^8 to HashKey^5 in ZT5 now
|
|
vshufi64x2 \$0x00,$ZT5,$ZT5,$ZT4 # ;; broadcast HashKey^8 across all ZT4
|
|
___
|
|
|
|
# ;; calculate HashKey^9<<1 mod poly, HashKey^10<<1 mod poly, ... HashKey^16<<1 mod poly
|
|
# ;; use HashKey^8 as multiplier against ZT6 and ZT5 - this allows deeper ooo execution
|
|
|
|
# ;; compute HashKey^(12), HashKey^(11), ... HashKey^(9)
|
|
&GHASH_MUL($ZT6, $ZT4, $ZT1, $ZT2, $ZT3);
|
|
$code .= "vmovdqu64 $ZT6,@{[HashKeyByIdx(12,$GCM128_CTX)]}\n";
|
|
|
|
# ;; compute HashKey^(16), HashKey^(15), ... HashKey^(13)
|
|
&GHASH_MUL($ZT5, $ZT4, $ZT1, $ZT2, $ZT3);
|
|
$code .= "vmovdqu64 $ZT5,@{[HashKeyByIdx(16,$GCM128_CTX)]}\n";
|
|
|
|
# ; Hkeys 17..48 will be precomputed somewhere else as context can hold only 16 hkeys
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; READ_SMALL_DATA_INPUT
|
|
# ;; Packs xmm register with data when data input is less or equal to 16 bytes
|
|
# ;; Returns 0 if data has length 0
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub READ_SMALL_DATA_INPUT {
|
|
my $OUTPUT = $_[0]; # [out] xmm register
|
|
my $INPUT = $_[1]; # [in] buffer pointer to read from
|
|
my $LENGTH = $_[2]; # [in] number of bytes to read
|
|
my $TMP1 = $_[3]; # [clobbered]
|
|
my $TMP2 = $_[4]; # [clobbered]
|
|
my $MASK = $_[5]; # [out] k1 to k7 register to store the partial block mask
|
|
|
|
$code .= <<___;
|
|
mov \$16,@{[DWORD($TMP2)]}
|
|
lea byte_len_to_mask_table(%rip),$TMP1
|
|
cmp $TMP2,$LENGTH
|
|
cmovc $LENGTH,$TMP2
|
|
___
|
|
if ($win64) {
|
|
$code .= <<___;
|
|
add $TMP2,$TMP1
|
|
add $TMP2,$TMP1
|
|
kmovw ($TMP1),$MASK
|
|
___
|
|
} else {
|
|
$code .= "kmovw ($TMP1,$TMP2,2),$MASK\n";
|
|
}
|
|
$code .= "vmovdqu8 ($INPUT),${OUTPUT}{$MASK}{z}\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
|
|
# Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY).
|
|
# Output: The hash of the data (AAD_HASH).
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub CALC_AAD_HASH {
|
|
my $A_IN = $_[0]; # [in] AAD text pointer
|
|
my $A_LEN = $_[1]; # [in] AAD length
|
|
my $AAD_HASH = $_[2]; # [in/out] xmm ghash value
|
|
my $GCM128_CTX = $_[3]; # [in] pointer to context
|
|
my $ZT0 = $_[4]; # [clobbered] ZMM register
|
|
my $ZT1 = $_[5]; # [clobbered] ZMM register
|
|
my $ZT2 = $_[6]; # [clobbered] ZMM register
|
|
my $ZT3 = $_[7]; # [clobbered] ZMM register
|
|
my $ZT4 = $_[8]; # [clobbered] ZMM register
|
|
my $ZT5 = $_[9]; # [clobbered] ZMM register
|
|
my $ZT6 = $_[10]; # [clobbered] ZMM register
|
|
my $ZT7 = $_[11]; # [clobbered] ZMM register
|
|
my $ZT8 = $_[12]; # [clobbered] ZMM register
|
|
my $ZT9 = $_[13]; # [clobbered] ZMM register
|
|
my $ZT10 = $_[14]; # [clobbered] ZMM register
|
|
my $ZT11 = $_[15]; # [clobbered] ZMM register
|
|
my $ZT12 = $_[16]; # [clobbered] ZMM register
|
|
my $ZT13 = $_[17]; # [clobbered] ZMM register
|
|
my $ZT14 = $_[18]; # [clobbered] ZMM register
|
|
my $ZT15 = $_[19]; # [clobbered] ZMM register
|
|
my $ZT16 = $_[20]; # [clobbered] ZMM register
|
|
my $T1 = $_[21]; # [clobbered] GP register
|
|
my $T2 = $_[22]; # [clobbered] GP register
|
|
my $T3 = $_[23]; # [clobbered] GP register
|
|
my $MASKREG = $_[24]; # [clobbered] mask register
|
|
|
|
my $HKEYS_READY = "%rbx";
|
|
|
|
my $SHFMSK = $ZT13;
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
mov $A_IN,$T1 # ; T1 = AAD
|
|
mov $A_LEN,$T2 # ; T2 = aadLen
|
|
or $T2,$T2
|
|
jz .L_CALC_AAD_done_${label_suffix}
|
|
|
|
xor $HKEYS_READY,$HKEYS_READY
|
|
vmovdqa64 SHUF_MASK(%rip),$SHFMSK
|
|
|
|
.L_get_AAD_loop48x16_${label_suffix}:
|
|
cmp \$`(48*16)`,$T2
|
|
jl .L_exit_AAD_loop48x16_${label_suffix}
|
|
___
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 `64*0`($T1),$ZT1 # ; Blocks 0-3
|
|
vmovdqu64 `64*1`($T1),$ZT2 # ; Blocks 4-7
|
|
vmovdqu64 `64*2`($T1),$ZT3 # ; Blocks 8-11
|
|
vmovdqu64 `64*3`($T1),$ZT4 # ; Blocks 12-15
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
&precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "all");
|
|
$code .= "mov \$1,$HKEYS_READY\n";
|
|
|
|
&GHASH_16(
|
|
"start", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
|
|
&HashKeyOffsetByIdx(48, "frame"), 0, "@{[ZWORD($AAD_HASH)]}", $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 `16*16 + 64*0`($T1),$ZT1 # ; Blocks 16-19
|
|
vmovdqu64 `16*16 + 64*1`($T1),$ZT2 # ; Blocks 20-23
|
|
vmovdqu64 `16*16 + 64*2`($T1),$ZT3 # ; Blocks 24-27
|
|
vmovdqu64 `16*16 + 64*3`($T1),$ZT4 # ; Blocks 28-31
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
&GHASH_16(
|
|
"mid", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
|
|
&HashKeyOffsetByIdx(32, "frame"), 0, "NO_HASH_IN_OUT", $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 `32*16 + 64*0`($T1),$ZT1 # ; Blocks 32-35
|
|
vmovdqu64 `32*16 + 64*1`($T1),$ZT2 # ; Blocks 36-39
|
|
vmovdqu64 `32*16 + 64*2`($T1),$ZT3 # ; Blocks 40-43
|
|
vmovdqu64 `32*16 + 64*3`($T1),$ZT4 # ; Blocks 44-47
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
&GHASH_16(
|
|
"end_reduce", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
|
|
&HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
sub \$`(48*16)`,$T2
|
|
je .L_CALC_AAD_done_${label_suffix}
|
|
|
|
add \$`(48*16)`,$T1
|
|
jmp .L_get_AAD_loop48x16_${label_suffix}
|
|
|
|
.L_exit_AAD_loop48x16_${label_suffix}:
|
|
# ; Less than 48x16 bytes remaining
|
|
cmp \$`(32*16)`,$T2
|
|
jl .L_less_than_32x16_${label_suffix}
|
|
___
|
|
|
|
$code .= <<___;
|
|
# ; Get next 16 blocks
|
|
vmovdqu64 `64*0`($T1),$ZT1
|
|
vmovdqu64 `64*1`($T1),$ZT2
|
|
vmovdqu64 `64*2`($T1),$ZT3
|
|
vmovdqu64 `64*3`($T1),$ZT4
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
&precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZT0, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT14, "first32");
|
|
$code .= "mov \$1,$HKEYS_READY\n";
|
|
|
|
&GHASH_16(
|
|
"start", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
|
|
&HashKeyOffsetByIdx(32, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 `16*16 + 64*0`($T1),$ZT1
|
|
vmovdqu64 `16*16 + 64*1`($T1),$ZT2
|
|
vmovdqu64 `16*16 + 64*2`($T1),$ZT3
|
|
vmovdqu64 `16*16 + 64*3`($T1),$ZT4
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
&GHASH_16(
|
|
"end_reduce", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", "%rsp",
|
|
&HashKeyOffsetByIdx(16, "frame"), 0, &ZWORD($AAD_HASH), $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
sub \$`(32*16)`,$T2
|
|
je .L_CALC_AAD_done_${label_suffix}
|
|
|
|
add \$`(32*16)`,$T1
|
|
jmp .L_less_than_16x16_${label_suffix}
|
|
|
|
.L_less_than_32x16_${label_suffix}:
|
|
cmp \$`(16*16)`,$T2
|
|
jl .L_less_than_16x16_${label_suffix}
|
|
# ; Get next 16 blocks
|
|
vmovdqu64 `64*0`($T1),$ZT1
|
|
vmovdqu64 `64*1`($T1),$ZT2
|
|
vmovdqu64 `64*2`($T1),$ZT3
|
|
vmovdqu64 `64*3`($T1),$ZT4
|
|
vpshufb $SHFMSK,$ZT1,$ZT1
|
|
vpshufb $SHFMSK,$ZT2,$ZT2
|
|
vpshufb $SHFMSK,$ZT3,$ZT3
|
|
vpshufb $SHFMSK,$ZT4,$ZT4
|
|
___
|
|
|
|
# ; This code path does not use more than 16 hkeys, so they can be taken from the context
|
|
# ; (not from the stack storage)
|
|
&GHASH_16(
|
|
"start_reduce", $ZT5, $ZT6, $ZT7,
|
|
"NO_INPUT_PTR", "NO_INPUT_PTR", "NO_INPUT_PTR", $GCM128_CTX,
|
|
&HashKeyOffsetByIdx(16, "context"), 0, &ZWORD($AAD_HASH), $ZT0,
|
|
$ZT8, $ZT9, $ZT10, $ZT11,
|
|
$ZT12, $ZT14, $ZT15, $ZT16,
|
|
"NO_ZMM", $ZT1, $ZT2, $ZT3,
|
|
$ZT4);
|
|
|
|
$code .= <<___;
|
|
sub \$`(16*16)`,$T2
|
|
je .L_CALC_AAD_done_${label_suffix}
|
|
|
|
add \$`(16*16)`,$T1
|
|
# ; Less than 16x16 bytes remaining
|
|
.L_less_than_16x16_${label_suffix}:
|
|
# ;; prep mask source address
|
|
lea byte64_len_to_mask_table(%rip),$T3
|
|
lea ($T3,$T2,8),$T3
|
|
|
|
# ;; calculate number of blocks to ghash (including partial bytes)
|
|
add \$15,@{[DWORD($T2)]}
|
|
shr \$4,@{[DWORD($T2)]}
|
|
cmp \$2,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_1_${label_suffix}
|
|
je .L_AAD_blocks_2_${label_suffix}
|
|
cmp \$4,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_3_${label_suffix}
|
|
je .L_AAD_blocks_4_${label_suffix}
|
|
cmp \$6,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_5_${label_suffix}
|
|
je .L_AAD_blocks_6_${label_suffix}
|
|
cmp \$8,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_7_${label_suffix}
|
|
je .L_AAD_blocks_8_${label_suffix}
|
|
cmp \$10,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_9_${label_suffix}
|
|
je .L_AAD_blocks_10_${label_suffix}
|
|
cmp \$12,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_11_${label_suffix}
|
|
je .L_AAD_blocks_12_${label_suffix}
|
|
cmp \$14,@{[DWORD($T2)]}
|
|
jb .L_AAD_blocks_13_${label_suffix}
|
|
je .L_AAD_blocks_14_${label_suffix}
|
|
cmp \$15,@{[DWORD($T2)]}
|
|
je .L_AAD_blocks_15_${label_suffix}
|
|
___
|
|
|
|
# ;; fall through for 16 blocks
|
|
|
|
# ;; The flow of each of these cases is identical:
|
|
# ;; - load blocks plain text
|
|
# ;; - shuffle loaded blocks
|
|
# ;; - xor in current hash value into block 0
|
|
# ;; - perform up multiplications with ghash keys
|
|
# ;; - jump to reduction code
|
|
|
|
for (my $aad_blocks = 16; $aad_blocks > 0; $aad_blocks--) {
|
|
$code .= ".L_AAD_blocks_${aad_blocks}_${label_suffix}:\n";
|
|
if ($aad_blocks > 12) {
|
|
$code .= "sub \$`12*16*8`, $T3\n";
|
|
} elsif ($aad_blocks > 8) {
|
|
$code .= "sub \$`8*16*8`, $T3\n";
|
|
} elsif ($aad_blocks > 4) {
|
|
$code .= "sub \$`4*16*8`, $T3\n";
|
|
}
|
|
$code .= "kmovq ($T3),$MASKREG\n";
|
|
|
|
&ZMM_LOAD_MASKED_BLOCKS_0_16($aad_blocks, $T1, 0, $ZT1, $ZT2, $ZT3, $ZT4, $MASKREG);
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16($aad_blocks, "vpshufb", $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT1, $ZT2, $ZT3, $ZT4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
|
|
|
|
&GHASH_1_TO_16($GCM128_CTX, &ZWORD($AAD_HASH),
|
|
$ZT0, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, &ZWORD($AAD_HASH), $ZT1, $ZT2, $ZT3, $ZT4, $aad_blocks);
|
|
|
|
if ($aad_blocks > 1) {
|
|
|
|
# ;; fall through to CALC_AAD_done in 1 block case
|
|
$code .= "jmp .L_CALC_AAD_done_${label_suffix}\n";
|
|
}
|
|
|
|
}
|
|
$code .= ".L_CALC_AAD_done_${label_suffix}:\n";
|
|
|
|
# ;; result in AAD_HASH
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; PARTIAL_BLOCK
|
|
# ;; Handles encryption/decryption and the tag partial blocks between
|
|
# ;; update calls.
|
|
# ;; Requires the input data be at least 1 byte long.
|
|
# ;; Output:
|
|
# ;; A cipher/plain of the first partial block (CIPH_PLAIN_OUT),
|
|
# ;; AAD_HASH and updated GCM128_CTX
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub PARTIAL_BLOCK {
|
|
my $GCM128_CTX = $_[0]; # [in] key pointer
|
|
my $PBLOCK_LEN = $_[1]; # [in] partial block length
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer
|
|
my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
|
|
my $DATA_OFFSET = $_[5]; # [out] data offset (gets set)
|
|
my $AAD_HASH = $_[6]; # [out] updated GHASH value
|
|
my $ENC_DEC = $_[7]; # [in] cipher direction
|
|
my $GPTMP0 = $_[8]; # [clobbered] GP temporary register
|
|
my $GPTMP1 = $_[9]; # [clobbered] GP temporary register
|
|
my $GPTMP2 = $_[10]; # [clobbered] GP temporary register
|
|
my $ZTMP0 = $_[11]; # [clobbered] ZMM temporary register
|
|
my $ZTMP1 = $_[12]; # [clobbered] ZMM temporary register
|
|
my $ZTMP2 = $_[13]; # [clobbered] ZMM temporary register
|
|
my $ZTMP3 = $_[14]; # [clobbered] ZMM temporary register
|
|
my $ZTMP4 = $_[15]; # [clobbered] ZMM temporary register
|
|
my $ZTMP5 = $_[16]; # [clobbered] ZMM temporary register
|
|
my $ZTMP6 = $_[17]; # [clobbered] ZMM temporary register
|
|
my $ZTMP7 = $_[18]; # [clobbered] ZMM temporary register
|
|
my $MASKREG = $_[19]; # [clobbered] mask temporary register
|
|
|
|
my $XTMP0 = &XWORD($ZTMP0);
|
|
my $XTMP1 = &XWORD($ZTMP1);
|
|
my $XTMP2 = &XWORD($ZTMP2);
|
|
my $XTMP3 = &XWORD($ZTMP3);
|
|
my $XTMP4 = &XWORD($ZTMP4);
|
|
my $XTMP5 = &XWORD($ZTMP5);
|
|
my $XTMP6 = &XWORD($ZTMP6);
|
|
my $XTMP7 = &XWORD($ZTMP7);
|
|
|
|
my $LENGTH = $DATA_OFFSET;
|
|
my $IA0 = $GPTMP1;
|
|
my $IA1 = $GPTMP2;
|
|
my $IA2 = $GPTMP0;
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
# ;; if no partial block present then LENGTH/DATA_OFFSET will be set to zero
|
|
mov ($PBLOCK_LEN),$LENGTH
|
|
or $LENGTH,$LENGTH
|
|
je .L_partial_block_done_${label_suffix} # ;Leave Macro if no partial blocks
|
|
___
|
|
|
|
&READ_SMALL_DATA_INPUT($XTMP0, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $IA0, $IA2, $MASKREG);
|
|
|
|
$code .= <<___;
|
|
# ;; XTMP1 = my_ctx_data.partial_block_enc_key
|
|
vmovdqu64 $CTX_OFFSET_PEncBlock($GCM128_CTX),$XTMP1
|
|
vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},$XTMP2
|
|
|
|
# ;; adjust the shuffle mask pointer to be able to shift right $LENGTH bytes
|
|
# ;; (16 - $LENGTH) is the number of bytes in plaintext mod 16)
|
|
lea SHIFT_MASK(%rip),$IA0
|
|
add $LENGTH,$IA0
|
|
vmovdqu64 ($IA0),$XTMP3 # ; shift right shuffle mask
|
|
vpshufb $XTMP3,$XTMP1,$XTMP1
|
|
___
|
|
|
|
if ($ENC_DEC eq "DEC") {
|
|
$code .= <<___;
|
|
# ;; keep copy of cipher text in $XTMP4
|
|
vmovdqa64 $XTMP0,$XTMP4
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
vpxorq $XTMP0,$XTMP1,$XTMP1 # ; Ciphertext XOR E(K, Yn)
|
|
# ;; Set $IA1 to be the amount of data left in CIPH_PLAIN_IN after filling the block
|
|
# ;; Determine if partial block is not being filled and shift mask accordingly
|
|
___
|
|
if ($win64) {
|
|
$code .= <<___;
|
|
mov $PLAIN_CIPH_LEN,$IA1
|
|
add $LENGTH,$IA1
|
|
___
|
|
} else {
|
|
$code .= "lea ($PLAIN_CIPH_LEN, $LENGTH, 1),$IA1\n";
|
|
}
|
|
$code .= <<___;
|
|
sub \$16,$IA1
|
|
jge .L_no_extra_mask_${label_suffix}
|
|
sub $IA1,$IA0
|
|
.L_no_extra_mask_${label_suffix}:
|
|
# ;; get the appropriate mask to mask out bottom $LENGTH bytes of $XTMP1
|
|
# ;; - mask out bottom $LENGTH bytes of $XTMP1
|
|
# ;; sizeof(SHIFT_MASK) == 16 bytes
|
|
vmovdqu64 16($IA0),$XTMP0
|
|
vpand $XTMP0,$XTMP1,$XTMP1
|
|
___
|
|
|
|
if ($ENC_DEC eq "DEC") {
|
|
$code .= <<___;
|
|
vpand $XTMP0,$XTMP4,$XTMP4
|
|
vpshufb SHUF_MASK(%rip),$XTMP4,$XTMP4
|
|
vpshufb $XTMP3,$XTMP4,$XTMP4
|
|
vpxorq $XTMP4,$AAD_HASH,$AAD_HASH
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1
|
|
vpshufb $XTMP3,$XTMP1,$XTMP1
|
|
vpxorq $XTMP1,$AAD_HASH,$AAD_HASH
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
cmp \$0,$IA1
|
|
jl .L_partial_incomplete_${label_suffix}
|
|
___
|
|
|
|
# ;; GHASH computation for the last <16 Byte block
|
|
&GHASH_MUL($AAD_HASH, $XTMP2, $XTMP5, $XTMP6, $XTMP7);
|
|
|
|
$code .= <<___;
|
|
movq \$0, ($PBLOCK_LEN)
|
|
# ;; Set $LENGTH to be the number of bytes to write out
|
|
mov $LENGTH,$IA0
|
|
mov \$16,$LENGTH
|
|
sub $IA0,$LENGTH
|
|
jmp .L_enc_dec_done_${label_suffix}
|
|
|
|
.L_partial_incomplete_${label_suffix}:
|
|
___
|
|
if ($win64) {
|
|
$code .= <<___;
|
|
mov $PLAIN_CIPH_LEN,$IA0
|
|
add $IA0,($PBLOCK_LEN)
|
|
___
|
|
} else {
|
|
$code .= "add $PLAIN_CIPH_LEN,($PBLOCK_LEN)\n";
|
|
}
|
|
$code .= <<___;
|
|
mov $PLAIN_CIPH_LEN,$LENGTH
|
|
|
|
.L_enc_dec_done_${label_suffix}:
|
|
# ;; output encrypted Bytes
|
|
|
|
lea byte_len_to_mask_table(%rip),$IA0
|
|
kmovw ($IA0,$LENGTH,2),$MASKREG
|
|
vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX)
|
|
___
|
|
|
|
if ($ENC_DEC eq "ENC") {
|
|
$code .= <<___;
|
|
# ;; shuffle XTMP1 back to output as ciphertext
|
|
vpshufb SHUF_MASK(%rip),$XTMP1,$XTMP1
|
|
vpshufb $XTMP3,$XTMP1,$XTMP1
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
mov $CIPH_PLAIN_OUT,$IA0
|
|
vmovdqu8 $XTMP1,($IA0){$MASKREG}
|
|
.L_partial_block_done_${label_suffix}:
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; Ciphers 1 to 16 blocks and prepares them for later GHASH compute operation
|
|
sub INITIAL_BLOCKS_PARTIAL_CIPHER {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer
|
|
my $LENGTH = $_[4]; # [in/clobbered] length in bytes
|
|
my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated)
|
|
my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
|
|
my $CTR = $_[7]; # [in/out] current counter value
|
|
my $ENC_DEC = $_[8]; # [in] cipher direction (ENC/DEC)
|
|
my $DAT0 = $_[9]; # [out] ZMM with cipher text shuffled for GHASH
|
|
my $DAT1 = $_[10]; # [out] ZMM with cipher text shuffled for GHASH
|
|
my $DAT2 = $_[11]; # [out] ZMM with cipher text shuffled for GHASH
|
|
my $DAT3 = $_[12]; # [out] ZMM with cipher text shuffled for GHASH
|
|
my $LAST_CIPHER_BLK = $_[13]; # [out] XMM to put ciphered counter block partially xor'ed with text
|
|
my $LAST_GHASH_BLK = $_[14]; # [out] XMM to put last cipher text block shuffled for GHASH
|
|
my $CTR0 = $_[15]; # [clobbered] ZMM temporary
|
|
my $CTR1 = $_[16]; # [clobbered] ZMM temporary
|
|
my $CTR2 = $_[17]; # [clobbered] ZMM temporary
|
|
my $CTR3 = $_[18]; # [clobbered] ZMM temporary
|
|
my $ZT1 = $_[19]; # [clobbered] ZMM temporary
|
|
my $IA0 = $_[20]; # [clobbered] GP temporary
|
|
my $IA1 = $_[21]; # [clobbered] GP temporary
|
|
my $MASKREG = $_[22]; # [clobbered] mask register
|
|
my $SHUFMASK = $_[23]; # [out] ZMM loaded with BE/LE shuffle mask
|
|
|
|
if ($NUM_BLOCKS == 1) {
|
|
$code .= "vmovdqa64 SHUF_MASK(%rip),@{[XWORD($SHUFMASK)]}\n";
|
|
} elsif ($NUM_BLOCKS == 2) {
|
|
$code .= "vmovdqa64 SHUF_MASK(%rip),@{[YWORD($SHUFMASK)]}\n";
|
|
} else {
|
|
$code .= "vmovdqa64 SHUF_MASK(%rip),$SHUFMASK\n";
|
|
}
|
|
|
|
# ;; prepare AES counter blocks
|
|
if ($NUM_BLOCKS == 1) {
|
|
$code .= "vpaddd ONE(%rip),$CTR,@{[XWORD($CTR0)]}\n";
|
|
} elsif ($NUM_BLOCKS == 2) {
|
|
$code .= <<___;
|
|
vshufi64x2 \$0,@{[YWORD($CTR)]},@{[YWORD($CTR)]},@{[YWORD($CTR0)]}
|
|
vpaddd ddq_add_1234(%rip),@{[YWORD($CTR0)]},@{[YWORD($CTR0)]}
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vshufi64x2 \$0,@{[ZWORD($CTR)]},@{[ZWORD($CTR)]},@{[ZWORD($CTR)]}
|
|
vpaddd ddq_add_1234(%rip),@{[ZWORD($CTR)]},$CTR0
|
|
___
|
|
if ($NUM_BLOCKS > 4) {
|
|
$code .= "vpaddd ddq_add_5678(%rip),@{[ZWORD($CTR)]},$CTR1\n";
|
|
}
|
|
if ($NUM_BLOCKS > 8) {
|
|
$code .= "vpaddd ddq_add_8888(%rip),$CTR0,$CTR2\n";
|
|
}
|
|
if ($NUM_BLOCKS > 12) {
|
|
$code .= "vpaddd ddq_add_8888(%rip),$CTR1,$CTR3\n";
|
|
}
|
|
}
|
|
|
|
# ;; get load/store mask
|
|
$code .= <<___;
|
|
lea byte64_len_to_mask_table(%rip),$IA0
|
|
mov $LENGTH,$IA1
|
|
___
|
|
if ($NUM_BLOCKS > 12) {
|
|
$code .= "sub \$`3*64`,$IA1\n";
|
|
} elsif ($NUM_BLOCKS > 8) {
|
|
$code .= "sub \$`2*64`,$IA1\n";
|
|
} elsif ($NUM_BLOCKS > 4) {
|
|
$code .= "sub \$`1*64`,$IA1\n";
|
|
}
|
|
$code .= "kmovq ($IA0,$IA1,8),$MASKREG\n";
|
|
|
|
# ;; extract new counter value
|
|
# ;; shuffle the counters for AES rounds
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$CTR\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$CTR\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$CTR\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$CTR\n";
|
|
}
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $CTR0, $CTR1, $CTR2, $CTR3, $CTR0,
|
|
$CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
|
|
|
|
# ;; load plain/cipher text
|
|
&ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DAT0, $DAT1, $DAT2, $DAT3, $MASKREG);
|
|
|
|
# ;; AES rounds and XOR with plain/cipher text
|
|
foreach my $j (0 .. ($NROUNDS + 1)) {
|
|
$code .= "vbroadcastf64x2 `($j * 16)`($AES_KEYS),$ZT1\n";
|
|
&ZMM_AESENC_ROUND_BLOCKS_0_16($CTR0, $CTR1, $CTR2, $CTR3, $ZT1, $j,
|
|
$DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $NROUNDS);
|
|
}
|
|
|
|
# ;; retrieve the last cipher counter block (partially XOR'ed with text)
|
|
# ;; - this is needed for partial block cases
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$CTR0,$LAST_CIPHER_BLK\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$CTR1,$LAST_CIPHER_BLK\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$CTR2,$LAST_CIPHER_BLK\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$CTR3,$LAST_CIPHER_BLK\n";
|
|
}
|
|
|
|
# ;; write cipher/plain text back to output and
|
|
$code .= "mov $CIPH_PLAIN_OUT,$IA0\n";
|
|
&ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $CTR0, $CTR1, $CTR2, $CTR3, $MASKREG);
|
|
|
|
# ;; zero bytes outside the mask before hashing
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vmovdqu8 $CTR0,${CTR0}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vmovdqu8 $CTR1,${CTR1}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vmovdqu8 $CTR2,${CTR2}{$MASKREG}{z}\n";
|
|
} else {
|
|
$code .= "vmovdqu8 $CTR3,${CTR3}{$MASKREG}{z}\n";
|
|
}
|
|
|
|
# ;; Shuffle the cipher text blocks for hashing part
|
|
# ;; ZT5 and ZT6 are expected outputs with blocks for hashing
|
|
if ($ENC_DEC eq "DEC") {
|
|
|
|
# ;; Decrypt case
|
|
# ;; - cipher blocks are in ZT5 & ZT6
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $DAT0,
|
|
$DAT1, $DAT2, $DAT3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
|
|
} else {
|
|
|
|
# ;; Encrypt case
|
|
# ;; - cipher blocks are in CTR0-CTR3
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $DAT0, $DAT1, $DAT2, $DAT3, $CTR0,
|
|
$CTR1, $CTR2, $CTR3, $SHUFMASK, $SHUFMASK, $SHUFMASK, $SHUFMASK);
|
|
}
|
|
|
|
# ;; Extract the last block for partials and multi_call cases
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DAT0,$LAST_GHASH_BLK\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DAT1,$LAST_GHASH_BLK\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DAT2,$LAST_GHASH_BLK\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DAT3,$LAST_GHASH_BLK\n";
|
|
}
|
|
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; Computes GHASH on 1 to 16 blocks
|
|
sub INITIAL_BLOCKS_PARTIAL_GHASH {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $LENGTH = $_[2]; # [in/clobbered] length in bytes
|
|
my $NUM_BLOCKS = $_[3]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
|
|
my $HASH_IN_OUT = $_[4]; # [in/out] XMM ghash in/out value
|
|
my $ENC_DEC = $_[5]; # [in] cipher direction (ENC/DEC)
|
|
my $DAT0 = $_[6]; # [in] ZMM with cipher text shuffled for GHASH
|
|
my $DAT1 = $_[7]; # [in] ZMM with cipher text shuffled for GHASH
|
|
my $DAT2 = $_[8]; # [in] ZMM with cipher text shuffled for GHASH
|
|
my $DAT3 = $_[9]; # [in] ZMM with cipher text shuffled for GHASH
|
|
my $LAST_CIPHER_BLK = $_[10]; # [in] XMM with ciphered counter block partially xor'ed with text
|
|
my $LAST_GHASH_BLK = $_[11]; # [in] XMM with last cipher text block shuffled for GHASH
|
|
my $ZT0 = $_[12]; # [clobbered] ZMM temporary
|
|
my $ZT1 = $_[13]; # [clobbered] ZMM temporary
|
|
my $ZT2 = $_[14]; # [clobbered] ZMM temporary
|
|
my $ZT3 = $_[15]; # [clobbered] ZMM temporary
|
|
my $ZT4 = $_[16]; # [clobbered] ZMM temporary
|
|
my $ZT5 = $_[17]; # [clobbered] ZMM temporary
|
|
my $ZT6 = $_[18]; # [clobbered] ZMM temporary
|
|
my $ZT7 = $_[19]; # [clobbered] ZMM temporary
|
|
my $ZT8 = $_[20]; # [clobbered] ZMM temporary
|
|
my $PBLOCK_LEN = $_[21]; # [in] partial block length
|
|
my $GH = $_[22]; # [in] ZMM with hi product part
|
|
my $GM = $_[23]; # [in] ZMM with mid product part
|
|
my $GL = $_[24]; # [in] ZMM with lo product part
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; - Hash all but the last partial block of data
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
# ;; update data offset
|
|
if ($NUM_BLOCKS > 1) {
|
|
|
|
# ;; The final block of data may be <16B
|
|
$code .= "sub \$16 * ($NUM_BLOCKS - 1),$LENGTH\n";
|
|
}
|
|
|
|
if ($NUM_BLOCKS < 16) {
|
|
$code .= <<___;
|
|
# ;; NOTE: the 'jl' is always taken for num_initial_blocks = 16.
|
|
# ;; This is run in the context of GCM_ENC_DEC_SMALL for length < 256.
|
|
cmp \$16,$LENGTH
|
|
jl .L_small_initial_partial_block_${label_suffix}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Handle a full length final block - encrypt and hash all blocks
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
sub \$16,$LENGTH
|
|
movq \$0,($PBLOCK_LEN)
|
|
___
|
|
|
|
# ;; Hash all of the data
|
|
if (scalar(@_) == 22) {
|
|
|
|
# ;; start GHASH compute
|
|
&GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS);
|
|
} elsif (scalar(@_) == 25) {
|
|
|
|
# ;; continue GHASH compute
|
|
&GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $NUM_BLOCKS, $GH, $GM, $GL);
|
|
}
|
|
$code .= "jmp .L_small_initial_compute_done_${label_suffix}\n";
|
|
}
|
|
|
|
$code .= <<___;
|
|
.L_small_initial_partial_block_${label_suffix}:
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Handle ghash for a <16B final block
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
# ;; As it's an init / update / finalize series we need to leave the
|
|
# ;; last block if it's less than a full block of data.
|
|
|
|
mov $LENGTH,($PBLOCK_LEN)
|
|
vmovdqu64 $LAST_CIPHER_BLK,$CTX_OFFSET_PEncBlock($GCM128_CTX)
|
|
___
|
|
|
|
my $k = ($NUM_BLOCKS - 1);
|
|
my $last_block_to_hash = 1;
|
|
if (($NUM_BLOCKS > $last_block_to_hash)) {
|
|
|
|
# ;; ZT12-ZT20 - temporary registers
|
|
if (scalar(@_) == 22) {
|
|
|
|
# ;; start GHASH compute
|
|
&GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k);
|
|
} elsif (scalar(@_) == 25) {
|
|
|
|
# ;; continue GHASH compute
|
|
&GHASH_1_TO_16($GCM128_CTX, $HASH_IN_OUT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT5, $ZT6, $ZT7, $ZT8, &ZWORD($HASH_IN_OUT), $DAT0, $DAT1, $DAT2, $DAT3, $k, $GH, $GM, $GL);
|
|
}
|
|
|
|
# ;; just fall through no jmp needed
|
|
} else {
|
|
|
|
if (scalar(@_) == 25) {
|
|
$code .= <<___;
|
|
# ;; Reduction is required in this case.
|
|
# ;; Integrate GM into GH and GL.
|
|
vpsrldq \$8,$GM,$ZT0
|
|
vpslldq \$8,$GM,$ZT1
|
|
vpxorq $ZT0,$GH,$GH
|
|
vpxorq $ZT1,$GL,$GL
|
|
___
|
|
|
|
# ;; Add GH and GL 128-bit words horizontally
|
|
&VHPXORI4x128($GH, $ZT0);
|
|
&VHPXORI4x128($GL, $ZT1);
|
|
|
|
# ;; 256-bit to 128-bit reduction
|
|
$code .= "vmovdqa64 POLY2(%rip),@{[XWORD($ZT0)]}\n";
|
|
&VCLMUL_REDUCE(&XWORD($HASH_IN_OUT), &XWORD($ZT0), &XWORD($GH), &XWORD($GL), &XWORD($ZT1), &XWORD($ZT2));
|
|
}
|
|
$code .= <<___;
|
|
# ;; Record that a reduction is not needed -
|
|
# ;; In this case no hashes are computed because there
|
|
# ;; is only one initial block and it is < 16B in length.
|
|
# ;; We only need to check if a reduction is needed if
|
|
# ;; initial_blocks == 1 and init/update/final is being used.
|
|
# ;; In this case we may just have a partial block, and that
|
|
# ;; gets hashed in finalize.
|
|
|
|
# ;; The hash should end up in HASH_IN_OUT.
|
|
# ;; The only way we should get here is if there is
|
|
# ;; a partial block of data, so xor that into the hash.
|
|
vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT
|
|
# ;; The result is in $HASH_IN_OUT
|
|
jmp .L_after_reduction_${label_suffix}
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; After GHASH reduction
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
$code .= ".L_small_initial_compute_done_${label_suffix}:\n";
|
|
|
|
# ;; If using init/update/finalize, we need to xor any partial block data
|
|
# ;; into the hash.
|
|
if ($NUM_BLOCKS > 1) {
|
|
|
|
# ;; NOTE: for $NUM_BLOCKS = 0 the xor never takes place
|
|
if ($NUM_BLOCKS != 16) {
|
|
$code .= <<___;
|
|
# ;; NOTE: for $NUM_BLOCKS = 16, $LENGTH, stored in [PBlockLen] is never zero
|
|
or $LENGTH,$LENGTH
|
|
je .L_after_reduction_${label_suffix}
|
|
___
|
|
}
|
|
$code .= "vpxorq $LAST_GHASH_BLK,$HASH_IN_OUT,$HASH_IN_OUT\n";
|
|
}
|
|
|
|
$code .= ".L_after_reduction_${label_suffix}:\n";
|
|
|
|
# ;; Final hash is now in HASH_IN_OUT
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; INITIAL_BLOCKS_PARTIAL macro with support for a partial final block.
|
|
# ;; It may look similar to INITIAL_BLOCKS but its usage is different:
|
|
# ;; - first encrypts/decrypts required number of blocks and then
|
|
# ;; ghashes these blocks
|
|
# ;; - Small packets or left over data chunks (<256 bytes)
|
|
# ;; - Remaining data chunks below 256 bytes (multi buffer code)
|
|
# ;;
|
|
# ;; num_initial_blocks is expected to include the partial final block
|
|
# ;; in the count.
|
|
sub INITIAL_BLOCKS_PARTIAL {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] text output pointer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] text input pointer
|
|
my $LENGTH = $_[4]; # [in/clobbered] length in bytes
|
|
my $DATA_OFFSET = $_[5]; # [in/out] current data offset (updated)
|
|
my $NUM_BLOCKS = $_[6]; # [in] can only be 1, 2, 3, 4, 5, ..., 15 or 16 (not 0)
|
|
my $CTR = $_[7]; # [in/out] current counter value
|
|
my $HASH_IN_OUT = $_[8]; # [in/out] XMM ghash in/out value
|
|
my $ENC_DEC = $_[9]; # [in] cipher direction (ENC/DEC)
|
|
my $CTR0 = $_[10]; # [clobbered] ZMM temporary
|
|
my $CTR1 = $_[11]; # [clobbered] ZMM temporary
|
|
my $CTR2 = $_[12]; # [clobbered] ZMM temporary
|
|
my $CTR3 = $_[13]; # [clobbered] ZMM temporary
|
|
my $DAT0 = $_[14]; # [clobbered] ZMM temporary
|
|
my $DAT1 = $_[15]; # [clobbered] ZMM temporary
|
|
my $DAT2 = $_[16]; # [clobbered] ZMM temporary
|
|
my $DAT3 = $_[17]; # [clobbered] ZMM temporary
|
|
my $LAST_CIPHER_BLK = $_[18]; # [clobbered] ZMM temporary
|
|
my $LAST_GHASH_BLK = $_[19]; # [clobbered] ZMM temporary
|
|
my $ZT0 = $_[20]; # [clobbered] ZMM temporary
|
|
my $ZT1 = $_[21]; # [clobbered] ZMM temporary
|
|
my $ZT2 = $_[22]; # [clobbered] ZMM temporary
|
|
my $ZT3 = $_[23]; # [clobbered] ZMM temporary
|
|
my $ZT4 = $_[24]; # [clobbered] ZMM temporary
|
|
my $IA0 = $_[25]; # [clobbered] GP temporary
|
|
my $IA1 = $_[26]; # [clobbered] GP temporary
|
|
my $MASKREG = $_[27]; # [clobbered] mask register
|
|
my $SHUFMASK = $_[28]; # [clobbered] ZMM for BE/LE shuffle mask
|
|
my $PBLOCK_LEN = $_[29]; # [in] partial block length
|
|
|
|
&INITIAL_BLOCKS_PARTIAL_CIPHER(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN,
|
|
$LENGTH, $DATA_OFFSET, $NUM_BLOCKS, $CTR,
|
|
$ENC_DEC, $DAT0, $DAT1, $DAT2,
|
|
$DAT3, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK), $CTR0,
|
|
$CTR1, $CTR2, $CTR3, $ZT0,
|
|
$IA0, $IA1, $MASKREG, $SHUFMASK);
|
|
|
|
&INITIAL_BLOCKS_PARTIAL_GHASH($AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS, $HASH_IN_OUT, $ENC_DEC, $DAT0,
|
|
$DAT1, $DAT2, $DAT3, &XWORD($LAST_CIPHER_BLK),
|
|
&XWORD($LAST_GHASH_BLK), $CTR0, $CTR1, $CTR2, $CTR3, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $PBLOCK_LEN);
|
|
}
|
|
|
|
# ;; ===========================================================================
|
|
# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks
|
|
# ;; followed with GHASH of the N blocks.
|
|
sub GHASH_16_ENCRYPT_N_GHASH_N {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer
|
|
my $DATA_OFFSET = $_[4]; # [in] data offset
|
|
my $LENGTH = $_[5]; # [in] data length
|
|
my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian
|
|
my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check
|
|
my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key
|
|
# (can be in form of register or numerical value)
|
|
my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in
|
|
my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb
|
|
my $B00_03 = $_[11]; # [clobbered] temporary ZMM
|
|
my $B04_07 = $_[12]; # [clobbered] temporary ZMM
|
|
my $B08_11 = $_[13]; # [clobbered] temporary ZMM
|
|
my $B12_15 = $_[14]; # [clobbered] temporary ZMM
|
|
my $GH1H_UNUSED = $_[15]; # [clobbered] temporary ZMM
|
|
my $GH1L = $_[16]; # [clobbered] temporary ZMM
|
|
my $GH1M = $_[17]; # [clobbered] temporary ZMM
|
|
my $GH1T = $_[18]; # [clobbered] temporary ZMM
|
|
my $GH2H = $_[19]; # [clobbered] temporary ZMM
|
|
my $GH2L = $_[20]; # [clobbered] temporary ZMM
|
|
my $GH2M = $_[21]; # [clobbered] temporary ZMM
|
|
my $GH2T = $_[22]; # [clobbered] temporary ZMM
|
|
my $GH3H = $_[23]; # [clobbered] temporary ZMM
|
|
my $GH3L = $_[24]; # [clobbered] temporary ZMM
|
|
my $GH3M = $_[25]; # [clobbered] temporary ZMM
|
|
my $GH3T = $_[26]; # [clobbered] temporary ZMM
|
|
my $AESKEY1 = $_[27]; # [clobbered] temporary ZMM
|
|
my $AESKEY2 = $_[28]; # [clobbered] temporary ZMM
|
|
my $GHKEY1 = $_[29]; # [clobbered] temporary ZMM
|
|
my $GHKEY2 = $_[30]; # [clobbered] temporary ZMM
|
|
my $GHDAT1 = $_[31]; # [clobbered] temporary ZMM
|
|
my $GHDAT2 = $_[32]; # [clobbered] temporary ZMM
|
|
my $ZT01 = $_[33]; # [clobbered] temporary ZMM
|
|
my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian
|
|
my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
|
|
my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce"
|
|
my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum
|
|
my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum
|
|
my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum
|
|
my $ENC_DEC = $_[40]; # [in] cipher direction
|
|
my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value
|
|
my $IA0 = $_[42]; # [clobbered] GP temporary
|
|
my $IA1 = $_[43]; # [clobbered] GP temporary
|
|
my $MASKREG = $_[44]; # [clobbered] mask register
|
|
my $NUM_BLOCKS = $_[45]; # [in] numerical value with number of blocks to be encrypted/ghashed (1 to 16)
|
|
my $PBLOCK_LEN = $_[46]; # [in] partial block length
|
|
|
|
die "GHASH_16_ENCRYPT_N_GHASH_N: num_blocks is out of bounds = $NUM_BLOCKS\n"
|
|
if ($NUM_BLOCKS > 16 || $NUM_BLOCKS < 0);
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
my $GH1H = $HASH_IN_OUT;
|
|
|
|
# ; this is to avoid additional move in do_reduction case
|
|
|
|
my $LAST_GHASH_BLK = $GH1L;
|
|
my $LAST_CIPHER_BLK = $GH1T;
|
|
|
|
my $RED_POLY = $GH2T;
|
|
my $RED_P1 = $GH2L;
|
|
my $RED_T1 = $GH2H;
|
|
my $RED_T2 = $GH2M;
|
|
|
|
my $DATA1 = $GH3H;
|
|
my $DATA2 = $GH3L;
|
|
my $DATA3 = $GH3M;
|
|
my $DATA4 = $GH3T;
|
|
|
|
# ;; do reduction after the 16 blocks ?
|
|
my $do_reduction = 0;
|
|
|
|
# ;; is 16 block chunk a start?
|
|
my $is_start = 0;
|
|
|
|
if ($GHASH_TYPE eq "start_reduce") {
|
|
$is_start = 1;
|
|
$do_reduction = 1;
|
|
}
|
|
|
|
if ($GHASH_TYPE eq "start") {
|
|
$is_start = 1;
|
|
}
|
|
|
|
if ($GHASH_TYPE eq "end_reduce") {
|
|
$do_reduction = 1;
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; - get load/store mask
|
|
# ;; - load plain/cipher text
|
|
# ;; get load/store mask
|
|
$code .= <<___;
|
|
lea byte64_len_to_mask_table(%rip),$IA0
|
|
mov $LENGTH,$IA1
|
|
___
|
|
if ($NUM_BLOCKS > 12) {
|
|
$code .= "sub \$`3*64`,$IA1\n";
|
|
} elsif ($NUM_BLOCKS > 8) {
|
|
$code .= "sub \$`2*64`,$IA1\n";
|
|
} elsif ($NUM_BLOCKS > 4) {
|
|
$code .= "sub \$`1*64`,$IA1\n";
|
|
}
|
|
$code .= "kmovq ($IA0,$IA1,8),$MASKREG\n";
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; prepare counter blocks
|
|
|
|
$code .= <<___;
|
|
cmp \$`(256 - $NUM_BLOCKS)`,@{[DWORD($CTR_CHECK)]}
|
|
jae .L_16_blocks_overflow_${label_suffix}
|
|
___
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpaddd", $B00_03, $B04_07, $B08_11, $B12_15, $CTR_BE,
|
|
$B00_03, $B04_07, $B08_11, $ADDBE_1234, $ADDBE_4x4, $ADDBE_4x4, $ADDBE_4x4);
|
|
$code .= <<___;
|
|
jmp .L_16_blocks_ok_${label_suffix}
|
|
|
|
.L_16_blocks_overflow_${label_suffix}:
|
|
vpshufb $SHFMSK,$CTR_BE,$CTR_BE
|
|
vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03
|
|
___
|
|
if ($NUM_BLOCKS > 4) {
|
|
$code .= <<___;
|
|
vmovdqa64 ddq_add_4444(%rip),$B12_15
|
|
vpaddd $B12_15,$B00_03,$B04_07
|
|
___
|
|
}
|
|
if ($NUM_BLOCKS > 8) {
|
|
$code .= "vpaddd $B12_15,$B04_07,$B08_11\n";
|
|
}
|
|
if ($NUM_BLOCKS > 12) {
|
|
$code .= "vpaddd $B12_15,$B08_11,$B12_15\n";
|
|
}
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
|
|
$code .= <<___;
|
|
.L_16_blocks_ok_${label_suffix}:
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; - pre-load constants
|
|
# ;; - add current hash into the 1st block
|
|
vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1
|
|
___
|
|
if ($is_start != 0) {
|
|
$code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$HASH_IN_OUT,$GHDAT1\n";
|
|
} else {
|
|
$code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n";
|
|
}
|
|
|
|
$code .= "vmovdqu64 @{[EffectiveAddress(\"%rsp\",$HASHKEY_OFFSET,0*64)]},$GHKEY1\n";
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; save counter for the next round
|
|
# ;; increment counter overflow check register
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($CTR_BE)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($CTR_BE)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($CTR_BE)]}\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($CTR_BE)]}\n";
|
|
}
|
|
$code .= "vshufi64x2 \$0b00000000,$CTR_BE,$CTR_BE,$CTR_BE\n";
|
|
|
|
$code .= <<___;
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; pre-load constants
|
|
vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2
|
|
vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,1*64)]},$GHKEY2
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; stitch AES rounds with GHASH
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 0 - ARK
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
$code .= <<___;
|
|
# ;;==================================================
|
|
# ;; GHASH 4 blocks (15 to 12)
|
|
vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0
|
|
vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0
|
|
vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1
|
|
vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,2*64)]},$GHKEY1
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 1
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
$code .= "vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2\n";
|
|
|
|
$code .= <<___;
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (11 to 8)
|
|
vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
|
|
vmovdqu64 @{[EffectiveAddress("%rsp",$HASHKEY_OFFSET,3*64)]},$GHKEY2
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 2
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
$code .= <<___;
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (7 to 4)
|
|
vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 3
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
$code .= "vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2\n";
|
|
|
|
$code .= <<___;
|
|
# ;; =================================================
|
|
# ;; Gather (XOR) GHASH for 12 blocks
|
|
vpternlogq \$0x96,$GH3H,$GH2H,$GH1H
|
|
vpternlogq \$0x96,$GH3L,$GH2L,$GH1L
|
|
vpternlogq \$0x96,$GH3T,$GH2T,$GH1T
|
|
vpternlogq \$0x96,$GH3M,$GH2M,$GH1M
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 4
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; load plain/cipher text
|
|
&ZMM_LOAD_MASKED_BLOCKS_0_16($NUM_BLOCKS, $PLAIN_CIPH_IN, $DATA_OFFSET, $DATA1, $DATA2, $DATA3, $DATA4, $MASKREG);
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 5
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
$code .= "vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2\n";
|
|
|
|
$code .= <<___;
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (3 to 0)
|
|
vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 6
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
# ;; =================================================
|
|
# ;; gather GHASH in GH1L (low), GH1H (high), GH1M (mid)
|
|
# ;; - add GH2[MTLH] to GH1[MTLH]
|
|
$code .= "vpternlogq \$0x96,$GH2T,$GH1T,$GH1M\n";
|
|
if ($do_reduction != 0) {
|
|
|
|
if ($is_start != 0) {
|
|
$code .= "vpxorq $GH2M,$GH1M,$GH1M\n";
|
|
} else {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2H,$TO_REDUCE_H,$GH1H
|
|
vpternlogq \$0x96,$GH2L,$TO_REDUCE_L,$GH1L
|
|
vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M
|
|
___
|
|
}
|
|
|
|
} else {
|
|
|
|
# ;; Update H/M/L hash sums if not carrying reduction
|
|
if ($is_start != 0) {
|
|
$code .= <<___;
|
|
vpxorq $GH2H,$GH1H,$TO_REDUCE_H
|
|
vpxorq $GH2L,$GH1L,$TO_REDUCE_L
|
|
vpxorq $GH2M,$GH1M,$TO_REDUCE_M
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H
|
|
vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L
|
|
vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M
|
|
___
|
|
}
|
|
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 7
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
$code .= "vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2\n";
|
|
|
|
# ;; =================================================
|
|
# ;; prepare mid sum for adding to high & low
|
|
# ;; load polynomial constant for reduction
|
|
if ($do_reduction != 0) {
|
|
$code .= <<___;
|
|
vpsrldq \$8,$GH1M,$GH2M
|
|
vpslldq \$8,$GH1M,$GH1M
|
|
|
|
vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]}
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 8
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
# ;; =================================================
|
|
# ;; Add mid product to high and low
|
|
if ($do_reduction != 0) {
|
|
if ($is_start != 0) {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64
|
|
vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vpxorq $GH2M,$GH1H,$GH1H # ; TH = TH1 + TM>>64
|
|
vpxorq $GH1M,$GH1L,$GH1L # ; TL = TL1 + TM<<64
|
|
___
|
|
}
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 9
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
|
|
# ;; =================================================
|
|
# ;; horizontal xor of low and high 4x128
|
|
if ($do_reduction != 0) {
|
|
&VHPXORI4x128($GH1H, $GH2H);
|
|
&VHPXORI4x128($GH1L, $GH2L);
|
|
}
|
|
|
|
if (($NROUNDS >= 11)) {
|
|
$code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n";
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; first phase of reduction
|
|
if ($do_reduction != 0) {
|
|
$code .= <<___;
|
|
vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]}
|
|
vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs
|
|
vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds up to 11 (AES192) or 13 (AES256)
|
|
# ;; AES128 is done
|
|
if (($NROUNDS >= 11)) {
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
if (($NROUNDS == 13)) {
|
|
$code .= "vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2\n";
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
$code .= "vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1\n";
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenc", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY2, $AESKEY2, $AESKEY2, $AESKEY2);
|
|
}
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; second phase of the reduction
|
|
if ($do_reduction != 0) {
|
|
$code .= <<___;
|
|
vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]}
|
|
vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R
|
|
vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]}
|
|
vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts
|
|
# ;; GH1H = GH1H + RED_T1 + RED_T2
|
|
vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]}
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; the last AES round
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vaesenclast", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $AESKEY1, $AESKEY1, $AESKEY1, $AESKEY1);
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; XOR against plain/cipher text
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpxorq", $B00_03, $B04_07, $B08_11, $B12_15, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $DATA1, $DATA2, $DATA3, $DATA4);
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; retrieve the last cipher counter block (partially XOR'ed with text)
|
|
# ;; - this is needed for partial block cases
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 1)`,$B00_03,@{[XWORD($LAST_CIPHER_BLK)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 5)`,$B04_07,@{[XWORD($LAST_CIPHER_BLK)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 9)`,$B08_11,@{[XWORD($LAST_CIPHER_BLK)]}\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS - 13)`,$B12_15,@{[XWORD($LAST_CIPHER_BLK)]}\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; store cipher/plain text
|
|
$code .= "mov $CIPH_PLAIN_OUT,$IA0\n";
|
|
&ZMM_STORE_MASKED_BLOCKS_0_16($NUM_BLOCKS, $IA0, $DATA_OFFSET, $B00_03, $B04_07, $B08_11, $B12_15, $MASKREG);
|
|
|
|
# ;; =================================================
|
|
# ;; shuffle cipher text blocks for GHASH computation
|
|
if ($ENC_DEC eq "ENC") {
|
|
|
|
# ;; zero bytes outside the mask before hashing
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vmovdqu8 $B00_03,${B00_03}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vmovdqu8 $B04_07,${B04_07}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vmovdqu8 $B08_11,${B08_11}{$MASKREG}{z}\n";
|
|
} else {
|
|
$code .= "vmovdqu8 $B12_15,${B12_15}{$MASKREG}{z}\n";
|
|
}
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $B00_03,
|
|
$B04_07, $B08_11, $B12_15, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
|
|
} else {
|
|
|
|
# ;; zero bytes outside the mask before hashing
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vmovdqu8 $DATA1,${DATA1}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vmovdqu8 $DATA2,${DATA2}{$MASKREG}{z}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vmovdqu8 $DATA3,${DATA3}{$MASKREG}{z}\n";
|
|
} else {
|
|
$code .= "vmovdqu8 $DATA4,${DATA4}{$MASKREG}{z}\n";
|
|
}
|
|
|
|
&ZMM_OPCODE3_DSTR_SRC1R_SRC2R_BLOCKS_0_16(
|
|
$NUM_BLOCKS, "vpshufb", $DATA1, $DATA2, $DATA3, $DATA4, $DATA1,
|
|
$DATA2, $DATA3, $DATA4, $SHFMSK, $SHFMSK, $SHFMSK, $SHFMSK);
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; Extract the last block for partial / multi_call cases
|
|
if ($NUM_BLOCKS <= 4) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-1)`,$DATA1,@{[XWORD($LAST_GHASH_BLK)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 8) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-5)`,$DATA2,@{[XWORD($LAST_GHASH_BLK)]}\n";
|
|
} elsif ($NUM_BLOCKS <= 12) {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-9)`,$DATA3,@{[XWORD($LAST_GHASH_BLK)]}\n";
|
|
} else {
|
|
$code .= "vextracti32x4 \$`($NUM_BLOCKS-13)`,$DATA4,@{[XWORD($LAST_GHASH_BLK)]}\n";
|
|
}
|
|
|
|
if ($do_reduction != 0) {
|
|
|
|
# ;; GH1H holds reduced hash value
|
|
# ;; - normally do "vmovdqa64 &XWORD($GH1H), &XWORD($HASH_IN_OUT)"
|
|
# ;; - register rename trick obsoletes the above move
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; GHASH last N blocks
|
|
# ;; - current hash value in HASH_IN_OUT or
|
|
# ;; product parts in TO_REDUCE_H/M/L
|
|
# ;; - DATA1-DATA4 include blocks for GHASH
|
|
|
|
if ($do_reduction == 0) {
|
|
&INITIAL_BLOCKS_PARTIAL_GHASH(
|
|
$AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS,
|
|
&XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2,
|
|
$DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK),
|
|
$B00_03, $B04_07, $B08_11, $B12_15,
|
|
$GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2,
|
|
$GHKEY1, $PBLOCK_LEN, $TO_REDUCE_H, $TO_REDUCE_M,
|
|
$TO_REDUCE_L);
|
|
} else {
|
|
&INITIAL_BLOCKS_PARTIAL_GHASH(
|
|
$AES_KEYS, $GCM128_CTX, $LENGTH, $NUM_BLOCKS,
|
|
&XWORD($HASH_IN_OUT), $ENC_DEC, $DATA1, $DATA2,
|
|
$DATA3, $DATA4, &XWORD($LAST_CIPHER_BLK), &XWORD($LAST_GHASH_BLK),
|
|
$B00_03, $B04_07, $B08_11, $B12_15,
|
|
$GHDAT1, $GHDAT2, $AESKEY1, $AESKEY2,
|
|
$GHKEY1, $PBLOCK_LEN);
|
|
}
|
|
}
|
|
|
|
# ;; ===========================================================================
|
|
# ;; ===========================================================================
|
|
# ;; Stitched GHASH of 16 blocks (with reduction) with encryption of N blocks
|
|
# ;; followed with GHASH of the N blocks.
|
|
sub GCM_ENC_DEC_LAST {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] pointer to output buffer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] pointer to input buffer
|
|
my $DATA_OFFSET = $_[4]; # [in] data offset
|
|
my $LENGTH = $_[5]; # [in/clobbered] data length
|
|
my $CTR_BE = $_[6]; # [in/out] ZMM counter blocks (last 4) in big-endian
|
|
my $CTR_CHECK = $_[7]; # [in/out] GP with 8-bit counter for overflow check
|
|
my $HASHKEY_OFFSET = $_[8]; # [in] numerical offset for the highest hash key
|
|
# (can be register or numerical offset)
|
|
my $GHASHIN_BLK_OFFSET = $_[9]; # [in] numerical offset for GHASH blocks in
|
|
my $SHFMSK = $_[10]; # [in] ZMM with byte swap mask for pshufb
|
|
my $ZT00 = $_[11]; # [clobbered] temporary ZMM
|
|
my $ZT01 = $_[12]; # [clobbered] temporary ZMM
|
|
my $ZT02 = $_[13]; # [clobbered] temporary ZMM
|
|
my $ZT03 = $_[14]; # [clobbered] temporary ZMM
|
|
my $ZT04 = $_[15]; # [clobbered] temporary ZMM
|
|
my $ZT05 = $_[16]; # [clobbered] temporary ZMM
|
|
my $ZT06 = $_[17]; # [clobbered] temporary ZMM
|
|
my $ZT07 = $_[18]; # [clobbered] temporary ZMM
|
|
my $ZT08 = $_[19]; # [clobbered] temporary ZMM
|
|
my $ZT09 = $_[20]; # [clobbered] temporary ZMM
|
|
my $ZT10 = $_[21]; # [clobbered] temporary ZMM
|
|
my $ZT11 = $_[22]; # [clobbered] temporary ZMM
|
|
my $ZT12 = $_[23]; # [clobbered] temporary ZMM
|
|
my $ZT13 = $_[24]; # [clobbered] temporary ZMM
|
|
my $ZT14 = $_[25]; # [clobbered] temporary ZMM
|
|
my $ZT15 = $_[26]; # [clobbered] temporary ZMM
|
|
my $ZT16 = $_[27]; # [clobbered] temporary ZMM
|
|
my $ZT17 = $_[28]; # [clobbered] temporary ZMM
|
|
my $ZT18 = $_[29]; # [clobbered] temporary ZMM
|
|
my $ZT19 = $_[30]; # [clobbered] temporary ZMM
|
|
my $ZT20 = $_[31]; # [clobbered] temporary ZMM
|
|
my $ZT21 = $_[32]; # [clobbered] temporary ZMM
|
|
my $ZT22 = $_[33]; # [clobbered] temporary ZMM
|
|
my $ADDBE_4x4 = $_[34]; # [in] ZMM with 4x128bits 4 in big-endian
|
|
my $ADDBE_1234 = $_[35]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
|
|
my $GHASH_TYPE = $_[36]; # [in] "start", "start_reduce", "mid", "end_reduce"
|
|
my $TO_REDUCE_L = $_[37]; # [in] ZMM for low 4x128-bit GHASH sum
|
|
my $TO_REDUCE_H = $_[38]; # [in] ZMM for hi 4x128-bit GHASH sum
|
|
my $TO_REDUCE_M = $_[39]; # [in] ZMM for medium 4x128-bit GHASH sum
|
|
my $ENC_DEC = $_[40]; # [in] cipher direction
|
|
my $HASH_IN_OUT = $_[41]; # [in/out] XMM ghash in/out value
|
|
my $IA0 = $_[42]; # [clobbered] GP temporary
|
|
my $IA1 = $_[43]; # [clobbered] GP temporary
|
|
my $MASKREG = $_[44]; # [clobbered] mask register
|
|
my $PBLOCK_LEN = $_[45]; # [in] partial block length
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}
|
|
add \$15,@{[DWORD($IA0)]}
|
|
shr \$4,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_0_${label_suffix}
|
|
|
|
cmp \$8,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_8_${label_suffix}
|
|
jb .L_last_num_blocks_is_7_1_${label_suffix}
|
|
|
|
|
|
cmp \$12,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_12_${label_suffix}
|
|
jb .L_last_num_blocks_is_11_9_${label_suffix}
|
|
|
|
# ;; 16, 15, 14 or 13
|
|
cmp \$15,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_15_${label_suffix}
|
|
ja .L_last_num_blocks_is_16_${label_suffix}
|
|
cmp \$14,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_14_${label_suffix}
|
|
jmp .L_last_num_blocks_is_13_${label_suffix}
|
|
|
|
.L_last_num_blocks_is_11_9_${label_suffix}:
|
|
# ;; 11, 10 or 9
|
|
cmp \$10,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_10_${label_suffix}
|
|
ja .L_last_num_blocks_is_11_${label_suffix}
|
|
jmp .L_last_num_blocks_is_9_${label_suffix}
|
|
|
|
.L_last_num_blocks_is_7_1_${label_suffix}:
|
|
cmp \$4,@{[DWORD($IA0)]}
|
|
je .L_last_num_blocks_is_4_${label_suffix}
|
|
jb .L_last_num_blocks_is_3_1_${label_suffix}
|
|
# ;; 7, 6 or 5
|
|
cmp \$6,@{[DWORD($IA0)]}
|
|
ja .L_last_num_blocks_is_7_${label_suffix}
|
|
je .L_last_num_blocks_is_6_${label_suffix}
|
|
jmp .L_last_num_blocks_is_5_${label_suffix}
|
|
|
|
.L_last_num_blocks_is_3_1_${label_suffix}:
|
|
# ;; 3, 2 or 1
|
|
cmp \$2,@{[DWORD($IA0)]}
|
|
ja .L_last_num_blocks_is_3_${label_suffix}
|
|
je .L_last_num_blocks_is_2_${label_suffix}
|
|
___
|
|
|
|
# ;; fall through for `jmp .L_last_num_blocks_is_1`
|
|
|
|
# ;; Use rep to generate different block size variants
|
|
# ;; - one block size has to be the first one
|
|
for my $num_blocks (1 .. 16) {
|
|
$code .= ".L_last_num_blocks_is_${num_blocks}_${label_suffix}:\n";
|
|
&GHASH_16_ENCRYPT_N_GHASH_N(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET,
|
|
$LENGTH, $CTR_BE, $CTR_CHECK, $HASHKEY_OFFSET, $GHASHIN_BLK_OFFSET,
|
|
$SHFMSK, $ZT00, $ZT01, $ZT02, $ZT03,
|
|
$ZT04, $ZT05, $ZT06, $ZT07, $ZT08,
|
|
$ZT09, $ZT10, $ZT11, $ZT12, $ZT13,
|
|
$ZT14, $ZT15, $ZT16, $ZT17, $ZT18,
|
|
$ZT19, $ZT20, $ZT21, $ZT22, $ADDBE_4x4,
|
|
$ADDBE_1234, $GHASH_TYPE, $TO_REDUCE_L, $TO_REDUCE_H, $TO_REDUCE_M,
|
|
$ENC_DEC, $HASH_IN_OUT, $IA0, $IA1, $MASKREG,
|
|
$num_blocks, $PBLOCK_LEN);
|
|
|
|
$code .= "jmp .L_last_blocks_done_${label_suffix}\n";
|
|
}
|
|
|
|
$code .= ".L_last_num_blocks_is_0_${label_suffix}:\n";
|
|
|
|
# ;; if there is 0 blocks to cipher then there are only 16 blocks for ghash and reduction
|
|
# ;; - convert mid into end_reduce
|
|
# ;; - convert start into start_reduce
|
|
if ($GHASH_TYPE eq "mid") {
|
|
$GHASH_TYPE = "end_reduce";
|
|
}
|
|
if ($GHASH_TYPE eq "start") {
|
|
$GHASH_TYPE = "start_reduce";
|
|
}
|
|
|
|
&GHASH_16($GHASH_TYPE, $TO_REDUCE_H, $TO_REDUCE_M, $TO_REDUCE_L, "%rsp",
|
|
$GHASHIN_BLK_OFFSET, 0, "%rsp", $HASHKEY_OFFSET, 0, $HASH_IN_OUT, $ZT00, $ZT01,
|
|
$ZT02, $ZT03, $ZT04, $ZT05, $ZT06, $ZT07, $ZT08, $ZT09);
|
|
|
|
$code .= ".L_last_blocks_done_${label_suffix}:\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; Main GCM macro stitching cipher with GHASH
|
|
# ;; - operates on single stream
|
|
# ;; - encrypts 16 blocks at a time
|
|
# ;; - ghash the 16 previously encrypted ciphertext blocks
|
|
# ;; - no partial block or multi_call handling here
|
|
sub GHASH_16_ENCRYPT_16_PARALLEL {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $CIPH_PLAIN_OUT = $_[1]; # [in] pointer to output buffer
|
|
my $PLAIN_CIPH_IN = $_[2]; # [in] pointer to input buffer
|
|
my $DATA_OFFSET = $_[3]; # [in] data offset
|
|
my $CTR_BE = $_[4]; # [in/out] ZMM counter blocks (last 4) in big-endian
|
|
my $CTR_CHECK = $_[5]; # [in/out] GP with 8-bit counter for overflow check
|
|
my $HASHKEY_OFFSET = $_[6]; # [in] numerical offset for the highest hash key (hash key index value)
|
|
my $AESOUT_BLK_OFFSET = $_[7]; # [in] numerical offset for AES-CTR out
|
|
my $GHASHIN_BLK_OFFSET = $_[8]; # [in] numerical offset for GHASH blocks in
|
|
my $SHFMSK = $_[9]; # [in] ZMM with byte swap mask for pshufb
|
|
my $ZT1 = $_[10]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT2 = $_[11]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT3 = $_[12]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT4 = $_[13]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT5 = $_[14]; # [clobbered/out] temporary ZMM or GHASH OUT (final_reduction)
|
|
my $ZT6 = $_[15]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT7 = $_[16]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT8 = $_[17]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT9 = $_[18]; # [clobbered] temporary ZMM (cipher)
|
|
my $ZT10 = $_[19]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT11 = $_[20]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT12 = $_[21]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT13 = $_[22]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT14 = $_[23]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT15 = $_[24]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT16 = $_[25]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT17 = $_[26]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT18 = $_[27]; # [clobbered] temporary ZMM (ghash)
|
|
my $ZT19 = $_[28]; # [clobbered] temporary ZMM
|
|
my $ZT20 = $_[29]; # [clobbered] temporary ZMM
|
|
my $ZT21 = $_[30]; # [clobbered] temporary ZMM
|
|
my $ZT22 = $_[31]; # [clobbered] temporary ZMM
|
|
my $ZT23 = $_[32]; # [clobbered] temporary ZMM
|
|
my $ADDBE_4x4 = $_[33]; # [in] ZMM with 4x128bits 4 in big-endian
|
|
my $ADDBE_1234 = $_[34]; # [in] ZMM with 4x128bits 1, 2, 3 and 4 in big-endian
|
|
my $TO_REDUCE_L = $_[35]; # [in/out] ZMM for low 4x128-bit GHASH sum
|
|
my $TO_REDUCE_H = $_[36]; # [in/out] ZMM for hi 4x128-bit GHASH sum
|
|
my $TO_REDUCE_M = $_[37]; # [in/out] ZMM for medium 4x128-bit GHASH sum
|
|
my $DO_REDUCTION = $_[38]; # [in] "no_reduction", "final_reduction", "first_time"
|
|
my $ENC_DEC = $_[39]; # [in] cipher direction
|
|
my $DATA_DISPL = $_[40]; # [in] fixed numerical data displacement/offset
|
|
my $GHASH_IN = $_[41]; # [in] current GHASH value or "no_ghash_in"
|
|
my $IA0 = $_[42]; # [clobbered] temporary GPR
|
|
|
|
my $B00_03 = $ZT1;
|
|
my $B04_07 = $ZT2;
|
|
my $B08_11 = $ZT3;
|
|
my $B12_15 = $ZT4;
|
|
|
|
my $GH1H = $ZT5;
|
|
|
|
# ; @note: do not change this mapping
|
|
my $GH1L = $ZT6;
|
|
my $GH1M = $ZT7;
|
|
my $GH1T = $ZT8;
|
|
|
|
my $GH2H = $ZT9;
|
|
my $GH2L = $ZT10;
|
|
my $GH2M = $ZT11;
|
|
my $GH2T = $ZT12;
|
|
|
|
my $RED_POLY = $GH2T;
|
|
my $RED_P1 = $GH2L;
|
|
my $RED_T1 = $GH2H;
|
|
my $RED_T2 = $GH2M;
|
|
|
|
my $GH3H = $ZT13;
|
|
my $GH3L = $ZT14;
|
|
my $GH3M = $ZT15;
|
|
my $GH3T = $ZT16;
|
|
|
|
my $DATA1 = $ZT13;
|
|
my $DATA2 = $ZT14;
|
|
my $DATA3 = $ZT15;
|
|
my $DATA4 = $ZT16;
|
|
|
|
my $AESKEY1 = $ZT17;
|
|
my $AESKEY2 = $ZT18;
|
|
|
|
my $GHKEY1 = $ZT19;
|
|
my $GHKEY2 = $ZT20;
|
|
my $GHDAT1 = $ZT21;
|
|
my $GHDAT2 = $ZT22;
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; prepare counter blocks
|
|
|
|
$code .= <<___;
|
|
cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]}
|
|
jae .L_16_blocks_overflow_${label_suffix}
|
|
vpaddd $ADDBE_1234,$CTR_BE,$B00_03
|
|
vpaddd $ADDBE_4x4,$B00_03,$B04_07
|
|
vpaddd $ADDBE_4x4,$B04_07,$B08_11
|
|
vpaddd $ADDBE_4x4,$B08_11,$B12_15
|
|
jmp .L_16_blocks_ok_${label_suffix}
|
|
.L_16_blocks_overflow_${label_suffix}:
|
|
vpshufb $SHFMSK,$CTR_BE,$CTR_BE
|
|
vmovdqa64 ddq_add_4444(%rip),$B12_15
|
|
vpaddd ddq_add_1234(%rip),$CTR_BE,$B00_03
|
|
vpaddd $B12_15,$B00_03,$B04_07
|
|
vpaddd $B12_15,$B04_07,$B08_11
|
|
vpaddd $B12_15,$B08_11,$B12_15
|
|
vpshufb $SHFMSK,$B00_03,$B00_03
|
|
vpshufb $SHFMSK,$B04_07,$B04_07
|
|
vpshufb $SHFMSK,$B08_11,$B08_11
|
|
vpshufb $SHFMSK,$B12_15,$B12_15
|
|
.L_16_blocks_ok_${label_suffix}:
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; pre-load constants
|
|
$code .= "vbroadcastf64x2 `(16 * 0)`($AES_KEYS),$AESKEY1\n";
|
|
if ($GHASH_IN ne "no_ghash_in") {
|
|
$code .= "vpxorq `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHASH_IN,$GHDAT1\n";
|
|
} else {
|
|
$code .= "vmovdqa64 `$GHASHIN_BLK_OFFSET + (0*64)`(%rsp),$GHDAT1\n";
|
|
}
|
|
|
|
$code .= <<___;
|
|
vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (0*4)),"%rsp")]},$GHKEY1
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; save counter for the next round
|
|
# ;; increment counter overflow check register
|
|
vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR_BE
|
|
addb \$16,@{[BYTE($CTR_CHECK)]}
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; pre-load constants
|
|
vbroadcastf64x2 `(16 * 1)`($AES_KEYS),$AESKEY2
|
|
vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (1*4)),"%rsp")]},$GHKEY2
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (1*64)`(%rsp),$GHDAT2
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; stitch AES rounds with GHASH
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 0 - ARK
|
|
|
|
vpxorq $AESKEY1,$B00_03,$B00_03
|
|
vpxorq $AESKEY1,$B04_07,$B04_07
|
|
vpxorq $AESKEY1,$B08_11,$B08_11
|
|
vpxorq $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 2)`($AES_KEYS),$AESKEY1
|
|
|
|
# ;;==================================================
|
|
# ;; GHASH 4 blocks (15 to 12)
|
|
vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH1H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH1L # ; a0*b0
|
|
vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH1M # ; a1*b0
|
|
vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH1T # ; a0*b1
|
|
vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (2*4)),"%rsp")]},$GHKEY1
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (2*64)`(%rsp),$GHDAT1
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 1
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 3)`($AES_KEYS),$AESKEY2
|
|
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (11 to 8)
|
|
vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
|
|
vmovdqu64 @{[HashKeyByIdx(($HASHKEY_OFFSET - (3*4)),"%rsp")]},$GHKEY2
|
|
vmovdqa64 `$GHASHIN_BLK_OFFSET + (3*64)`(%rsp),$GHDAT2
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 2
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 4)`($AES_KEYS),$AESKEY1
|
|
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (7 to 4)
|
|
vpclmulqdq \$0x10,$GHKEY1,$GHDAT1,$GH3M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY1,$GHDAT1,$GH3T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY1,$GHDAT1,$GH3H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY1,$GHDAT1,$GH3L # ; a0*b0
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 3
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 5)`($AES_KEYS),$AESKEY2
|
|
|
|
# ;; =================================================
|
|
# ;; Gather (XOR) GHASH for 12 blocks
|
|
vpternlogq \$0x96,$GH3H,$GH2H,$GH1H
|
|
vpternlogq \$0x96,$GH3L,$GH2L,$GH1L
|
|
vpternlogq \$0x96,$GH3T,$GH2T,$GH1T
|
|
vpternlogq \$0x96,$GH3M,$GH2M,$GH1M
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 4
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 6)`($AES_KEYS),$AESKEY1
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; load plain/cipher text (recycle GH3xx registers)
|
|
vmovdqu8 `$DATA_DISPL + (0 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA1
|
|
vmovdqu8 `$DATA_DISPL + (1 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA2
|
|
vmovdqu8 `$DATA_DISPL + (2 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA3
|
|
vmovdqu8 `$DATA_DISPL + (3 * 64)`($PLAIN_CIPH_IN,$DATA_OFFSET),$DATA4
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds 5
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 7)`($AES_KEYS),$AESKEY2
|
|
|
|
# ;; =================================================
|
|
# ;; GHASH 4 blocks (3 to 0)
|
|
vpclmulqdq \$0x10,$GHKEY2,$GHDAT2,$GH2M # ; a0*b1
|
|
vpclmulqdq \$0x01,$GHKEY2,$GHDAT2,$GH2T # ; a1*b0
|
|
vpclmulqdq \$0x11,$GHKEY2,$GHDAT2,$GH2H # ; a1*b1
|
|
vpclmulqdq \$0x00,$GHKEY2,$GHDAT2,$GH2L # ; a0*b0
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 6
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 8)`($AES_KEYS),$AESKEY1
|
|
___
|
|
|
|
# ;; =================================================
|
|
# ;; gather GHASH in GH1L (low) and GH1H (high)
|
|
if ($DO_REDUCTION eq "first_time") {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
|
|
vpxorq $GH2M,$GH1M,$TO_REDUCE_M # ; TM
|
|
vpxorq $GH2H,$GH1H,$TO_REDUCE_H # ; TH
|
|
vpxorq $GH2L,$GH1L,$TO_REDUCE_L # ; TL
|
|
___
|
|
}
|
|
if ($DO_REDUCTION eq "no_reduction") {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
|
|
vpternlogq \$0x96,$GH2M,$GH1M,$TO_REDUCE_M # ; TM
|
|
vpternlogq \$0x96,$GH2H,$GH1H,$TO_REDUCE_H # ; TH
|
|
vpternlogq \$0x96,$GH2L,$GH1L,$TO_REDUCE_L # ; TL
|
|
___
|
|
}
|
|
if ($DO_REDUCTION eq "final_reduction") {
|
|
$code .= <<___;
|
|
# ;; phase 1: add mid products together
|
|
# ;; also load polynomial constant for reduction
|
|
vpternlogq \$0x96,$GH2T,$GH1T,$GH1M # ; TM
|
|
vpternlogq \$0x96,$GH2M,$TO_REDUCE_M,$GH1M
|
|
|
|
vpsrldq \$8,$GH1M,$GH2M
|
|
vpslldq \$8,$GH1M,$GH1M
|
|
|
|
vmovdqa64 POLY2(%rip),@{[XWORD($RED_POLY)]}
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 7
|
|
$code .= <<___;
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 9)`($AES_KEYS),$AESKEY2
|
|
___
|
|
|
|
# ;; =================================================
|
|
# ;; Add mid product to high and low
|
|
if ($DO_REDUCTION eq "final_reduction") {
|
|
$code .= <<___;
|
|
vpternlogq \$0x96,$GH2M,$GH2H,$GH1H # ; TH = TH1 + TH2 + TM>>64
|
|
vpxorq $TO_REDUCE_H,$GH1H,$GH1H
|
|
vpternlogq \$0x96,$GH1M,$GH2L,$GH1L # ; TL = TL1 + TL2 + TM<<64
|
|
vpxorq $TO_REDUCE_L,$GH1L,$GH1L
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 8
|
|
$code .= <<___;
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 10)`($AES_KEYS),$AESKEY1
|
|
___
|
|
|
|
# ;; =================================================
|
|
# ;; horizontal xor of low and high 4x128
|
|
if ($DO_REDUCTION eq "final_reduction") {
|
|
&VHPXORI4x128($GH1H, $GH2H);
|
|
&VHPXORI4x128($GH1L, $GH2L);
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES round 9
|
|
$code .= <<___;
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
___
|
|
if (($NROUNDS >= 11)) {
|
|
$code .= "vbroadcastf64x2 `(16 * 11)`($AES_KEYS),$AESKEY2\n";
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; first phase of reduction
|
|
if ($DO_REDUCTION eq "final_reduction") {
|
|
$code .= <<___;
|
|
vpclmulqdq \$0x01,@{[XWORD($GH1L)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_P1)]}
|
|
vpslldq \$8,@{[XWORD($RED_P1)]},@{[XWORD($RED_P1)]} # ; shift-L 2 DWs
|
|
vpxorq @{[XWORD($RED_P1)]},@{[XWORD($GH1L)]},@{[XWORD($RED_P1)]} # ; first phase of the reduct
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; AES rounds up to 11 (AES192) or 13 (AES256)
|
|
# ;; AES128 is done
|
|
if (($NROUNDS >= 11)) {
|
|
$code .= <<___;
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 12)`($AES_KEYS),$AESKEY1
|
|
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
___
|
|
if (($NROUNDS == 13)) {
|
|
$code .= <<___;
|
|
vbroadcastf64x2 `(16 * 13)`($AES_KEYS),$AESKEY2
|
|
|
|
vaesenc $AESKEY1,$B00_03,$B00_03
|
|
vaesenc $AESKEY1,$B04_07,$B04_07
|
|
vaesenc $AESKEY1,$B08_11,$B08_11
|
|
vaesenc $AESKEY1,$B12_15,$B12_15
|
|
vbroadcastf64x2 `(16 * 14)`($AES_KEYS),$AESKEY1
|
|
|
|
vaesenc $AESKEY2,$B00_03,$B00_03
|
|
vaesenc $AESKEY2,$B04_07,$B04_07
|
|
vaesenc $AESKEY2,$B08_11,$B08_11
|
|
vaesenc $AESKEY2,$B12_15,$B12_15
|
|
___
|
|
}
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; second phase of the reduction
|
|
if ($DO_REDUCTION eq "final_reduction") {
|
|
$code .= <<___;
|
|
vpclmulqdq \$0x00,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T1)]}
|
|
vpsrldq \$4,@{[XWORD($RED_T1)]},@{[XWORD($RED_T1)]} # ; shift-R 1-DW to obtain 2-DWs shift-R
|
|
vpclmulqdq \$0x10,@{[XWORD($RED_P1)]},@{[XWORD($RED_POLY)]},@{[XWORD($RED_T2)]}
|
|
vpslldq \$4,@{[XWORD($RED_T2)]},@{[XWORD($RED_T2)]} # ; shift-L 1-DW for result without shifts
|
|
# ;; GH1H = GH1H x RED_T1 x RED_T2
|
|
vpternlogq \$0x96,@{[XWORD($RED_T1)]},@{[XWORD($RED_T2)]},@{[XWORD($GH1H)]}
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; the last AES round
|
|
$code .= <<___;
|
|
vaesenclast $AESKEY1,$B00_03,$B00_03
|
|
vaesenclast $AESKEY1,$B04_07,$B04_07
|
|
vaesenclast $AESKEY1,$B08_11,$B08_11
|
|
vaesenclast $AESKEY1,$B12_15,$B12_15
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; XOR against plain/cipher text
|
|
vpxorq $DATA1,$B00_03,$B00_03
|
|
vpxorq $DATA2,$B04_07,$B04_07
|
|
vpxorq $DATA3,$B08_11,$B08_11
|
|
vpxorq $DATA4,$B12_15,$B12_15
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; store cipher/plain text
|
|
mov $CIPH_PLAIN_OUT,$IA0
|
|
vmovdqu8 $B00_03,`$DATA_DISPL + (0 * 64)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B04_07,`$DATA_DISPL + (1 * 64)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B08_11,`$DATA_DISPL + (2 * 64)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B12_15,`$DATA_DISPL + (3 * 64)`($IA0,$DATA_OFFSET,1)
|
|
___
|
|
|
|
# ;; =================================================
|
|
# ;; shuffle cipher text blocks for GHASH computation
|
|
if ($ENC_DEC eq "ENC") {
|
|
$code .= <<___;
|
|
vpshufb $SHFMSK,$B00_03,$B00_03
|
|
vpshufb $SHFMSK,$B04_07,$B04_07
|
|
vpshufb $SHFMSK,$B08_11,$B08_11
|
|
vpshufb $SHFMSK,$B12_15,$B12_15
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
vpshufb $SHFMSK,$DATA1,$B00_03
|
|
vpshufb $SHFMSK,$DATA2,$B04_07
|
|
vpshufb $SHFMSK,$DATA3,$B08_11
|
|
vpshufb $SHFMSK,$DATA4,$B12_15
|
|
___
|
|
}
|
|
|
|
# ;; =================================================
|
|
# ;; store shuffled cipher text for ghashing
|
|
$code .= <<___;
|
|
vmovdqa64 $B00_03,`$AESOUT_BLK_OFFSET + (0*64)`(%rsp)
|
|
vmovdqa64 $B04_07,`$AESOUT_BLK_OFFSET + (1*64)`(%rsp)
|
|
vmovdqa64 $B08_11,`$AESOUT_BLK_OFFSET + (2*64)`(%rsp)
|
|
vmovdqa64 $B12_15,`$AESOUT_BLK_OFFSET + (3*64)`(%rsp)
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Encryption of a single block
|
|
sub ENCRYPT_SINGLE_BLOCK {
|
|
my $AES_KEY = $_[0]; # ; [in]
|
|
my $XMM0 = $_[1]; # ; [in/out]
|
|
my $GPR1 = $_[2]; # ; [clobbered]
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
# ; load number of rounds from AES_KEY structure (offset in bytes is
|
|
# ; size of the |rd_key| buffer)
|
|
mov `4*15*4`($AES_KEY),@{[DWORD($GPR1)]}
|
|
cmp \$9,@{[DWORD($GPR1)]}
|
|
je .Laes_128_${label_suffix}
|
|
cmp \$11,@{[DWORD($GPR1)]}
|
|
je .Laes_192_${label_suffix}
|
|
cmp \$13,@{[DWORD($GPR1)]}
|
|
je .Laes_256_${label_suffix}
|
|
jmp .Lexit_aes_${label_suffix}
|
|
___
|
|
for my $keylen (sort keys %aes_rounds) {
|
|
my $nr = $aes_rounds{$keylen};
|
|
$code .= <<___;
|
|
.align 32
|
|
.Laes_${keylen}_${label_suffix}:
|
|
___
|
|
$code .= "vpxorq `16*0`($AES_KEY),$XMM0, $XMM0\n\n";
|
|
for (my $i = 1; $i <= $nr; $i++) {
|
|
$code .= "vaesenc `16*$i`($AES_KEY),$XMM0,$XMM0\n\n";
|
|
}
|
|
$code .= <<___;
|
|
vaesenclast `16*($nr+1)`($AES_KEY),$XMM0,$XMM0
|
|
jmp .Lexit_aes_${label_suffix}
|
|
___
|
|
}
|
|
$code .= ".Lexit_aes_${label_suffix}:\n\n";
|
|
}
|
|
|
|
sub CALC_J0 {
|
|
my $GCM128_CTX = $_[0]; #; [in] Pointer to GCM context
|
|
my $IV = $_[1]; #; [in] Pointer to IV
|
|
my $IV_LEN = $_[2]; #; [in] IV length
|
|
my $J0 = $_[3]; #; [out] XMM reg to contain J0
|
|
my $ZT0 = $_[4]; #; [clobbered] ZMM register
|
|
my $ZT1 = $_[5]; #; [clobbered] ZMM register
|
|
my $ZT2 = $_[6]; #; [clobbered] ZMM register
|
|
my $ZT3 = $_[7]; #; [clobbered] ZMM register
|
|
my $ZT4 = $_[8]; #; [clobbered] ZMM register
|
|
my $ZT5 = $_[9]; #; [clobbered] ZMM register
|
|
my $ZT6 = $_[10]; #; [clobbered] ZMM register
|
|
my $ZT7 = $_[11]; #; [clobbered] ZMM register
|
|
my $ZT8 = $_[12]; #; [clobbered] ZMM register
|
|
my $ZT9 = $_[13]; #; [clobbered] ZMM register
|
|
my $ZT10 = $_[14]; #; [clobbered] ZMM register
|
|
my $ZT11 = $_[15]; #; [clobbered] ZMM register
|
|
my $ZT12 = $_[16]; #; [clobbered] ZMM register
|
|
my $ZT13 = $_[17]; #; [clobbered] ZMM register
|
|
my $ZT14 = $_[18]; #; [clobbered] ZMM register
|
|
my $ZT15 = $_[19]; #; [clobbered] ZMM register
|
|
my $ZT16 = $_[20]; #; [clobbered] ZMM register
|
|
my $T1 = $_[21]; #; [clobbered] GP register
|
|
my $T2 = $_[22]; #; [clobbered] GP register
|
|
my $T3 = $_[23]; #; [clobbered] GP register
|
|
my $MASKREG = $_[24]; #; [clobbered] mask register
|
|
|
|
# ;; J0 = GHASH(IV || 0s+64 || len(IV)64)
|
|
# ;; s = 16 * RoundUp(len(IV)/16) - len(IV) */
|
|
|
|
# ;; Calculate GHASH of (IV || 0s)
|
|
$code .= "vpxor $J0,$J0,$J0\n";
|
|
&CALC_AAD_HASH($IV, $IV_LEN, $J0, $GCM128_CTX, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4,
|
|
$ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $T1, $T2, $T3, $MASKREG);
|
|
|
|
# ;; Calculate GHASH of last 16-byte block (0 || len(IV)64)
|
|
$code .= <<___;
|
|
mov $IV_LEN,$T1
|
|
shl \$3,$T1 # ; IV length in bits
|
|
vmovq $T1,@{[XWORD($ZT2)]}
|
|
|
|
# ;; Might need shuffle of ZT2
|
|
vpxorq $J0,@{[XWORD($ZT2)]},$J0
|
|
|
|
vmovdqu64 @{[HashKeyByIdx(1,$GCM128_CTX)]},@{[XWORD($ZT0)]}
|
|
___
|
|
&GHASH_MUL($J0, @{[XWORD($ZT0)]}, @{[XWORD($ZT1)]}, @{[XWORD($ZT2)]}, @{[XWORD($ZT3)]});
|
|
|
|
$code .= "vpshufb SHUF_MASK(%rip),$J0,$J0 # ; perform a 16Byte swap\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; GCM_INIT_IV performs an initialization of gcm128_ctx struct to prepare for
|
|
# ;;; encoding/decoding.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub GCM_INIT_IV {
|
|
my $AES_KEYS = $_[0]; # [in] AES key schedule
|
|
my $GCM128_CTX = $_[1]; # [in/out] GCM context
|
|
my $IV = $_[2]; # [in] IV pointer
|
|
my $IV_LEN = $_[3]; # [in] IV length
|
|
my $GPR1 = $_[4]; # [clobbered] GP register
|
|
my $GPR2 = $_[5]; # [clobbered] GP register
|
|
my $GPR3 = $_[6]; # [clobbered] GP register
|
|
my $MASKREG = $_[7]; # [clobbered] mask register
|
|
my $CUR_COUNT = $_[8]; # [out] XMM with current counter
|
|
my $ZT0 = $_[9]; # [clobbered] ZMM register
|
|
my $ZT1 = $_[10]; # [clobbered] ZMM register
|
|
my $ZT2 = $_[11]; # [clobbered] ZMM register
|
|
my $ZT3 = $_[12]; # [clobbered] ZMM register
|
|
my $ZT4 = $_[13]; # [clobbered] ZMM register
|
|
my $ZT5 = $_[14]; # [clobbered] ZMM register
|
|
my $ZT6 = $_[15]; # [clobbered] ZMM register
|
|
my $ZT7 = $_[16]; # [clobbered] ZMM register
|
|
my $ZT8 = $_[17]; # [clobbered] ZMM register
|
|
my $ZT9 = $_[18]; # [clobbered] ZMM register
|
|
my $ZT10 = $_[19]; # [clobbered] ZMM register
|
|
my $ZT11 = $_[20]; # [clobbered] ZMM register
|
|
my $ZT12 = $_[21]; # [clobbered] ZMM register
|
|
my $ZT13 = $_[22]; # [clobbered] ZMM register
|
|
my $ZT14 = $_[23]; # [clobbered] ZMM register
|
|
my $ZT15 = $_[24]; # [clobbered] ZMM register
|
|
my $ZT16 = $_[25]; # [clobbered] ZMM register
|
|
|
|
my $ZT0x = $ZT0;
|
|
$ZT0x =~ s/zmm/xmm/;
|
|
|
|
$code .= <<___;
|
|
cmp \$12,$IV_LEN
|
|
je iv_len_12_init_IV
|
|
___
|
|
|
|
# ;; IV is different than 12 bytes
|
|
&CALC_J0($GCM128_CTX, $IV, $IV_LEN, $CUR_COUNT, $ZT0, $ZT1, $ZT2, $ZT3, $ZT4, $ZT5, $ZT6, $ZT7,
|
|
$ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13, $ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG);
|
|
$code .= <<___;
|
|
jmp skip_iv_len_12_init_IV
|
|
iv_len_12_init_IV: # ;; IV is 12 bytes
|
|
# ;; read 12 IV bytes and pad with 0x00000001
|
|
vmovdqu8 ONEf(%rip),$CUR_COUNT
|
|
mov $IV,$GPR2
|
|
mov \$0x0000000000000fff,@{[DWORD($GPR1)]}
|
|
kmovq $GPR1,$MASKREG
|
|
vmovdqu8 ($GPR2),${CUR_COUNT}{$MASKREG} # ; ctr = IV | 0x1
|
|
skip_iv_len_12_init_IV:
|
|
vmovdqu $CUR_COUNT,$ZT0x
|
|
___
|
|
&ENCRYPT_SINGLE_BLOCK($AES_KEYS, "$ZT0x", "$GPR1"); # ; E(K, Y0)
|
|
$code .= <<___;
|
|
vmovdqu $ZT0x,`$CTX_OFFSET_EK0`($GCM128_CTX) # ; save EK0 for finalization stage
|
|
|
|
# ;; store IV as counter in LE format
|
|
vpshufb SHUF_MASK(%rip),$CUR_COUNT,$CUR_COUNT
|
|
vmovdqu $CUR_COUNT,`$CTX_OFFSET_CurCount`($GCM128_CTX) # ; save current counter Yi
|
|
___
|
|
}
|
|
|
|
sub GCM_UPDATE_AAD {
|
|
my $GCM128_CTX = $_[0]; # [in] GCM context pointer
|
|
my $A_IN = $_[1]; # [in] AAD pointer
|
|
my $A_LEN = $_[2]; # [in] AAD length in bytes
|
|
my $GPR1 = $_[3]; # [clobbered] GP register
|
|
my $GPR2 = $_[4]; # [clobbered] GP register
|
|
my $GPR3 = $_[5]; # [clobbered] GP register
|
|
my $MASKREG = $_[6]; # [clobbered] mask register
|
|
my $AAD_HASH = $_[7]; # [out] XMM for AAD_HASH value
|
|
my $ZT0 = $_[8]; # [clobbered] ZMM register
|
|
my $ZT1 = $_[9]; # [clobbered] ZMM register
|
|
my $ZT2 = $_[10]; # [clobbered] ZMM register
|
|
my $ZT3 = $_[11]; # [clobbered] ZMM register
|
|
my $ZT4 = $_[12]; # [clobbered] ZMM register
|
|
my $ZT5 = $_[13]; # [clobbered] ZMM register
|
|
my $ZT6 = $_[14]; # [clobbered] ZMM register
|
|
my $ZT7 = $_[15]; # [clobbered] ZMM register
|
|
my $ZT8 = $_[16]; # [clobbered] ZMM register
|
|
my $ZT9 = $_[17]; # [clobbered] ZMM register
|
|
my $ZT10 = $_[18]; # [clobbered] ZMM register
|
|
my $ZT11 = $_[19]; # [clobbered] ZMM register
|
|
my $ZT12 = $_[20]; # [clobbered] ZMM register
|
|
my $ZT13 = $_[21]; # [clobbered] ZMM register
|
|
my $ZT14 = $_[22]; # [clobbered] ZMM register
|
|
my $ZT15 = $_[23]; # [clobbered] ZMM register
|
|
my $ZT16 = $_[24]; # [clobbered] ZMM register
|
|
|
|
# ; load current hash
|
|
$code .= "vmovdqu64 $CTX_OFFSET_AadHash($GCM128_CTX),$AAD_HASH\n";
|
|
|
|
&CALC_AAD_HASH($A_IN, $A_LEN, $AAD_HASH, $GCM128_CTX, $ZT0, $ZT1, $ZT2,
|
|
$ZT3, $ZT4, $ZT5, $ZT6, $ZT7, $ZT8, $ZT9, $ZT10, $ZT11, $ZT12, $ZT13,
|
|
$ZT14, $ZT15, $ZT16, $GPR1, $GPR2, $GPR3, $MASKREG);
|
|
|
|
# ; load current hash
|
|
$code .= "vmovdqu64 $AAD_HASH,$CTX_OFFSET_AadHash($GCM128_CTX)\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Cipher and ghash of payloads shorter than 256 bytes
|
|
# ;;; - number of blocks in the message comes as argument
|
|
# ;;; - depending on the number of blocks an optimized variant of
|
|
# ;;; INITIAL_BLOCKS_PARTIAL is invoked
|
|
sub GCM_ENC_DEC_SMALL {
|
|
my $AES_KEYS = $_[0]; # [in] key pointer
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $CIPH_PLAIN_OUT = $_[2]; # [in] output buffer
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer
|
|
my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
|
|
my $ENC_DEC = $_[5]; # [in] cipher direction
|
|
my $DATA_OFFSET = $_[6]; # [in] data offset
|
|
my $LENGTH = $_[7]; # [in] data length
|
|
my $NUM_BLOCKS = $_[8]; # [in] number of blocks to process 1 to 16
|
|
my $CTR = $_[9]; # [in/out] XMM counter block
|
|
my $HASH_IN_OUT = $_[10]; # [in/out] XMM GHASH value
|
|
my $ZTMP0 = $_[11]; # [clobbered] ZMM register
|
|
my $ZTMP1 = $_[12]; # [clobbered] ZMM register
|
|
my $ZTMP2 = $_[13]; # [clobbered] ZMM register
|
|
my $ZTMP3 = $_[14]; # [clobbered] ZMM register
|
|
my $ZTMP4 = $_[15]; # [clobbered] ZMM register
|
|
my $ZTMP5 = $_[16]; # [clobbered] ZMM register
|
|
my $ZTMP6 = $_[17]; # [clobbered] ZMM register
|
|
my $ZTMP7 = $_[18]; # [clobbered] ZMM register
|
|
my $ZTMP8 = $_[19]; # [clobbered] ZMM register
|
|
my $ZTMP9 = $_[20]; # [clobbered] ZMM register
|
|
my $ZTMP10 = $_[21]; # [clobbered] ZMM register
|
|
my $ZTMP11 = $_[22]; # [clobbered] ZMM register
|
|
my $ZTMP12 = $_[23]; # [clobbered] ZMM register
|
|
my $ZTMP13 = $_[24]; # [clobbered] ZMM register
|
|
my $ZTMP14 = $_[25]; # [clobbered] ZMM register
|
|
my $IA0 = $_[26]; # [clobbered] GP register
|
|
my $IA1 = $_[27]; # [clobbered] GP register
|
|
my $MASKREG = $_[28]; # [clobbered] mask register
|
|
my $SHUFMASK = $_[29]; # [in] ZMM with BE/LE shuffle mask
|
|
my $PBLOCK_LEN = $_[30]; # [in] partial block length
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
cmp \$8,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_8_${label_suffix}
|
|
jl .L_small_initial_num_blocks_is_7_1_${label_suffix}
|
|
|
|
|
|
cmp \$12,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_12_${label_suffix}
|
|
jl .L_small_initial_num_blocks_is_11_9_${label_suffix}
|
|
|
|
# ;; 16, 15, 14 or 13
|
|
cmp \$16,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_16_${label_suffix}
|
|
cmp \$15,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_15_${label_suffix}
|
|
cmp \$14,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_14_${label_suffix}
|
|
jmp .L_small_initial_num_blocks_is_13_${label_suffix}
|
|
|
|
.L_small_initial_num_blocks_is_11_9_${label_suffix}:
|
|
# ;; 11, 10 or 9
|
|
cmp \$11,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_11_${label_suffix}
|
|
cmp \$10,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_10_${label_suffix}
|
|
jmp .L_small_initial_num_blocks_is_9_${label_suffix}
|
|
|
|
.L_small_initial_num_blocks_is_7_1_${label_suffix}:
|
|
cmp \$4,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_4_${label_suffix}
|
|
jl .L_small_initial_num_blocks_is_3_1_${label_suffix}
|
|
# ;; 7, 6 or 5
|
|
cmp \$7,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_7_${label_suffix}
|
|
cmp \$6,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_6_${label_suffix}
|
|
jmp .L_small_initial_num_blocks_is_5_${label_suffix}
|
|
|
|
.L_small_initial_num_blocks_is_3_1_${label_suffix}:
|
|
# ;; 3, 2 or 1
|
|
cmp \$3,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_3_${label_suffix}
|
|
cmp \$2,$NUM_BLOCKS
|
|
je .L_small_initial_num_blocks_is_2_${label_suffix}
|
|
|
|
# ;; for $NUM_BLOCKS == 1, just fall through and no 'jmp' needed
|
|
|
|
# ;; Generation of different block size variants
|
|
# ;; - one block size has to be the first one
|
|
___
|
|
|
|
for (my $num_blocks = 1; $num_blocks <= 16; $num_blocks++) {
|
|
$code .= ".L_small_initial_num_blocks_is_${num_blocks}_${label_suffix}:\n";
|
|
&INITIAL_BLOCKS_PARTIAL(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $LENGTH, $DATA_OFFSET,
|
|
$num_blocks, $CTR, $HASH_IN_OUT, $ENC_DEC, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $IA0, $IA1, $MASKREG, $SHUFMASK, $PBLOCK_LEN);
|
|
|
|
if ($num_blocks != 16) {
|
|
$code .= "jmp .L_small_initial_blocks_encrypted_${label_suffix}\n";
|
|
}
|
|
}
|
|
|
|
$code .= ".L_small_initial_blocks_encrypted_${label_suffix}:\n";
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ; GCM_ENC_DEC Encrypts/Decrypts given data. Assumes that the passed gcm128_context
|
|
# ; struct has been initialized by GCM_INIT_IV
|
|
# ; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA.
|
|
# ; Clobbers rax, r10-r15, and zmm0-zmm31, k1
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub GCM_ENC_DEC {
|
|
my $AES_KEYS = $_[0]; # [in] AES Key schedule
|
|
my $GCM128_CTX = $_[1]; # [in] context pointer
|
|
my $PBLOCK_LEN = $_[2]; # [in] length of partial block at the moment of previous update
|
|
my $PLAIN_CIPH_IN = $_[3]; # [in] input buffer pointer
|
|
my $PLAIN_CIPH_LEN = $_[4]; # [in] buffer length
|
|
my $CIPH_PLAIN_OUT = $_[5]; # [in] output buffer pointer
|
|
my $ENC_DEC = $_[6]; # [in] cipher direction
|
|
|
|
my $IA0 = "%r10";
|
|
my $IA1 = "%r12";
|
|
my $IA2 = "%r13";
|
|
my $IA3 = "%r15";
|
|
my $IA4 = "%r11";
|
|
my $IA5 = "%rax";
|
|
my $IA6 = "%rbx";
|
|
my $IA7 = "%r14";
|
|
|
|
my $LENGTH = $win64 ? $IA2 : $PLAIN_CIPH_LEN;
|
|
|
|
my $CTR_CHECK = $IA3;
|
|
my $DATA_OFFSET = $IA4;
|
|
my $HASHK_PTR = $IA6;
|
|
|
|
my $HKEYS_READY = $IA7;
|
|
|
|
my $CTR_BLOCKz = "%zmm2";
|
|
my $CTR_BLOCKx = "%xmm2";
|
|
|
|
# ; hardcoded in GCM_INIT
|
|
|
|
my $AAD_HASHz = "%zmm14";
|
|
my $AAD_HASHx = "%xmm14";
|
|
|
|
# ; hardcoded in GCM_COMPLETE
|
|
|
|
my $ZTMP0 = "%zmm0";
|
|
my $ZTMP1 = "%zmm3";
|
|
my $ZTMP2 = "%zmm4";
|
|
my $ZTMP3 = "%zmm5";
|
|
my $ZTMP4 = "%zmm6";
|
|
my $ZTMP5 = "%zmm7";
|
|
my $ZTMP6 = "%zmm10";
|
|
my $ZTMP7 = "%zmm11";
|
|
my $ZTMP8 = "%zmm12";
|
|
my $ZTMP9 = "%zmm13";
|
|
my $ZTMP10 = "%zmm15";
|
|
my $ZTMP11 = "%zmm16";
|
|
my $ZTMP12 = "%zmm17";
|
|
|
|
my $ZTMP13 = "%zmm19";
|
|
my $ZTMP14 = "%zmm20";
|
|
my $ZTMP15 = "%zmm21";
|
|
my $ZTMP16 = "%zmm30";
|
|
my $ZTMP17 = "%zmm31";
|
|
my $ZTMP18 = "%zmm1";
|
|
my $ZTMP19 = "%zmm18";
|
|
my $ZTMP20 = "%zmm8";
|
|
my $ZTMP21 = "%zmm22";
|
|
my $ZTMP22 = "%zmm23";
|
|
|
|
my $GH = "%zmm24";
|
|
my $GL = "%zmm25";
|
|
my $GM = "%zmm26";
|
|
my $SHUF_MASK = "%zmm29";
|
|
|
|
# ; Unused in the small packet path
|
|
my $ADDBE_4x4 = "%zmm27";
|
|
my $ADDBE_1234 = "%zmm28";
|
|
|
|
my $MASKREG = "%k1";
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
# ;; reduction every 48 blocks, depth 32 blocks
|
|
# ;; @note 48 blocks is the maximum capacity of the stack frame
|
|
my $big_loop_nblocks = 48;
|
|
my $big_loop_depth = 32;
|
|
|
|
# ;;; Macro flow depending on packet size
|
|
# ;;; - LENGTH <= 16 blocks
|
|
# ;;; - cipher followed by hashing (reduction)
|
|
# ;;; - 16 blocks < LENGTH < 32 blocks
|
|
# ;;; - cipher 16 blocks
|
|
# ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
|
|
# ;;; - 32 blocks < LENGTH < 48 blocks
|
|
# ;;; - cipher 2 x 16 blocks
|
|
# ;;; - hash 16 blocks
|
|
# ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
|
|
# ;;; - LENGTH >= 48 blocks
|
|
# ;;; - cipher 2 x 16 blocks
|
|
# ;;; - while (data_to_cipher >= 48 blocks):
|
|
# ;;; - cipher 16 blocks & hash 16 blocks
|
|
# ;;; - cipher 16 blocks & hash 16 blocks
|
|
# ;;; - cipher 16 blocks & hash 16 blocks (reduction)
|
|
# ;;; - if (data_to_cipher >= 32 blocks):
|
|
# ;;; - cipher 16 blocks & hash 16 blocks
|
|
# ;;; - cipher 16 blocks & hash 16 blocks
|
|
# ;;; - hash 16 blocks (reduction)
|
|
# ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
|
|
# ;;; - elif (data_to_cipher >= 16 blocks):
|
|
# ;;; - cipher 16 blocks & hash 16 blocks
|
|
# ;;; - hash 16 blocks
|
|
# ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
|
|
# ;;; - else:
|
|
# ;;; - hash 16 blocks
|
|
# ;;; - cipher N blocks & hash 16 blocks, hash N blocks (reduction)
|
|
|
|
if ($win64) {
|
|
$code .= "cmpq \$0,$PLAIN_CIPH_LEN\n";
|
|
} else {
|
|
$code .= "or $PLAIN_CIPH_LEN,$PLAIN_CIPH_LEN\n";
|
|
}
|
|
$code .= "je .L_enc_dec_done_${label_suffix}\n";
|
|
|
|
# Length value from context $CTX_OFFSET_InLen`($GCM128_CTX) is updated in
|
|
# 'providers/implementations/ciphers/cipher_aes_gcm_hw_vaes_avx512.inc'
|
|
|
|
$code .= "xor $HKEYS_READY, $HKEYS_READY\n";
|
|
$code .= "vmovdqu64 `$CTX_OFFSET_AadHash`($GCM128_CTX),$AAD_HASHx\n";
|
|
|
|
# ;; Used for the update flow - if there was a previous partial
|
|
# ;; block fill the remaining bytes here.
|
|
&PARTIAL_BLOCK(
|
|
$GCM128_CTX, $PBLOCK_LEN, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN,
|
|
$DATA_OFFSET, $AAD_HASHx, $ENC_DEC, $IA0, $IA1,
|
|
$IA2, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3,
|
|
$ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $MASKREG);
|
|
|
|
$code .= "vmovdqu64 `$CTX_OFFSET_CurCount`($GCM128_CTX),$CTR_BLOCKx\n";
|
|
|
|
# ;; Save the amount of data left to process in $LENGTH
|
|
# ;; NOTE: PLAIN_CIPH_LEN is a register on linux;
|
|
if ($win64) {
|
|
$code .= "mov $PLAIN_CIPH_LEN,$LENGTH\n";
|
|
}
|
|
|
|
# ;; There may be no more data if it was consumed in the partial block.
|
|
$code .= <<___;
|
|
sub $DATA_OFFSET,$LENGTH
|
|
je .L_enc_dec_done_${label_suffix}
|
|
___
|
|
|
|
$code .= <<___;
|
|
cmp \$`(16 * 16)`,$LENGTH
|
|
jbe .L_message_below_equal_16_blocks_${label_suffix}
|
|
|
|
vmovdqa64 SHUF_MASK(%rip),$SHUF_MASK
|
|
vmovdqa64 ddq_addbe_4444(%rip),$ADDBE_4x4
|
|
vmovdqa64 ddq_addbe_1234(%rip),$ADDBE_1234
|
|
|
|
# ;; start the pipeline
|
|
# ;; - 32 blocks aes-ctr
|
|
# ;; - 16 blocks ghash + aes-ctr
|
|
|
|
# ;; set up CTR_CHECK
|
|
vmovd $CTR_BLOCKx,@{[DWORD($CTR_CHECK)]}
|
|
and \$255,@{[DWORD($CTR_CHECK)]}
|
|
# ;; in LE format after init, convert to BE
|
|
vshufi64x2 \$0,$CTR_BLOCKz,$CTR_BLOCKz,$CTR_BLOCKz
|
|
vpshufb $SHUF_MASK,$CTR_BLOCKz,$CTR_BLOCKz
|
|
___
|
|
|
|
# ;; ==== AES-CTR - first 16 blocks
|
|
my $aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
my $data_in_out_offset = 0;
|
|
&INITIAL_BLOCKS_16(
|
|
$PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz,
|
|
$CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2,
|
|
$ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
|
|
$SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0);
|
|
|
|
&precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
"first16");
|
|
|
|
$code .= <<___;
|
|
cmp \$`(32 * 16)`,$LENGTH
|
|
jb .L_message_below_32_blocks_${label_suffix}
|
|
___
|
|
|
|
# ;; ==== AES-CTR - next 16 blocks
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
|
|
$data_in_out_offset = (16 * 16);
|
|
&INITIAL_BLOCKS_16(
|
|
$PLAIN_CIPH_IN, $CIPH_PLAIN_OUT, $AES_KEYS, $DATA_OFFSET, "no_ghash", $CTR_BLOCKz,
|
|
$CTR_CHECK, $ADDBE_4x4, $ADDBE_1234, $ZTMP0, $ZTMP1, $ZTMP2,
|
|
$ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
|
|
$SHUF_MASK, $ENC_DEC, $aesout_offset, $data_in_out_offset, $IA0);
|
|
|
|
&precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
"last32");
|
|
$code .= "mov \$1,$HKEYS_READY\n";
|
|
|
|
$code .= <<___;
|
|
add \$`(32 * 16)`,$DATA_OFFSET
|
|
sub \$`(32 * 16)`,$LENGTH
|
|
|
|
cmp \$`($big_loop_nblocks * 16)`,$LENGTH
|
|
jb .L_no_more_big_nblocks_${label_suffix}
|
|
___
|
|
|
|
# ;; ====
|
|
# ;; ==== AES-CTR + GHASH - 48 blocks loop
|
|
# ;; ====
|
|
$code .= ".L_encrypt_big_nblocks_${label_suffix}:\n";
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, start
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
|
|
$data_in_out_offset = (0 * 16);
|
|
my $ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
|
|
$IA0);
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, no reduction
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
$data_in_out_offset = (16 * 16);
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
|
|
$IA0);
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, reduction
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
|
|
$data_in_out_offset = (32 * 16);
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
16, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "final_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
|
|
$IA0);
|
|
|
|
# ;; === xor cipher block 0 with GHASH (ZT4)
|
|
$code .= <<___;
|
|
vmovdqa64 $ZTMP4,$AAD_HASHz
|
|
|
|
add \$`($big_loop_nblocks * 16)`,$DATA_OFFSET
|
|
sub \$`($big_loop_nblocks * 16)`,$LENGTH
|
|
cmp \$`($big_loop_nblocks * 16)`,$LENGTH
|
|
jae .L_encrypt_big_nblocks_${label_suffix}
|
|
|
|
.L_no_more_big_nblocks_${label_suffix}:
|
|
|
|
cmp \$`(32 * 16)`,$LENGTH
|
|
jae .L_encrypt_32_blocks_${label_suffix}
|
|
|
|
cmp \$`(16 * 16)`,$LENGTH
|
|
jae .L_encrypt_16_blocks_${label_suffix}
|
|
___
|
|
|
|
# ;; =====================================================
|
|
# ;; =====================================================
|
|
# ;; ==== GHASH 1 x 16 blocks
|
|
# ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
|
|
# ;; ==== then GHASH N blocks
|
|
$code .= ".L_encrypt_0_blocks_ghash_32_${label_suffix}:\n";
|
|
|
|
# ;; calculate offset to the right hash key
|
|
$code .= <<___;
|
|
mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}
|
|
and \$~15,@{[DWORD($IA0)]}
|
|
mov \$`@{[HashKeyOffsetByIdx(32,"frame")]}`,@{[DWORD($HASHK_PTR)]}
|
|
sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
|
|
___
|
|
|
|
# ;; ==== GHASH 32 blocks and follow with reduction
|
|
&GHASH_16("start", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (0 * 16),
|
|
"%rsp", $HASHK_PTR, 0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
|
|
|
|
# ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
|
|
$code .= "add \$`(16 * 16)`,@{[DWORD($HASHK_PTR)]}\n";
|
|
&GCM_ENC_DEC_LAST(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
|
|
$CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
|
|
$ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
$ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
|
|
$ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
|
|
$ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
|
|
"mid", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
|
|
$IA0, $IA5, $MASKREG, $PBLOCK_LEN);
|
|
|
|
$code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
|
|
$code .= "jmp .L_ghash_done_${label_suffix}\n";
|
|
|
|
# ;; =====================================================
|
|
# ;; =====================================================
|
|
# ;; ==== GHASH & encrypt 1 x 16 blocks
|
|
# ;; ==== GHASH & encrypt 1 x 16 blocks
|
|
# ;; ==== GHASH 1 x 16 blocks (reduction)
|
|
# ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
|
|
# ;; ==== then GHASH N blocks
|
|
$code .= ".L_encrypt_32_blocks_${label_suffix}:\n";
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, start
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
$data_in_out_offset = (0 * 16);
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
|
|
$IA0);
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, no reduction
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (16 * 16));
|
|
$data_in_out_offset = (16 * 16);
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
32, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "no_reduction", $ENC_DEC, $data_in_out_offset, "no_ghash_in",
|
|
$IA0);
|
|
|
|
# ;; ==== GHASH 16 blocks with reduction
|
|
&GHASH_16(
|
|
"end_reduce", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (32 * 16),
|
|
"%rsp", &HashKeyOffsetByIdx(16, "frame"),
|
|
0, $AAD_HASHz, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
|
|
|
|
# ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
$code .= <<___;
|
|
sub \$`(32 * 16)`,$LENGTH
|
|
add \$`(32 * 16)`,$DATA_OFFSET
|
|
___
|
|
|
|
# ;; calculate offset to the right hash key
|
|
$code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n";
|
|
$code .= <<___;
|
|
and \$~15,@{[DWORD($IA0)]}
|
|
mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]}
|
|
sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
|
|
___
|
|
&GCM_ENC_DEC_LAST(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
|
|
$CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
|
|
$ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
$ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
|
|
$ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
|
|
$ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
|
|
"start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
|
|
$IA0, $IA5, $MASKREG, $PBLOCK_LEN);
|
|
|
|
$code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
|
|
$code .= "jmp .L_ghash_done_${label_suffix}\n";
|
|
|
|
# ;; =====================================================
|
|
# ;; =====================================================
|
|
# ;; ==== GHASH & encrypt 16 blocks (done before)
|
|
# ;; ==== GHASH 1 x 16 blocks
|
|
# ;; ==== GHASH 1 x 16 blocks (reduction) & encrypt N blocks
|
|
# ;; ==== then GHASH N blocks
|
|
$code .= ".L_encrypt_16_blocks_${label_suffix}:\n";
|
|
|
|
# ;; ==== AES-CTR + GHASH - 16 blocks, start
|
|
$aesout_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
$data_in_out_offset = (0 * 16);
|
|
&GHASH_16_ENCRYPT_16_PARALLEL(
|
|
$AES_KEYS, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $CTR_BLOCKz, $CTR_CHECK,
|
|
48, $aesout_offset, $ghashin_offset, $SHUF_MASK, $ZTMP0, $ZTMP1,
|
|
$ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7,
|
|
$ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12, $ZTMP13,
|
|
$ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18, $ZTMP19,
|
|
$ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234, $GL,
|
|
$GH, $GM, "first_time", $ENC_DEC, $data_in_out_offset, $AAD_HASHz,
|
|
$IA0);
|
|
|
|
# ;; ==== GHASH 1 x 16 blocks
|
|
&GHASH_16(
|
|
"mid", $GH, $GM, $GL, "%rsp", $STACK_LOCAL_OFFSET, (16 * 16),
|
|
"%rsp", &HashKeyOffsetByIdx(32, "frame"),
|
|
0, "no_hash_input", $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8, $ZTMP9);
|
|
|
|
# ;; ==== GHASH 1 x 16 blocks with reduction + cipher and ghash on the reminder
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (32 * 16));
|
|
$code .= <<___;
|
|
sub \$`(16 * 16)`,$LENGTH
|
|
add \$`(16 * 16)`,$DATA_OFFSET
|
|
___
|
|
&GCM_ENC_DEC_LAST(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN,
|
|
$DATA_OFFSET, $LENGTH, $CTR_BLOCKz, $CTR_CHECK,
|
|
&HashKeyOffsetByIdx(16, "frame"), $ghashin_offset, $SHUF_MASK, $ZTMP0,
|
|
$ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4,
|
|
$ZTMP5, $ZTMP6, $ZTMP7, $ZTMP8,
|
|
$ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
|
|
$ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16,
|
|
$ZTMP17, $ZTMP18, $ZTMP19, $ZTMP20,
|
|
$ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
|
|
"end_reduce", $GL, $GH, $GM,
|
|
$ENC_DEC, $AAD_HASHz, $IA0, $IA5,
|
|
$MASKREG, $PBLOCK_LEN);
|
|
|
|
$code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
|
|
$code .= <<___;
|
|
jmp .L_ghash_done_${label_suffix}
|
|
|
|
.L_message_below_32_blocks_${label_suffix}:
|
|
# ;; 32 > number of blocks > 16
|
|
|
|
sub \$`(16 * 16)`,$LENGTH
|
|
add \$`(16 * 16)`,$DATA_OFFSET
|
|
___
|
|
$ghashin_offset = ($STACK_LOCAL_OFFSET + (0 * 16));
|
|
|
|
# ;; calculate offset to the right hash key
|
|
$code .= "mov @{[DWORD($LENGTH)]},@{[DWORD($IA0)]}\n";
|
|
|
|
&precompute_hkeys_on_stack($GCM128_CTX, $HKEYS_READY, $ZTMP0, $ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
"mid16");
|
|
$code .= "mov \$1,$HKEYS_READY\n";
|
|
|
|
$code .= <<___;
|
|
and \$~15,@{[DWORD($IA0)]}
|
|
mov \$`@{[HashKeyOffsetByIdx(16,"frame")]}`,@{[DWORD($HASHK_PTR)]}
|
|
sub @{[DWORD($IA0)]},@{[DWORD($HASHK_PTR)]}
|
|
___
|
|
|
|
&GCM_ENC_DEC_LAST(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $DATA_OFFSET, $LENGTH,
|
|
$CTR_BLOCKz, $CTR_CHECK, $HASHK_PTR, $ghashin_offset, $SHUF_MASK, $ZTMP0,
|
|
$ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
$ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
|
|
$ZTMP13, $ZTMP14, $ZTMP15, $ZTMP16, $ZTMP17, $ZTMP18,
|
|
$ZTMP19, $ZTMP20, $ZTMP21, $ZTMP22, $ADDBE_4x4, $ADDBE_1234,
|
|
"start", $GL, $GH, $GM, $ENC_DEC, $AAD_HASHz,
|
|
$IA0, $IA5, $MASKREG, $PBLOCK_LEN);
|
|
|
|
$code .= "vpshufb @{[XWORD($SHUF_MASK)]},$CTR_BLOCKx,$CTR_BLOCKx\n";
|
|
$code .= <<___;
|
|
jmp .L_ghash_done_${label_suffix}
|
|
|
|
.L_message_below_equal_16_blocks_${label_suffix}:
|
|
# ;; Determine how many blocks to process
|
|
# ;; - process one additional block if there is a partial block
|
|
mov @{[DWORD($LENGTH)]},@{[DWORD($IA1)]}
|
|
add \$15,@{[DWORD($IA1)]}
|
|
shr \$4, @{[DWORD($IA1)]} # ; $IA1 can be in the range from 0 to 16
|
|
___
|
|
&GCM_ENC_DEC_SMALL(
|
|
$AES_KEYS, $GCM128_CTX, $CIPH_PLAIN_OUT, $PLAIN_CIPH_IN, $PLAIN_CIPH_LEN, $ENC_DEC,
|
|
$DATA_OFFSET, $LENGTH, $IA1, $CTR_BLOCKx, $AAD_HASHx, $ZTMP0,
|
|
$ZTMP1, $ZTMP2, $ZTMP3, $ZTMP4, $ZTMP5, $ZTMP6,
|
|
$ZTMP7, $ZTMP8, $ZTMP9, $ZTMP10, $ZTMP11, $ZTMP12,
|
|
$ZTMP13, $ZTMP14, $IA0, $IA3, $MASKREG, $SHUF_MASK,
|
|
$PBLOCK_LEN);
|
|
|
|
# ;; fall through to exit
|
|
|
|
$code .= ".L_ghash_done_${label_suffix}:\n";
|
|
|
|
# ;; save the last counter block
|
|
$code .= "vmovdqu64 $CTR_BLOCKx,`$CTX_OFFSET_CurCount`($GCM128_CTX)\n";
|
|
$code .= <<___;
|
|
vmovdqu64 $AAD_HASHx,`$CTX_OFFSET_AadHash`($GCM128_CTX)
|
|
.L_enc_dec_done_${label_suffix}:
|
|
___
|
|
}
|
|
|
|
# ;;; ===========================================================================
|
|
# ;;; Encrypt/decrypt the initial 16 blocks
|
|
sub INITIAL_BLOCKS_16 {
|
|
my $IN = $_[0]; # [in] input buffer
|
|
my $OUT = $_[1]; # [in] output buffer
|
|
my $AES_KEYS = $_[2]; # [in] pointer to expanded keys
|
|
my $DATA_OFFSET = $_[3]; # [in] data offset
|
|
my $GHASH = $_[4]; # [in] ZMM with AAD (low 128 bits)
|
|
my $CTR = $_[5]; # [in] ZMM with CTR BE blocks 4x128 bits
|
|
my $CTR_CHECK = $_[6]; # [in/out] GPR with counter overflow check
|
|
my $ADDBE_4x4 = $_[7]; # [in] ZMM 4x128bits with value 4 (big endian)
|
|
my $ADDBE_1234 = $_[8]; # [in] ZMM 4x128bits with values 1, 2, 3 & 4 (big endian)
|
|
my $T0 = $_[9]; # [clobered] temporary ZMM register
|
|
my $T1 = $_[10]; # [clobered] temporary ZMM register
|
|
my $T2 = $_[11]; # [clobered] temporary ZMM register
|
|
my $T3 = $_[12]; # [clobered] temporary ZMM register
|
|
my $T4 = $_[13]; # [clobered] temporary ZMM register
|
|
my $T5 = $_[14]; # [clobered] temporary ZMM register
|
|
my $T6 = $_[15]; # [clobered] temporary ZMM register
|
|
my $T7 = $_[16]; # [clobered] temporary ZMM register
|
|
my $T8 = $_[17]; # [clobered] temporary ZMM register
|
|
my $SHUF_MASK = $_[18]; # [in] ZMM with BE/LE shuffle mask
|
|
my $ENC_DEC = $_[19]; # [in] ENC (encrypt) or DEC (decrypt) selector
|
|
my $BLK_OFFSET = $_[20]; # [in] stack frame offset to ciphered blocks
|
|
my $DATA_DISPL = $_[21]; # [in] fixed numerical data displacement/offset
|
|
my $IA0 = $_[22]; # [clobered] temporary GP register
|
|
|
|
my $B00_03 = $T5;
|
|
my $B04_07 = $T6;
|
|
my $B08_11 = $T7;
|
|
my $B12_15 = $T8;
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
my $stack_offset = $BLK_OFFSET;
|
|
$code .= <<___;
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;; prepare counter blocks
|
|
|
|
cmpb \$`(256 - 16)`,@{[BYTE($CTR_CHECK)]}
|
|
jae .L_next_16_overflow_${label_suffix}
|
|
vpaddd $ADDBE_1234,$CTR,$B00_03
|
|
vpaddd $ADDBE_4x4,$B00_03,$B04_07
|
|
vpaddd $ADDBE_4x4,$B04_07,$B08_11
|
|
vpaddd $ADDBE_4x4,$B08_11,$B12_15
|
|
jmp .L_next_16_ok_${label_suffix}
|
|
.L_next_16_overflow_${label_suffix}:
|
|
vpshufb $SHUF_MASK,$CTR,$CTR
|
|
vmovdqa64 ddq_add_4444(%rip),$B12_15
|
|
vpaddd ddq_add_1234(%rip),$CTR,$B00_03
|
|
vpaddd $B12_15,$B00_03,$B04_07
|
|
vpaddd $B12_15,$B04_07,$B08_11
|
|
vpaddd $B12_15,$B08_11,$B12_15
|
|
vpshufb $SHUF_MASK,$B00_03,$B00_03
|
|
vpshufb $SHUF_MASK,$B04_07,$B04_07
|
|
vpshufb $SHUF_MASK,$B08_11,$B08_11
|
|
vpshufb $SHUF_MASK,$B12_15,$B12_15
|
|
.L_next_16_ok_${label_suffix}:
|
|
vshufi64x2 \$0b11111111,$B12_15,$B12_15,$CTR
|
|
addb \$16,@{[BYTE($CTR_CHECK)]}
|
|
# ;; === load 16 blocks of data
|
|
vmovdqu8 `$DATA_DISPL + (64*0)`($IN,$DATA_OFFSET,1),$T0
|
|
vmovdqu8 `$DATA_DISPL + (64*1)`($IN,$DATA_OFFSET,1),$T1
|
|
vmovdqu8 `$DATA_DISPL + (64*2)`($IN,$DATA_OFFSET,1),$T2
|
|
vmovdqu8 `$DATA_DISPL + (64*3)`($IN,$DATA_OFFSET,1),$T3
|
|
|
|
# ;; move to AES encryption rounds
|
|
vbroadcastf64x2 `(16*0)`($AES_KEYS),$T4
|
|
vpxorq $T4,$B00_03,$B00_03
|
|
vpxorq $T4,$B04_07,$B04_07
|
|
vpxorq $T4,$B08_11,$B08_11
|
|
vpxorq $T4,$B12_15,$B12_15
|
|
___
|
|
foreach (1 .. ($NROUNDS)) {
|
|
$code .= <<___;
|
|
vbroadcastf64x2 `(16*$_)`($AES_KEYS),$T4
|
|
vaesenc $T4,$B00_03,$B00_03
|
|
vaesenc $T4,$B04_07,$B04_07
|
|
vaesenc $T4,$B08_11,$B08_11
|
|
vaesenc $T4,$B12_15,$B12_15
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
vbroadcastf64x2 `(16*($NROUNDS+1))`($AES_KEYS),$T4
|
|
vaesenclast $T4,$B00_03,$B00_03
|
|
vaesenclast $T4,$B04_07,$B04_07
|
|
vaesenclast $T4,$B08_11,$B08_11
|
|
vaesenclast $T4,$B12_15,$B12_15
|
|
|
|
# ;; xor against text
|
|
vpxorq $T0,$B00_03,$B00_03
|
|
vpxorq $T1,$B04_07,$B04_07
|
|
vpxorq $T2,$B08_11,$B08_11
|
|
vpxorq $T3,$B12_15,$B12_15
|
|
|
|
# ;; store
|
|
mov $OUT, $IA0
|
|
vmovdqu8 $B00_03,`$DATA_DISPL + (64*0)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B04_07,`$DATA_DISPL + (64*1)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B08_11,`$DATA_DISPL + (64*2)`($IA0,$DATA_OFFSET,1)
|
|
vmovdqu8 $B12_15,`$DATA_DISPL + (64*3)`($IA0,$DATA_OFFSET,1)
|
|
___
|
|
if ($ENC_DEC eq "DEC") {
|
|
$code .= <<___;
|
|
# ;; decryption - cipher text needs to go to GHASH phase
|
|
vpshufb $SHUF_MASK,$T0,$B00_03
|
|
vpshufb $SHUF_MASK,$T1,$B04_07
|
|
vpshufb $SHUF_MASK,$T2,$B08_11
|
|
vpshufb $SHUF_MASK,$T3,$B12_15
|
|
___
|
|
} else {
|
|
$code .= <<___;
|
|
# ;; encryption
|
|
vpshufb $SHUF_MASK,$B00_03,$B00_03
|
|
vpshufb $SHUF_MASK,$B04_07,$B04_07
|
|
vpshufb $SHUF_MASK,$B08_11,$B08_11
|
|
vpshufb $SHUF_MASK,$B12_15,$B12_15
|
|
___
|
|
}
|
|
|
|
if ($GHASH ne "no_ghash") {
|
|
$code .= <<___;
|
|
# ;; === xor cipher block 0 with GHASH for the next GHASH round
|
|
vpxorq $GHASH,$B00_03,$B00_03
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
vmovdqa64 $B00_03,`$stack_offset + (0 * 64)`(%rsp)
|
|
vmovdqa64 $B04_07,`$stack_offset + (1 * 64)`(%rsp)
|
|
vmovdqa64 $B08_11,`$stack_offset + (2 * 64)`(%rsp)
|
|
vmovdqa64 $B12_15,`$stack_offset + (3 * 64)`(%rsp)
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ; GCM_COMPLETE Finishes ghash calculation
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
sub GCM_COMPLETE {
|
|
my $GCM128_CTX = $_[0];
|
|
my $PBLOCK_LEN = $_[1];
|
|
|
|
my $label_suffix = $label_count++;
|
|
|
|
$code .= <<___;
|
|
vmovdqu @{[HashKeyByIdx(1,$GCM128_CTX)]},%xmm2
|
|
vmovdqu $CTX_OFFSET_EK0($GCM128_CTX),%xmm3 # ; xmm3 = E(K,Y0)
|
|
___
|
|
|
|
$code .= <<___;
|
|
vmovdqu `$CTX_OFFSET_AadHash`($GCM128_CTX),%xmm4
|
|
|
|
# ;; Process the final partial block.
|
|
cmp \$0,$PBLOCK_LEN
|
|
je .L_partial_done_${label_suffix}
|
|
___
|
|
|
|
# ;GHASH computation for the last <16 Byte block
|
|
&GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17");
|
|
|
|
$code .= <<___;
|
|
.L_partial_done_${label_suffix}:
|
|
vmovq `$CTX_OFFSET_InLen`($GCM128_CTX), %xmm5
|
|
vpinsrq \$1, `$CTX_OFFSET_AadLen`($GCM128_CTX), %xmm5, %xmm5 # ; xmm5 = len(A)||len(C)
|
|
vpsllq \$3, %xmm5, %xmm5 # ; convert bytes into bits
|
|
|
|
vpxor %xmm5,%xmm4,%xmm4
|
|
___
|
|
|
|
&GHASH_MUL("%xmm4", "%xmm2", "%xmm0", "%xmm16", "%xmm17");
|
|
|
|
$code .= <<___;
|
|
vpshufb SHUF_MASK(%rip),%xmm4,%xmm4 # ; perform a 16Byte swap
|
|
vpxor %xmm4,%xmm3,%xmm3
|
|
|
|
.L_return_T_${label_suffix}:
|
|
vmovdqu %xmm3,`$CTX_OFFSET_AadHash`($GCM128_CTX)
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;;; Functions definitions
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
$code .= ".text\n";
|
|
{
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_init_avx512 /
|
|
# ; (const void *aes_keys,
|
|
# ; void *gcm128ctx)
|
|
# ;
|
|
# ; Precomputes hashkey table for GHASH optimization.
|
|
# ; Leaf function (does not allocate stack space, does not use non-volatile registers).
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_init_avx512
|
|
.type ossl_aes_gcm_init_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_init_avx512:
|
|
.cfi_startproc
|
|
endbranch
|
|
___
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check aes_keys != NULL
|
|
test $arg1,$arg1
|
|
jz .Labort_init
|
|
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg2,$arg2
|
|
jz .Labort_init
|
|
___
|
|
}
|
|
$code .= "vpxorq %xmm16,%xmm16,%xmm16\n";
|
|
&ENCRYPT_SINGLE_BLOCK("$arg1", "%xmm16", "%rax"); # ; xmm16 = HashKey
|
|
$code .= <<___;
|
|
vpshufb SHUF_MASK(%rip),%xmm16,%xmm16
|
|
# ;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey ;;;
|
|
vmovdqa64 %xmm16,%xmm2
|
|
vpsllq \$1,%xmm16,%xmm16
|
|
vpsrlq \$63,%xmm2,%xmm2
|
|
vmovdqa %xmm2,%xmm1
|
|
vpslldq \$8,%xmm2,%xmm2
|
|
vpsrldq \$8,%xmm1,%xmm1
|
|
vporq %xmm2,%xmm16,%xmm16
|
|
# ;reduction
|
|
vpshufd \$0b00100100,%xmm1,%xmm2
|
|
vpcmpeqd TWOONE(%rip),%xmm2,%xmm2
|
|
vpand POLY(%rip),%xmm2,%xmm2
|
|
vpxorq %xmm2,%xmm16,%xmm16 # ; xmm16 holds the HashKey<<1 mod poly
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
vmovdqu64 %xmm16,@{[HashKeyByIdx(1,$arg2)]} # ; store HashKey<<1 mod poly
|
|
___
|
|
&PRECOMPUTE("$arg2", "%xmm16", "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5");
|
|
if ($CLEAR_SCRATCH_REGISTERS) {
|
|
&clear_scratch_gps_asm();
|
|
&clear_scratch_zmms_asm();
|
|
} else {
|
|
$code .= "vzeroupper\n";
|
|
}
|
|
$code .= <<___;
|
|
.Labort_init:
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512
|
|
___
|
|
}
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_setiv_avx512
|
|
# ; (const void *aes_keys,
|
|
# ; void *gcm128ctx,
|
|
# ; const unsigned char *iv,
|
|
# ; size_t ivlen)
|
|
# ;
|
|
# ; Computes E(K,Y0) for finalization, updates current counter Yi in gcm128_context structure.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_setiv_avx512
|
|
.type ossl_aes_gcm_setiv_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_setiv_avx512:
|
|
.cfi_startproc
|
|
.Lsetiv_seh_begin:
|
|
endbranch
|
|
___
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check aes_keys != NULL
|
|
test $arg1,$arg1
|
|
jz .Labort_setiv
|
|
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg2,$arg2
|
|
jz .Labort_setiv
|
|
|
|
# ;; Check iv != NULL
|
|
test $arg3,$arg3
|
|
jz .Labort_setiv
|
|
|
|
# ;; Check ivlen != 0
|
|
test $arg4,$arg4
|
|
jz .Labort_setiv
|
|
___
|
|
}
|
|
|
|
# ; NOTE: code before PROLOG() must not modify any registers
|
|
&PROLOG(
|
|
1, # allocate stack space for hkeys
|
|
0, # do not allocate stack space for AES blocks
|
|
"setiv");
|
|
&GCM_INIT_IV(
|
|
"$arg1", "$arg2", "$arg3", "$arg4", "%r10", "%r11", "%r12", "%k1", "%xmm2", "%zmm1",
|
|
"%zmm11", "%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12",
|
|
"%zmm13", "%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19");
|
|
&EPILOG(
|
|
1, # hkeys were allocated
|
|
$arg4);
|
|
$code .= <<___;
|
|
.Labort_setiv:
|
|
ret
|
|
.Lsetiv_seh_end:
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_setiv_avx512, .-ossl_aes_gcm_setiv_avx512
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_update_aad_avx512
|
|
# ; (unsigned char *gcm128ctx,
|
|
# ; const unsigned char *aad,
|
|
# ; size_t aadlen)
|
|
# ;
|
|
# ; Updates AAD hash in gcm128_context structure.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_update_aad_avx512
|
|
.type ossl_aes_gcm_update_aad_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_update_aad_avx512:
|
|
.cfi_startproc
|
|
.Lghash_seh_begin:
|
|
endbranch
|
|
___
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg1,$arg1
|
|
jz .Lexit_update_aad
|
|
|
|
# ;; Check aad != NULL
|
|
test $arg2,$arg2
|
|
jz .Lexit_update_aad
|
|
|
|
# ;; Check aadlen != 0
|
|
test $arg3,$arg3
|
|
jz .Lexit_update_aad
|
|
___
|
|
}
|
|
|
|
# ; NOTE: code before PROLOG() must not modify any registers
|
|
&PROLOG(
|
|
1, # allocate stack space for hkeys,
|
|
0, # do not allocate stack space for AES blocks
|
|
"ghash");
|
|
&GCM_UPDATE_AAD(
|
|
"$arg1", "$arg2", "$arg3", "%r10", "%r11", "%r12", "%k1", "%xmm14", "%zmm1", "%zmm11",
|
|
"%zmm3", "%zmm4", "%zmm5", "%zmm6", "%zmm7", "%zmm8", "%zmm9", "%zmm10", "%zmm12", "%zmm13",
|
|
"%zmm15", "%zmm16", "%zmm17", "%zmm18", "%zmm19");
|
|
&EPILOG(
|
|
1, # hkeys were allocated
|
|
$arg3);
|
|
$code .= <<___;
|
|
.Lexit_update_aad:
|
|
ret
|
|
.Lghash_seh_end:
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_update_aad_avx512, .-ossl_aes_gcm_update_aad_avx512
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_encrypt_avx512
|
|
# ; (const void* aes_keys,
|
|
# ; void *gcm128ctx,
|
|
# ; unsigned int *pblocklen,
|
|
# ; const unsigned char *in,
|
|
# ; size_t len,
|
|
# ; unsigned char *out);
|
|
# ;
|
|
# ; Performs encryption of data |in| of len |len|, and stores the output in |out|.
|
|
# ; Stores encrypted partial block (if any) in gcm128ctx and its length in |pblocklen|.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_encrypt_avx512
|
|
.type ossl_aes_gcm_encrypt_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_encrypt_avx512:
|
|
.cfi_startproc
|
|
.Lencrypt_seh_begin:
|
|
endbranch
|
|
___
|
|
|
|
# ; NOTE: code before PROLOG() must not modify any registers
|
|
&PROLOG(
|
|
1, # allocate stack space for hkeys
|
|
1, # allocate stack space for AES blocks
|
|
"encrypt");
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check aes_keys != NULL
|
|
test $arg1,$arg1
|
|
jz .Lexit_gcm_encrypt
|
|
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg2,$arg2
|
|
jz .Lexit_gcm_encrypt
|
|
|
|
# ;; Check pblocklen != NULL
|
|
test $arg3,$arg3
|
|
jz .Lexit_gcm_encrypt
|
|
|
|
# ;; Check in != NULL
|
|
test $arg4,$arg4
|
|
jz .Lexit_gcm_encrypt
|
|
|
|
# ;; Check if len != 0
|
|
cmp \$0,$arg5
|
|
jz .Lexit_gcm_encrypt
|
|
|
|
# ;; Check out != NULL
|
|
cmp \$0,$arg6
|
|
jz .Lexit_gcm_encrypt
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
# ; load number of rounds from AES_KEY structure (offset in bytes is
|
|
# ; size of the |rd_key| buffer)
|
|
mov `4*15*4`($arg1),%eax
|
|
cmp \$9,%eax
|
|
je .Laes_gcm_encrypt_128_avx512
|
|
cmp \$11,%eax
|
|
je .Laes_gcm_encrypt_192_avx512
|
|
cmp \$13,%eax
|
|
je .Laes_gcm_encrypt_256_avx512
|
|
xor %eax,%eax
|
|
jmp .Lexit_gcm_encrypt
|
|
___
|
|
for my $keylen (sort keys %aes_rounds) {
|
|
$NROUNDS = $aes_rounds{$keylen};
|
|
$code .= <<___;
|
|
.align 32
|
|
.Laes_gcm_encrypt_${keylen}_avx512:
|
|
___
|
|
&GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "ENC");
|
|
$code .= "jmp .Lexit_gcm_encrypt\n";
|
|
}
|
|
$code .= ".Lexit_gcm_encrypt:\n";
|
|
&EPILOG(1, $arg5);
|
|
$code .= <<___;
|
|
ret
|
|
.Lencrypt_seh_end:
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_encrypt_avx512, .-ossl_aes_gcm_encrypt_avx512
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_decrypt_avx512
|
|
# ; (const void* keys,
|
|
# ; void *gcm128ctx,
|
|
# ; unsigned int *pblocklen,
|
|
# ; const unsigned char *in,
|
|
# ; size_t len,
|
|
# ; unsigned char *out);
|
|
# ;
|
|
# ; Performs decryption of data |in| of len |len|, and stores the output in |out|.
|
|
# ; Stores decrypted partial block (if any) in gcm128ctx and its length in |pblocklen|.
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_decrypt_avx512
|
|
.type ossl_aes_gcm_decrypt_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_decrypt_avx512:
|
|
.cfi_startproc
|
|
.Ldecrypt_seh_begin:
|
|
endbranch
|
|
___
|
|
|
|
# ; NOTE: code before PROLOG() must not modify any registers
|
|
&PROLOG(
|
|
1, # allocate stack space for hkeys
|
|
1, # allocate stack space for AES blocks
|
|
"decrypt");
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check keys != NULL
|
|
test $arg1,$arg1
|
|
jz .Lexit_gcm_decrypt
|
|
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg2,$arg2
|
|
jz .Lexit_gcm_decrypt
|
|
|
|
# ;; Check pblocklen != NULL
|
|
test $arg3,$arg3
|
|
jz .Lexit_gcm_decrypt
|
|
|
|
# ;; Check in != NULL
|
|
test $arg4,$arg4
|
|
jz .Lexit_gcm_decrypt
|
|
|
|
# ;; Check if len != 0
|
|
cmp \$0,$arg5
|
|
jz .Lexit_gcm_decrypt
|
|
|
|
# ;; Check out != NULL
|
|
cmp \$0,$arg6
|
|
jz .Lexit_gcm_decrypt
|
|
___
|
|
}
|
|
$code .= <<___;
|
|
# ; load number of rounds from AES_KEY structure (offset in bytes is
|
|
# ; size of the |rd_key| buffer)
|
|
mov `4*15*4`($arg1),%eax
|
|
cmp \$9,%eax
|
|
je .Laes_gcm_decrypt_128_avx512
|
|
cmp \$11,%eax
|
|
je .Laes_gcm_decrypt_192_avx512
|
|
cmp \$13,%eax
|
|
je .Laes_gcm_decrypt_256_avx512
|
|
xor %eax,%eax
|
|
jmp .Lexit_gcm_decrypt
|
|
___
|
|
for my $keylen (sort keys %aes_rounds) {
|
|
$NROUNDS = $aes_rounds{$keylen};
|
|
$code .= <<___;
|
|
.align 32
|
|
.Laes_gcm_decrypt_${keylen}_avx512:
|
|
___
|
|
&GCM_ENC_DEC("$arg1", "$arg2", "$arg3", "$arg4", "$arg5", "$arg6", "DEC");
|
|
$code .= "jmp .Lexit_gcm_decrypt\n";
|
|
}
|
|
$code .= ".Lexit_gcm_decrypt:\n";
|
|
&EPILOG(1, $arg5);
|
|
$code .= <<___;
|
|
ret
|
|
.Ldecrypt_seh_end:
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_decrypt_avx512, .-ossl_aes_gcm_decrypt_avx512
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_aes_gcm_finalize_vaes_avx512
|
|
# ; (void *gcm128ctx,
|
|
# ; unsigned int pblocklen);
|
|
# ;
|
|
# ; Finalizes encryption / decryption
|
|
# ; Leaf function (does not allocate stack space, does not use non-volatile registers).
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_aes_gcm_finalize_avx512
|
|
.type ossl_aes_gcm_finalize_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_aes_gcm_finalize_avx512:
|
|
.cfi_startproc
|
|
endbranch
|
|
___
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg1,$arg1
|
|
jz .Labort_finalize
|
|
___
|
|
}
|
|
|
|
&GCM_COMPLETE("$arg1", "$arg2");
|
|
|
|
$code .= <<___;
|
|
.Labort_finalize:
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_aes_gcm_finalize_avx512, .-ossl_aes_gcm_finalize_avx512
|
|
___
|
|
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
# ;void ossl_gcm_gmult_avx512(u64 Xi[2],
|
|
# ; const void* gcm128ctx)
|
|
# ;
|
|
# ; Leaf function (does not allocate stack space, does not use non-volatile registers).
|
|
# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
$code .= <<___;
|
|
.globl ossl_gcm_gmult_avx512
|
|
.hidden ossl_gcm_gmult_avx512
|
|
.type ossl_gcm_gmult_avx512,\@abi-omnipotent
|
|
.align 32
|
|
ossl_gcm_gmult_avx512:
|
|
.cfi_startproc
|
|
endbranch
|
|
___
|
|
if ($CHECK_FUNCTION_ARGUMENTS) {
|
|
$code .= <<___;
|
|
# ;; Check Xi != NULL
|
|
test $arg1,$arg1
|
|
jz .Labort_gmult
|
|
|
|
# ;; Check gcm128ctx != NULL
|
|
test $arg2,$arg2
|
|
jz .Labort_gmult
|
|
___
|
|
}
|
|
$code .= "vmovdqu64 ($arg1),%xmm1\n";
|
|
$code .= "vmovdqu64 @{[HashKeyByIdx(1,$arg2)]},%xmm2\n";
|
|
|
|
&GHASH_MUL("%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5");
|
|
|
|
$code .= "vmovdqu64 %xmm1,($arg1)\n";
|
|
if ($CLEAR_SCRATCH_REGISTERS) {
|
|
&clear_scratch_gps_asm();
|
|
&clear_scratch_zmms_asm();
|
|
} else {
|
|
$code .= "vzeroupper\n";
|
|
}
|
|
$code .= <<___;
|
|
.Labort_gmult:
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_gcm_gmult_avx512, .-ossl_gcm_gmult_avx512
|
|
___
|
|
|
|
if ($win64) {
|
|
|
|
# Add unwind metadata for SEH.
|
|
|
|
# See https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-160
|
|
my $UWOP_PUSH_NONVOL = 0;
|
|
my $UWOP_ALLOC_LARGE = 1;
|
|
my $UWOP_SET_FPREG = 3;
|
|
my $UWOP_SAVE_XMM128 = 8;
|
|
my %UWOP_REG_NUMBER = (
|
|
rax => 0,
|
|
rcx => 1,
|
|
rdx => 2,
|
|
rbx => 3,
|
|
rsp => 4,
|
|
rbp => 5,
|
|
rsi => 6,
|
|
rdi => 7,
|
|
map(("r$_" => $_), (8 .. 15)));
|
|
|
|
$code .= <<___;
|
|
.section .pdata
|
|
.align 4
|
|
.rva .Lsetiv_seh_begin
|
|
.rva .Lsetiv_seh_end
|
|
.rva .Lsetiv_seh_info
|
|
|
|
.rva .Lghash_seh_begin
|
|
.rva .Lghash_seh_end
|
|
.rva .Lghash_seh_info
|
|
|
|
.rva .Lencrypt_seh_begin
|
|
.rva .Lencrypt_seh_end
|
|
.rva .Lencrypt_seh_info
|
|
|
|
.rva .Ldecrypt_seh_begin
|
|
.rva .Ldecrypt_seh_end
|
|
.rva .Ldecrypt_seh_info
|
|
|
|
.section .xdata
|
|
___
|
|
|
|
foreach my $func_name ("setiv", "ghash", "encrypt", "decrypt") {
|
|
$code .= <<___;
|
|
.align 8
|
|
.L${func_name}_seh_info:
|
|
.byte 1 # version 1, no flags
|
|
.byte .L${func_name}_seh_prolog_end-.L${func_name}_seh_begin
|
|
.byte 31 # num_slots = 1*8 + 2 + 1 + 2*10
|
|
# FR = rbp; Offset from RSP = $XMM_STORAGE scaled on 16
|
|
.byte @{[$UWOP_REG_NUMBER{rbp} | (($XMM_STORAGE / 16 ) << 4)]}
|
|
___
|
|
|
|
# Metadata for %xmm15-%xmm6
|
|
# Occupy 2 slots each
|
|
for (my $reg_idx = 15; $reg_idx >= 6; $reg_idx--) {
|
|
|
|
# Scaled-by-16 stack offset
|
|
my $xmm_reg_offset = ($reg_idx - 6);
|
|
$code .= <<___;
|
|
.byte .L${func_name}_seh_save_xmm${reg_idx}-.L${func_name}_seh_begin
|
|
.byte @{[$UWOP_SAVE_XMM128 | (${reg_idx} << 4)]}
|
|
.value $xmm_reg_offset
|
|
___
|
|
}
|
|
|
|
$code .= <<___;
|
|
# Frame pointer (occupy 1 slot)
|
|
.byte .L${func_name}_seh_setfp-.L${func_name}_seh_begin
|
|
.byte $UWOP_SET_FPREG
|
|
|
|
# Occupy 2 slots, as stack allocation < 512K, but > 128 bytes
|
|
.byte .L${func_name}_seh_allocstack_xmm-.L${func_name}_seh_begin
|
|
.byte $UWOP_ALLOC_LARGE
|
|
.value `($XMM_STORAGE + 8) / 8`
|
|
___
|
|
|
|
# Metadata for GPR regs
|
|
# Occupy 1 slot each
|
|
foreach my $reg ("rsi", "rdi", "r15", "r14", "r13", "r12", "rbp", "rbx") {
|
|
$code .= <<___;
|
|
.byte .L${func_name}_seh_push_${reg}-.L${func_name}_seh_begin
|
|
.byte @{[$UWOP_PUSH_NONVOL | ($UWOP_REG_NUMBER{$reg} << 4)]}
|
|
___
|
|
}
|
|
}
|
|
}
|
|
|
|
$code .= <<___;
|
|
.section .rodata align=16
|
|
.align 16
|
|
POLY: .quad 0x0000000000000001, 0xC200000000000000
|
|
|
|
.align 64
|
|
POLY2:
|
|
.quad 0x00000001C2000000, 0xC200000000000000
|
|
.quad 0x00000001C2000000, 0xC200000000000000
|
|
.quad 0x00000001C2000000, 0xC200000000000000
|
|
.quad 0x00000001C2000000, 0xC200000000000000
|
|
|
|
.align 16
|
|
TWOONE: .quad 0x0000000000000001, 0x0000000100000000
|
|
|
|
# ;;; Order of these constants should not change.
|
|
# ;;; More specifically, ALL_F should follow SHIFT_MASK, and ZERO should follow ALL_F
|
|
.align 64
|
|
SHUF_MASK:
|
|
.quad 0x08090A0B0C0D0E0F, 0x0001020304050607
|
|
.quad 0x08090A0B0C0D0E0F, 0x0001020304050607
|
|
.quad 0x08090A0B0C0D0E0F, 0x0001020304050607
|
|
.quad 0x08090A0B0C0D0E0F, 0x0001020304050607
|
|
|
|
.align 16
|
|
SHIFT_MASK:
|
|
.quad 0x0706050403020100, 0x0f0e0d0c0b0a0908
|
|
|
|
ALL_F:
|
|
.quad 0xffffffffffffffff, 0xffffffffffffffff
|
|
|
|
ZERO:
|
|
.quad 0x0000000000000000, 0x0000000000000000
|
|
|
|
.align 16
|
|
ONE:
|
|
.quad 0x0000000000000001, 0x0000000000000000
|
|
|
|
.align 16
|
|
ONEf:
|
|
.quad 0x0000000000000000, 0x0100000000000000
|
|
|
|
.align 64
|
|
ddq_add_1234:
|
|
.quad 0x0000000000000001, 0x0000000000000000
|
|
.quad 0x0000000000000002, 0x0000000000000000
|
|
.quad 0x0000000000000003, 0x0000000000000000
|
|
.quad 0x0000000000000004, 0x0000000000000000
|
|
|
|
.align 64
|
|
ddq_add_5678:
|
|
.quad 0x0000000000000005, 0x0000000000000000
|
|
.quad 0x0000000000000006, 0x0000000000000000
|
|
.quad 0x0000000000000007, 0x0000000000000000
|
|
.quad 0x0000000000000008, 0x0000000000000000
|
|
|
|
.align 64
|
|
ddq_add_4444:
|
|
.quad 0x0000000000000004, 0x0000000000000000
|
|
.quad 0x0000000000000004, 0x0000000000000000
|
|
.quad 0x0000000000000004, 0x0000000000000000
|
|
.quad 0x0000000000000004, 0x0000000000000000
|
|
|
|
.align 64
|
|
ddq_add_8888:
|
|
.quad 0x0000000000000008, 0x0000000000000000
|
|
.quad 0x0000000000000008, 0x0000000000000000
|
|
.quad 0x0000000000000008, 0x0000000000000000
|
|
.quad 0x0000000000000008, 0x0000000000000000
|
|
|
|
.align 64
|
|
ddq_addbe_1234:
|
|
.quad 0x0000000000000000, 0x0100000000000000
|
|
.quad 0x0000000000000000, 0x0200000000000000
|
|
.quad 0x0000000000000000, 0x0300000000000000
|
|
.quad 0x0000000000000000, 0x0400000000000000
|
|
|
|
.align 64
|
|
ddq_addbe_4444:
|
|
.quad 0x0000000000000000, 0x0400000000000000
|
|
.quad 0x0000000000000000, 0x0400000000000000
|
|
.quad 0x0000000000000000, 0x0400000000000000
|
|
.quad 0x0000000000000000, 0x0400000000000000
|
|
|
|
.align 64
|
|
byte_len_to_mask_table:
|
|
.value 0x0000, 0x0001, 0x0003, 0x0007
|
|
.value 0x000f, 0x001f, 0x003f, 0x007f
|
|
.value 0x00ff, 0x01ff, 0x03ff, 0x07ff
|
|
.value 0x0fff, 0x1fff, 0x3fff, 0x7fff
|
|
.value 0xffff
|
|
|
|
.align 64
|
|
byte64_len_to_mask_table:
|
|
.quad 0x0000000000000000, 0x0000000000000001
|
|
.quad 0x0000000000000003, 0x0000000000000007
|
|
.quad 0x000000000000000f, 0x000000000000001f
|
|
.quad 0x000000000000003f, 0x000000000000007f
|
|
.quad 0x00000000000000ff, 0x00000000000001ff
|
|
.quad 0x00000000000003ff, 0x00000000000007ff
|
|
.quad 0x0000000000000fff, 0x0000000000001fff
|
|
.quad 0x0000000000003fff, 0x0000000000007fff
|
|
.quad 0x000000000000ffff, 0x000000000001ffff
|
|
.quad 0x000000000003ffff, 0x000000000007ffff
|
|
.quad 0x00000000000fffff, 0x00000000001fffff
|
|
.quad 0x00000000003fffff, 0x00000000007fffff
|
|
.quad 0x0000000000ffffff, 0x0000000001ffffff
|
|
.quad 0x0000000003ffffff, 0x0000000007ffffff
|
|
.quad 0x000000000fffffff, 0x000000001fffffff
|
|
.quad 0x000000003fffffff, 0x000000007fffffff
|
|
.quad 0x00000000ffffffff, 0x00000001ffffffff
|
|
.quad 0x00000003ffffffff, 0x00000007ffffffff
|
|
.quad 0x0000000fffffffff, 0x0000001fffffffff
|
|
.quad 0x0000003fffffffff, 0x0000007fffffffff
|
|
.quad 0x000000ffffffffff, 0x000001ffffffffff
|
|
.quad 0x000003ffffffffff, 0x000007ffffffffff
|
|
.quad 0x00000fffffffffff, 0x00001fffffffffff
|
|
.quad 0x00003fffffffffff, 0x00007fffffffffff
|
|
.quad 0x0000ffffffffffff, 0x0001ffffffffffff
|
|
.quad 0x0003ffffffffffff, 0x0007ffffffffffff
|
|
.quad 0x000fffffffffffff, 0x001fffffffffffff
|
|
.quad 0x003fffffffffffff, 0x007fffffffffffff
|
|
.quad 0x00ffffffffffffff, 0x01ffffffffffffff
|
|
.quad 0x03ffffffffffffff, 0x07ffffffffffffff
|
|
.quad 0x0fffffffffffffff, 0x1fffffffffffffff
|
|
.quad 0x3fffffffffffffff, 0x7fffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
___
|
|
|
|
} else {
|
|
# Fallback for old assembler
|
|
$code .= <<___;
|
|
.text
|
|
.globl ossl_vaes_vpclmulqdq_capable
|
|
.type ossl_vaes_vpclmulqdq_capable,\@abi-omnipotent
|
|
ossl_vaes_vpclmulqdq_capable:
|
|
xor %eax,%eax
|
|
ret
|
|
.size ossl_vaes_vpclmulqdq_capable, .-ossl_vaes_vpclmulqdq_capable
|
|
|
|
.globl ossl_aes_gcm_init_avx512
|
|
.globl ossl_aes_gcm_setiv_avx512
|
|
.globl ossl_aes_gcm_update_aad_avx512
|
|
.globl ossl_aes_gcm_encrypt_avx512
|
|
.globl ossl_aes_gcm_decrypt_avx512
|
|
.globl ossl_aes_gcm_finalize_avx512
|
|
.globl ossl_gcm_gmult_avx512
|
|
|
|
.type ossl_aes_gcm_init_avx512,\@abi-omnipotent
|
|
ossl_aes_gcm_init_avx512:
|
|
ossl_aes_gcm_setiv_avx512:
|
|
ossl_aes_gcm_update_aad_avx512:
|
|
ossl_aes_gcm_encrypt_avx512:
|
|
ossl_aes_gcm_decrypt_avx512:
|
|
ossl_aes_gcm_finalize_avx512:
|
|
ossl_gcm_gmult_avx512:
|
|
.byte 0x0f,0x0b # ud2
|
|
ret
|
|
.size ossl_aes_gcm_init_avx512, .-ossl_aes_gcm_init_avx512
|
|
___
|
|
}
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
print $code;
|
|
close STDOUT or die "error closing STDOUT: $!";
|