openssl/test/evp_test.c
Jiasheng Jiang 5203a8dfdc test/evp_test.c: Add check for OPENSSL_strdup
As the potential failure of the OPENSSL_strdup(),
it should be better to check the return value and
return error if fails.

Signed-off-by: Jiasheng Jiang <jiasheng@iscas.ac.cn>

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18592)
2022-06-22 17:00:33 +10:00

4132 lines
118 KiB
C

/*
* Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#define OPENSSL_SUPPRESS_DEPRECATED /* EVP_PKEY_new_CMAC_key */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/provider.h>
#include <openssl/x509v3.h>
#include <openssl/pkcs12.h>
#include <openssl/kdf.h>
#include <openssl/params.h>
#include <openssl/core_names.h>
#include <openssl/fips_names.h>
#include "internal/numbers.h"
#include "internal/nelem.h"
#include "crypto/evp.h"
#include "testutil.h"
typedef struct evp_test_buffer_st EVP_TEST_BUFFER;
DEFINE_STACK_OF(EVP_TEST_BUFFER)
#define AAD_NUM 4
typedef struct evp_test_method_st EVP_TEST_METHOD;
/* Structure holding test information */
typedef struct evp_test_st {
STANZA s; /* Common test stanza */
char *name;
int skip; /* Current test should be skipped */
const EVP_TEST_METHOD *meth; /* method for this test */
const char *err, *aux_err; /* Error string for test */
char *expected_err; /* Expected error value of test */
char *reason; /* Expected error reason string */
void *data; /* test specific data */
} EVP_TEST;
/* Test method structure */
struct evp_test_method_st {
/* Name of test as it appears in file */
const char *name;
/* Initialise test for "alg" */
int (*init) (EVP_TEST * t, const char *alg);
/* Clean up method */
void (*cleanup) (EVP_TEST * t);
/* Test specific name value pair processing */
int (*parse) (EVP_TEST * t, const char *name, const char *value);
/* Run the test itself */
int (*run_test) (EVP_TEST * t);
};
/* Linked list of named keys. */
typedef struct key_list_st {
char *name;
EVP_PKEY *key;
struct key_list_st *next;
} KEY_LIST;
typedef enum OPTION_choice {
OPT_ERR = -1,
OPT_EOF = 0,
OPT_CONFIG_FILE,
OPT_TEST_ENUM
} OPTION_CHOICE;
static OSSL_PROVIDER *prov_null = NULL;
static OSSL_LIB_CTX *libctx = NULL;
/* List of public and private keys */
static KEY_LIST *private_keys;
static KEY_LIST *public_keys;
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
static int is_digest_disabled(const char *name);
static int is_pkey_disabled(const char *name);
static int is_mac_disabled(const char *name);
static int is_cipher_disabled(const char *name);
static int is_kdf_disabled(const char *name);
/*
* Compare two memory regions for equality, returning zero if they differ.
* However, if there is expected to be an error and the actual error
* matches then the memory is expected to be different so handle this
* case without producing unnecessary test framework output.
*/
static int memory_err_compare(EVP_TEST *t, const char *err,
const void *expected, size_t expected_len,
const void *got, size_t got_len)
{
int r;
if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
r = !TEST_mem_ne(expected, expected_len, got, got_len);
else
r = TEST_mem_eq(expected, expected_len, got, got_len);
if (!r)
t->err = err;
return r;
}
/*
* Structure used to hold a list of blocks of memory to test
* calls to "update" like functions.
*/
struct evp_test_buffer_st {
unsigned char *buf;
size_t buflen;
size_t count;
int count_set;
};
static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
{
if (db != NULL) {
OPENSSL_free(db->buf);
OPENSSL_free(db);
}
}
/* append buffer to a list */
static int evp_test_buffer_append(const char *value,
STACK_OF(EVP_TEST_BUFFER) **sk)
{
EVP_TEST_BUFFER *db = NULL;
if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
goto err;
if (!parse_bin(value, &db->buf, &db->buflen))
goto err;
db->count = 1;
db->count_set = 0;
if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
goto err;
if (!sk_EVP_TEST_BUFFER_push(*sk, db))
goto err;
return 1;
err:
evp_test_buffer_free(db);
return 0;
}
/* replace last buffer in list with copies of itself */
static int evp_test_buffer_ncopy(const char *value,
STACK_OF(EVP_TEST_BUFFER) *sk)
{
EVP_TEST_BUFFER *db;
unsigned char *tbuf, *p;
size_t tbuflen;
int ncopy = atoi(value);
int i;
if (ncopy <= 0)
return 0;
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
return 0;
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
tbuflen = db->buflen * ncopy;
if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
return 0;
for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
memcpy(p, db->buf, db->buflen);
OPENSSL_free(db->buf);
db->buf = tbuf;
db->buflen = tbuflen;
return 1;
}
/* set repeat count for last buffer in list */
static int evp_test_buffer_set_count(const char *value,
STACK_OF(EVP_TEST_BUFFER) *sk)
{
EVP_TEST_BUFFER *db;
int count = atoi(value);
if (count <= 0)
return 0;
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
return 0;
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
if (db->count_set != 0)
return 0;
db->count = (size_t)count;
db->count_set = 1;
return 1;
}
/* call "fn" with each element of the list in turn */
static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
int (*fn)(void *ctx,
const unsigned char *buf,
size_t buflen),
void *ctx)
{
int i;
for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
size_t j;
for (j = 0; j < tb->count; j++) {
if (fn(ctx, tb->buf, tb->buflen) <= 0)
return 0;
}
}
return 1;
}
/*
* Unescape some sequences in string literals (only \n for now).
* Return an allocated buffer, set |out_len|. If |input_len|
* is zero, get an empty buffer but set length to zero.
*/
static unsigned char* unescape(const char *input, size_t input_len,
size_t *out_len)
{
unsigned char *ret, *p;
size_t i;
if (input_len == 0) {
*out_len = 0;
return OPENSSL_zalloc(1);
}
/* Escaping is non-expanding; over-allocate original size for simplicity. */
if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
return NULL;
for (i = 0; i < input_len; i++) {
if (*input == '\\') {
if (i == input_len - 1 || *++input != 'n') {
TEST_error("Bad escape sequence in file");
goto err;
}
*p++ = '\n';
i++;
input++;
} else {
*p++ = *input++;
}
}
*out_len = p - ret;
return ret;
err:
OPENSSL_free(ret);
return NULL;
}
/*
* For a hex string "value" convert to a binary allocated buffer.
* Return 1 on success or 0 on failure.
*/
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
{
long len;
/* Check for NULL literal */
if (strcmp(value, "NULL") == 0) {
*buf = NULL;
*buflen = 0;
return 1;
}
/* Check for empty value */
if (*value == '\0') {
/*
* Don't return NULL for zero length buffer. This is needed for
* some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
* buffer even if the key length is 0, in order to detect key reset.
*/
*buf = OPENSSL_malloc(1);
if (*buf == NULL)
return 0;
**buf = 0;
*buflen = 0;
return 1;
}
/* Check for string literal */
if (value[0] == '"') {
size_t vlen = strlen(++value);
if (vlen == 0 || value[vlen - 1] != '"')
return 0;
vlen--;
*buf = unescape(value, vlen, buflen);
return *buf == NULL ? 0 : 1;
}
/* Otherwise assume as hex literal and convert it to binary buffer */
if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
TEST_info("Can't convert %s", value);
TEST_openssl_errors();
return -1;
}
/* Size of input buffer means we'll never overflow */
*buflen = len;
return 1;
}
/**
** MESSAGE DIGEST TESTS
**/
typedef struct digest_data_st {
/* Digest this test is for */
const EVP_MD *digest;
EVP_MD *fetched_digest;
/* Input to digest */
STACK_OF(EVP_TEST_BUFFER) *input;
/* Expected output */
unsigned char *output;
size_t output_len;
/* Padding type */
int pad_type;
} DIGEST_DATA;
static int digest_test_init(EVP_TEST *t, const char *alg)
{
DIGEST_DATA *mdat;
const EVP_MD *digest;
EVP_MD *fetched_digest;
if (is_digest_disabled(alg)) {
TEST_info("skipping, '%s' is disabled", alg);
t->skip = 1;
return 1;
}
if ((digest = fetched_digest = EVP_MD_fetch(libctx, alg, NULL)) == NULL
&& (digest = EVP_get_digestbyname(alg)) == NULL)
return 0;
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
return 0;
t->data = mdat;
mdat->digest = digest;
mdat->fetched_digest = fetched_digest;
mdat->pad_type = 0;
if (fetched_digest != NULL)
TEST_info("%s is fetched", alg);
return 1;
}
static void digest_test_cleanup(EVP_TEST *t)
{
DIGEST_DATA *mdat = t->data;
sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
OPENSSL_free(mdat->output);
EVP_MD_free(mdat->fetched_digest);
}
static int digest_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
DIGEST_DATA *mdata = t->data;
if (strcmp(keyword, "Input") == 0)
return evp_test_buffer_append(value, &mdata->input);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
if (strcmp(keyword, "Count") == 0)
return evp_test_buffer_set_count(value, mdata->input);
if (strcmp(keyword, "Ncopy") == 0)
return evp_test_buffer_ncopy(value, mdata->input);
if (strcmp(keyword, "Padding") == 0)
return (mdata->pad_type = atoi(value)) > 0;
return 0;
}
static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
{
return EVP_DigestUpdate(ctx, buf, buflen);
}
static int test_duplicate_md_ctx(EVP_TEST *t, EVP_MD_CTX *mctx)
{
char dont[] = "touch";
if (!TEST_ptr(mctx))
return 0;
if (!EVP_DigestFinalXOF(mctx, (unsigned char *)dont, 0)) {
EVP_MD_CTX_free(mctx);
t->err = "DIGESTFINALXOF_ERROR";
return 0;
}
if (!TEST_str_eq(dont, "touch")) {
EVP_MD_CTX_free(mctx);
t->err = "DIGESTFINALXOF_ERROR";
return 0;
}
EVP_MD_CTX_free(mctx);
return 1;
}
static int digest_test_run(EVP_TEST *t)
{
DIGEST_DATA *expected = t->data;
EVP_TEST_BUFFER *inbuf;
EVP_MD_CTX *mctx;
unsigned char *got = NULL;
unsigned int got_len;
size_t size = 0;
int xof = 0;
OSSL_PARAM params[2];
printf("test %s (%d %d)\n", t->name, t->s.start, t->s.curr);
t->err = "TEST_FAILURE";
if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
goto err;
got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
expected->output_len : EVP_MAX_MD_SIZE);
if (!TEST_ptr(got))
goto err;
if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
t->err = "DIGESTINIT_ERROR";
goto err;
}
if (expected->pad_type > 0) {
params[0] = OSSL_PARAM_construct_int(OSSL_DIGEST_PARAM_PAD_TYPE,
&expected->pad_type);
params[1] = OSSL_PARAM_construct_end();
if (!TEST_int_gt(EVP_MD_CTX_set_params(mctx, params), 0)) {
t->err = "PARAMS_ERROR";
goto err;
}
}
if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
t->err = "DIGESTUPDATE_ERROR";
goto err;
}
xof = (EVP_MD_get_flags(expected->digest) & EVP_MD_FLAG_XOF) != 0;
if (xof) {
EVP_MD_CTX *mctx_cpy;
if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
goto err;
}
if (!TEST_true(EVP_MD_CTX_copy(mctx_cpy, mctx))) {
EVP_MD_CTX_free(mctx_cpy);
goto err;
} else if (!test_duplicate_md_ctx(t, mctx_cpy)) {
goto err;
}
if (!test_duplicate_md_ctx(t, EVP_MD_CTX_dup(mctx)))
goto err;
got_len = expected->output_len;
if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
t->err = "DIGESTFINALXOF_ERROR";
goto err;
}
} else {
if (!EVP_DigestFinal(mctx, got, &got_len)) {
t->err = "DIGESTFINAL_ERROR";
goto err;
}
}
if (!TEST_int_eq(expected->output_len, got_len)) {
t->err = "DIGEST_LENGTH_MISMATCH";
goto err;
}
if (!memory_err_compare(t, "DIGEST_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
/* Test the EVP_Q_digest interface as well */
if (sk_EVP_TEST_BUFFER_num(expected->input) == 1
&& !xof
/* This should never fail but we need the returned pointer now */
&& !TEST_ptr(inbuf = sk_EVP_TEST_BUFFER_value(expected->input, 0))
&& !inbuf->count_set) {
OPENSSL_cleanse(got, got_len);
if (!TEST_true(EVP_Q_digest(libctx,
EVP_MD_get0_name(expected->fetched_digest),
NULL, inbuf->buf, inbuf->buflen,
got, &size))
|| !TEST_mem_eq(got, size,
expected->output, expected->output_len)) {
t->err = "EVP_Q_digest failed";
goto err;
}
}
err:
OPENSSL_free(got);
EVP_MD_CTX_free(mctx);
return 1;
}
static const EVP_TEST_METHOD digest_test_method = {
"Digest",
digest_test_init,
digest_test_cleanup,
digest_test_parse,
digest_test_run
};
/**
*** CIPHER TESTS
**/
typedef struct cipher_data_st {
const EVP_CIPHER *cipher;
EVP_CIPHER *fetched_cipher;
int enc;
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
int aead;
unsigned char *key;
size_t key_len;
size_t key_bits; /* Used by RC2 */
unsigned char *iv;
unsigned char *next_iv; /* Expected IV state after operation */
unsigned int rounds;
size_t iv_len;
unsigned char *plaintext;
size_t plaintext_len;
unsigned char *ciphertext;
size_t ciphertext_len;
/* AEAD ciphers only */
unsigned char *aad[AAD_NUM];
size_t aad_len[AAD_NUM];
int tls_aad;
int tls_version;
unsigned char *tag;
const char *cts_mode;
size_t tag_len;
int tag_late;
unsigned char *mac_key;
size_t mac_key_len;
} CIPHER_DATA;
static int cipher_test_init(EVP_TEST *t, const char *alg)
{
const EVP_CIPHER *cipher;
EVP_CIPHER *fetched_cipher;
CIPHER_DATA *cdat;
int m;
if (is_cipher_disabled(alg)) {
t->skip = 1;
TEST_info("skipping, '%s' is disabled", alg);
return 1;
}
ERR_set_mark();
if ((cipher = fetched_cipher = EVP_CIPHER_fetch(libctx, alg, NULL)) == NULL
&& (cipher = EVP_get_cipherbyname(alg)) == NULL) {
/* a stitched cipher might not be available */
if (strstr(alg, "HMAC") != NULL) {
ERR_pop_to_mark();
t->skip = 1;
TEST_info("skipping, '%s' is not available", alg);
return 1;
}
ERR_clear_last_mark();
return 0;
}
ERR_clear_last_mark();
if (!TEST_ptr(cdat = OPENSSL_zalloc(sizeof(*cdat))))
return 0;
cdat->cipher = cipher;
cdat->fetched_cipher = fetched_cipher;
cdat->enc = -1;
m = EVP_CIPHER_get_mode(cipher);
if (EVP_CIPHER_get_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
cdat->aead = m != 0 ? m : -1;
else
cdat->aead = 0;
t->data = cdat;
if (fetched_cipher != NULL)
TEST_info("%s is fetched", alg);
return 1;
}
static void cipher_test_cleanup(EVP_TEST *t)
{
int i;
CIPHER_DATA *cdat = t->data;
OPENSSL_free(cdat->key);
OPENSSL_free(cdat->iv);
OPENSSL_free(cdat->next_iv);
OPENSSL_free(cdat->ciphertext);
OPENSSL_free(cdat->plaintext);
for (i = 0; i < AAD_NUM; i++)
OPENSSL_free(cdat->aad[i]);
OPENSSL_free(cdat->tag);
OPENSSL_free(cdat->mac_key);
EVP_CIPHER_free(cdat->fetched_cipher);
}
static int cipher_test_parse(EVP_TEST *t, const char *keyword,
const char *value)
{
CIPHER_DATA *cdat = t->data;
int i;
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &cdat->key, &cdat->key_len);
if (strcmp(keyword, "Rounds") == 0) {
i = atoi(value);
if (i < 0)
return -1;
cdat->rounds = (unsigned int)i;
return 1;
}
if (strcmp(keyword, "IV") == 0)
return parse_bin(value, &cdat->iv, &cdat->iv_len);
if (strcmp(keyword, "NextIV") == 0)
return parse_bin(value, &cdat->next_iv, &cdat->iv_len);
if (strcmp(keyword, "Plaintext") == 0)
return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
if (strcmp(keyword, "Ciphertext") == 0)
return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
if (strcmp(keyword, "KeyBits") == 0) {
i = atoi(value);
if (i < 0)
return -1;
cdat->key_bits = (size_t)i;
return 1;
}
if (cdat->aead) {
int tls_aad = 0;
if (strcmp(keyword, "TLSAAD") == 0)
cdat->tls_aad = tls_aad = 1;
if (strcmp(keyword, "AAD") == 0 || tls_aad) {
for (i = 0; i < AAD_NUM; i++) {
if (cdat->aad[i] == NULL)
return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
}
return -1;
}
if (strcmp(keyword, "Tag") == 0)
return parse_bin(value, &cdat->tag, &cdat->tag_len);
if (strcmp(keyword, "SetTagLate") == 0) {
if (strcmp(value, "TRUE") == 0)
cdat->tag_late = 1;
else if (strcmp(value, "FALSE") == 0)
cdat->tag_late = 0;
else
return -1;
return 1;
}
if (strcmp(keyword, "MACKey") == 0)
return parse_bin(value, &cdat->mac_key, &cdat->mac_key_len);
if (strcmp(keyword, "TLSVersion") == 0) {
char *endptr;
cdat->tls_version = (int)strtol(value, &endptr, 0);
return value[0] != '\0' && endptr[0] == '\0';
}
}
if (strcmp(keyword, "Operation") == 0) {
if (strcmp(value, "ENCRYPT") == 0)
cdat->enc = 1;
else if (strcmp(value, "DECRYPT") == 0)
cdat->enc = 0;
else
return -1;
return 1;
}
if (strcmp(keyword, "CTSMode") == 0) {
cdat->cts_mode = value;
return 1;
}
return 0;
}
static int cipher_test_enc(EVP_TEST *t, int enc,
size_t out_misalign, size_t inp_misalign, int frag)
{
CIPHER_DATA *expected = t->data;
unsigned char *in, *expected_out, *tmp = NULL;
size_t in_len, out_len, donelen = 0;
int ok = 0, tmplen, chunklen, tmpflen, i;
EVP_CIPHER_CTX *ctx_base = NULL;
EVP_CIPHER_CTX *ctx = NULL, *duped;
t->err = "TEST_FAILURE";
if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new()))
goto err;
if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
goto err;
EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
if (enc) {
in = expected->plaintext;
in_len = expected->plaintext_len;
expected_out = expected->ciphertext;
out_len = expected->ciphertext_len;
} else {
in = expected->ciphertext;
in_len = expected->ciphertext_len;
expected_out = expected->plaintext;
out_len = expected->plaintext_len;
}
if (inp_misalign == (size_t)-1) {
/* Exercise in-place encryption */
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign, in, in_len);
} else {
inp_misalign += 16 - ((out_misalign + in_len) & 15);
/*
* 'tmp' will store both output and copy of input. We make the copy
* of input to specifically aligned part of 'tmp'. So we just
* figured out how much padding would ensure the required alignment,
* now we allocate extended buffer and finally copy the input just
* past inp_misalign in expression below. Output will be written
* past out_misalign...
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign + in_len);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign, in, in_len);
}
if (!EVP_CipherInit_ex(ctx_base, expected->cipher, NULL, NULL, NULL, enc)) {
t->err = "CIPHERINIT_ERROR";
goto err;
}
if (expected->cts_mode != NULL) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_CIPHER_PARAM_CTS_MODE,
(char *)expected->cts_mode,
0);
params[1] = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx_base, params)) {
t->err = "INVALID_CTS_MODE";
goto err;
}
}
if (expected->iv) {
if (expected->aead) {
if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN,
expected->iv_len, 0) <= 0) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
} else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_get_iv_length(ctx_base)) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
}
if (expected->aead && !expected->tls_aad) {
unsigned char *tag;
/*
* If encrypting or OCB just set tag length initially, otherwise
* set tag length and value.
*/
if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
t->err = "TAG_LENGTH_SET_ERROR";
tag = NULL;
} else {
t->err = "TAG_SET_ERROR";
tag = expected->tag;
}
if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG,
expected->tag_len, tag) <= 0)
goto err;
}
}
if (expected->rounds > 0) {
int rounds = (int)expected->rounds;
if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL) <= 0) {
t->err = "INVALID_ROUNDS";
goto err;
}
}
if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) {
t->err = "INVALID_KEY_LENGTH";
goto err;
}
if (expected->key_bits > 0) {
int bits = (int)expected->key_bits;
if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL) <= 0) {
t->err = "INVALID KEY BITS";
goto err;
}
}
if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) {
t->err = "KEY_SET_ERROR";
goto err;
}
/* Check that we get the same IV back */
if (expected->iv != NULL) {
/* Some (e.g., GCM) tests use IVs longer than EVP_MAX_IV_LENGTH. */
unsigned char iv[128];
if (!TEST_true(EVP_CIPHER_CTX_get_updated_iv(ctx_base, iv, sizeof(iv)))
|| ((EVP_CIPHER_get_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
&& !TEST_mem_eq(expected->iv, expected->iv_len, iv,
expected->iv_len))) {
t->err = "INVALID_IV";
goto err;
}
}
/* Test that the cipher dup functions correctly if it is supported */
ERR_set_mark();
if (EVP_CIPHER_CTX_copy(ctx, ctx_base)) {
EVP_CIPHER_CTX_free(ctx_base);
ctx_base = NULL;
} else {
EVP_CIPHER_CTX_free(ctx);
ctx = ctx_base;
}
/* Likewise for dup */
duped = EVP_CIPHER_CTX_dup(ctx);
if (duped != NULL) {
EVP_CIPHER_CTX_free(ctx);
ctx = duped;
}
ERR_pop_to_mark();
if (expected->mac_key != NULL
&& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
(int)expected->mac_key_len,
(void *)expected->mac_key) <= 0) {
t->err = "SET_MAC_KEY_ERROR";
goto err;
}
if (expected->tls_version) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&expected->tls_version);
params[1] = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
t->err = "SET_TLS_VERSION_ERROR";
goto err;
}
}
if (expected->aead == EVP_CIPH_CCM_MODE) {
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
goto err;
}
}
if (expected->aad[0] != NULL && !expected->tls_aad) {
t->err = "AAD_SET_ERROR";
if (!frag) {
for (i = 0; expected->aad[i] != NULL; i++) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
expected->aad_len[i]))
goto err;
}
} else {
/*
* Supply the AAD in chunks less than the block size where possible
*/
for (i = 0; expected->aad[i] != NULL; i++) {
if (expected->aad_len[i] > 0) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
goto err;
donelen++;
}
if (expected->aad_len[i] > 2) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
expected->aad[i] + donelen,
expected->aad_len[i] - 2))
goto err;
donelen += expected->aad_len[i] - 2;
}
if (expected->aad_len[i] > 1
&& !EVP_CipherUpdate(ctx, NULL, &chunklen,
expected->aad[i] + donelen, 1))
goto err;
}
}
}
if (expected->tls_aad) {
OSSL_PARAM params[2];
char *tls_aad;
/* duplicate the aad as the implementation might modify it */
if ((tls_aad = OPENSSL_memdup(expected->aad[0],
expected->aad_len[0])) == NULL)
goto err;
params[0] = OSSL_PARAM_construct_octet_string(OSSL_CIPHER_PARAM_AEAD_TLS1_AAD,
tls_aad,
expected->aad_len[0]);
params[1] = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
OPENSSL_free(tls_aad);
t->err = "TLS1_AAD_ERROR";
goto err;
}
OPENSSL_free(tls_aad);
} else if (!enc && (expected->aead == EVP_CIPH_OCB_MODE
|| expected->tag_late)) {
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
expected->tag_len, expected->tag) <= 0) {
t->err = "TAG_SET_ERROR";
goto err;
}
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
t->err = "CIPHERUPDATE_ERROR";
tmplen = 0;
if (!frag) {
/* We supply the data all in one go */
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
goto err;
} else {
/* Supply the data in chunks less than the block size where possible */
if (in_len > 0) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
goto err;
tmplen += chunklen;
in++;
in_len--;
}
if (in_len > 1) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, in_len - 1))
goto err;
tmplen += chunklen;
in += in_len - 1;
in_len = 1;
}
if (in_len > 0) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, 1))
goto err;
tmplen += chunklen;
}
}
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
t->err = "CIPHERFINAL_ERROR";
goto err;
}
if (!enc && expected->tls_aad) {
if (expected->tls_version >= TLS1_1_VERSION
&& (EVP_CIPHER_is_a(expected->cipher, "AES-128-CBC-HMAC-SHA1")
|| EVP_CIPHER_is_a(expected->cipher, "AES-256-CBC-HMAC-SHA1"))) {
tmplen -= expected->iv_len;
expected_out += expected->iv_len;
out_misalign += expected->iv_len;
}
if ((int)out_len > tmplen + tmpflen)
out_len = tmplen + tmpflen;
}
if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
tmp + out_misalign, tmplen + tmpflen))
goto err;
if (enc && expected->aead && !expected->tls_aad) {
unsigned char rtag[16];
if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
t->err = "TAG_LENGTH_INTERNAL_ERROR";
goto err;
}
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
expected->tag_len, rtag) <= 0) {
t->err = "TAG_RETRIEVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
expected->tag, expected->tag_len,
rtag, expected->tag_len))
goto err;
}
/* Check the updated IV */
if (expected->next_iv != NULL) {
/* Some (e.g., GCM) tests use IVs longer than EVP_MAX_IV_LENGTH. */
unsigned char iv[128];
if (!TEST_true(EVP_CIPHER_CTX_get_updated_iv(ctx, iv, sizeof(iv)))
|| ((EVP_CIPHER_get_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
&& !TEST_mem_eq(expected->next_iv, expected->iv_len, iv,
expected->iv_len))) {
t->err = "INVALID_NEXT_IV";
goto err;
}
}
t->err = NULL;
ok = 1;
err:
OPENSSL_free(tmp);
if (ctx != ctx_base)
EVP_CIPHER_CTX_free(ctx_base);
EVP_CIPHER_CTX_free(ctx);
return ok;
}
static int cipher_test_run(EVP_TEST *t)
{
CIPHER_DATA *cdat = t->data;
int rv, frag = 0;
size_t out_misalign, inp_misalign;
if (!cdat->key) {
t->err = "NO_KEY";
return 0;
}
if (!cdat->iv && EVP_CIPHER_get_iv_length(cdat->cipher)) {
/* IV is optional and usually omitted in wrap mode */
if (EVP_CIPHER_get_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
t->err = "NO_IV";
return 0;
}
}
if (cdat->aead && cdat->tag == NULL && !cdat->tls_aad) {
t->err = "NO_TAG";
return 0;
}
for (out_misalign = 0; out_misalign <= 1;) {
static char aux_err[64];
t->aux_err = aux_err;
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
if (inp_misalign == (size_t)-1) {
/* kludge: inp_misalign == -1 means "exercise in-place" */
BIO_snprintf(aux_err, sizeof(aux_err),
"%s in-place, %sfragmented",
out_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
} else {
BIO_snprintf(aux_err, sizeof(aux_err),
"%s output and %s input, %sfragmented",
out_misalign ? "misaligned" : "aligned",
inp_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
}
if (cdat->enc) {
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
if (cdat->enc != 1) {
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
}
if (out_misalign == 1 && frag == 0) {
/*
* XTS, SIV, CCM, stitched ciphers and Wrap modes have special
* requirements about input lengths so we don't fragment for those
*/
if (cdat->aead == EVP_CIPH_CCM_MODE
|| cdat->aead == EVP_CIPH_CBC_MODE
|| (cdat->aead == -1
&& EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_STREAM_CIPHER)
|| ((EVP_CIPHER_get_flags(cdat->cipher) & EVP_CIPH_FLAG_CTS) != 0)
|| EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
|| EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
|| EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
break;
out_misalign = 0;
frag++;
} else {
out_misalign++;
}
}
t->aux_err = NULL;
return 1;
}
static const EVP_TEST_METHOD cipher_test_method = {
"Cipher",
cipher_test_init,
cipher_test_cleanup,
cipher_test_parse,
cipher_test_run
};
/**
** MAC TESTS
**/
typedef struct mac_data_st {
/* MAC type in one form or another */
char *mac_name;
EVP_MAC *mac; /* for mac_test_run_mac */
int type; /* for mac_test_run_pkey */
/* Algorithm string for this MAC */
char *alg;
/* MAC key */
unsigned char *key;
size_t key_len;
/* MAC IV (GMAC) */
unsigned char *iv;
size_t iv_len;
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
unsigned char *custom;
size_t custom_len;
/* MAC salt (blake2) */
unsigned char *salt;
size_t salt_len;
/* XOF mode? */
int xof;
/* Reinitialization fails */
int no_reinit;
/* Collection of controls */
STACK_OF(OPENSSL_STRING) *controls;
/* Output size */
int output_size;
/* Block size */
int block_size;
} MAC_DATA;
static int mac_test_init(EVP_TEST *t, const char *alg)
{
EVP_MAC *mac = NULL;
int type = NID_undef;
MAC_DATA *mdat;
if (is_mac_disabled(alg)) {
TEST_info("skipping, '%s' is disabled", alg);
t->skip = 1;
return 1;
}
if ((mac = EVP_MAC_fetch(libctx, alg, NULL)) == NULL) {
/*
* Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
* For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
* the EVP_PKEY method.
*/
size_t sz = strlen(alg);
static const char epilogue[] = " by EVP_PKEY";
if (sz >= sizeof(epilogue)
&& strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
sz -= sizeof(epilogue) - 1;
if (strncmp(alg, "HMAC", sz) == 0)
type = EVP_PKEY_HMAC;
else if (strncmp(alg, "CMAC", sz) == 0)
type = EVP_PKEY_CMAC;
else if (strncmp(alg, "Poly1305", sz) == 0)
type = EVP_PKEY_POLY1305;
else if (strncmp(alg, "SipHash", sz) == 0)
type = EVP_PKEY_SIPHASH;
else
return 0;
}
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
return 0;
mdat->type = type;
if (!TEST_ptr(mdat->mac_name = OPENSSL_strdup(alg))) {
OPENSSL_free(mdat);
return 0;
}
mdat->mac = mac;
if (!TEST_ptr(mdat->controls = sk_OPENSSL_STRING_new_null())) {
OPENSSL_free(mdat->mac_name);
OPENSSL_free(mdat);
return 0;
}
mdat->output_size = mdat->block_size = -1;
t->data = mdat;
return 1;
}
/* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
static void openssl_free(char *m)
{
OPENSSL_free(m);
}
static void mac_test_cleanup(EVP_TEST *t)
{
MAC_DATA *mdat = t->data;
EVP_MAC_free(mdat->mac);
OPENSSL_free(mdat->mac_name);
sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
OPENSSL_free(mdat->alg);
OPENSSL_free(mdat->key);
OPENSSL_free(mdat->iv);
OPENSSL_free(mdat->custom);
OPENSSL_free(mdat->salt);
OPENSSL_free(mdat->input);
OPENSSL_free(mdat->output);
}
static int mac_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
MAC_DATA *mdata = t->data;
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &mdata->key, &mdata->key_len);
if (strcmp(keyword, "IV") == 0)
return parse_bin(value, &mdata->iv, &mdata->iv_len);
if (strcmp(keyword, "Custom") == 0)
return parse_bin(value, &mdata->custom, &mdata->custom_len);
if (strcmp(keyword, "Salt") == 0)
return parse_bin(value, &mdata->salt, &mdata->salt_len);
if (strcmp(keyword, "Algorithm") == 0) {
mdata->alg = OPENSSL_strdup(value);
if (mdata->alg == NULL)
return -1;
return 1;
}
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
if (strcmp(keyword, "XOF") == 0)
return mdata->xof = 1;
if (strcmp(keyword, "NoReinit") == 0)
return mdata->no_reinit = 1;
if (strcmp(keyword, "Ctrl") == 0) {
char *data = OPENSSL_strdup(value);
if (data == NULL)
return -1;
return sk_OPENSSL_STRING_push(mdata->controls, data) != 0;
}
if (strcmp(keyword, "OutputSize") == 0) {
mdata->output_size = atoi(value);
if (mdata->output_size < 0)
return -1;
return 1;
}
if (strcmp(keyword, "BlockSize") == 0) {
mdata->block_size = atoi(value);
if (mdata->block_size < 0)
return -1;
return 1;
}
return 0;
}
static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
const char *value)
{
int rv = 0;
char *p, *tmpval;
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
return 0;
p = strchr(tmpval, ':');
if (p != NULL) {
*p++ = '\0';
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
}
if (rv == -2)
t->err = "PKEY_CTRL_INVALID";
else if (rv <= 0)
t->err = "PKEY_CTRL_ERROR";
else
rv = 1;
OPENSSL_free(tmpval);
return rv > 0;
}
static int mac_test_run_pkey(EVP_TEST *t)
{
MAC_DATA *expected = t->data;
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
EVP_PKEY *key = NULL;
const char *mdname = NULL;
EVP_CIPHER *cipher = NULL;
unsigned char *got = NULL;
size_t got_len;
int i;
/* We don't do XOF mode via PKEY */
if (expected->xof)
return 1;
if (expected->alg == NULL)
TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
else
TEST_info("Trying the EVP_PKEY %s test with %s",
OBJ_nid2sn(expected->type), expected->alg);
if (expected->type == EVP_PKEY_CMAC) {
#ifdef OPENSSL_NO_DEPRECATED_3_0
TEST_info("skipping, PKEY CMAC '%s' is disabled", expected->alg);
t->skip = 1;
t->err = NULL;
goto err;
#else
OSSL_LIB_CTX *tmpctx;
if (expected->alg != NULL && is_cipher_disabled(expected->alg)) {
TEST_info("skipping, PKEY CMAC '%s' is disabled", expected->alg);
t->skip = 1;
t->err = NULL;
goto err;
}
if (!TEST_ptr(cipher = EVP_CIPHER_fetch(libctx, expected->alg, NULL))) {
t->err = "MAC_KEY_CREATE_ERROR";
goto err;
}
tmpctx = OSSL_LIB_CTX_set0_default(libctx);
key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
cipher);
OSSL_LIB_CTX_set0_default(tmpctx);
#endif
} else {
key = EVP_PKEY_new_raw_private_key_ex(libctx,
OBJ_nid2sn(expected->type), NULL,
expected->key, expected->key_len);
}
if (key == NULL) {
t->err = "MAC_KEY_CREATE_ERROR";
goto err;
}
if (expected->type == EVP_PKEY_HMAC && expected->alg != NULL) {
if (is_digest_disabled(expected->alg)) {
TEST_info("skipping, HMAC '%s' is disabled", expected->alg);
t->skip = 1;
t->err = NULL;
goto err;
}
mdname = expected->alg;
}
if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (!EVP_DigestSignInit_ex(mctx, &pctx, mdname, libctx, NULL, key, NULL)) {
t->err = "DIGESTSIGNINIT_ERROR";
goto err;
}
for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
if (!mac_test_ctrl_pkey(t, pctx,
sk_OPENSSL_STRING_value(expected->controls,
i))) {
t->err = "EVPPKEYCTXCTRL_ERROR";
goto err;
}
if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
t->err = "DIGESTSIGNUPDATE_ERROR";
goto err;
}
if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "TEST_FAILURE";
goto err;
}
if (!EVP_DigestSignFinal(mctx, got, &got_len)
|| !memory_err_compare(t, "TEST_MAC_ERR",
expected->output, expected->output_len,
got, got_len)) {
t->err = "TEST_MAC_ERR";
goto err;
}
t->err = NULL;
err:
EVP_CIPHER_free(cipher);
EVP_MD_CTX_free(mctx);
OPENSSL_free(got);
EVP_PKEY_CTX_free(genctx);
EVP_PKEY_free(key);
return 1;
}
static int mac_test_run_mac(EVP_TEST *t)
{
MAC_DATA *expected = t->data;
EVP_MAC_CTX *ctx = NULL;
unsigned char *got = NULL;
size_t got_len = 0, size = 0;
int i, block_size = -1, output_size = -1;
OSSL_PARAM params[21], sizes[3], *psizes = sizes;
size_t params_n = 0;
size_t params_n_allocstart = 0;
const OSSL_PARAM *defined_params =
EVP_MAC_settable_ctx_params(expected->mac);
int xof;
int reinit = 1;
if (expected->alg == NULL)
TEST_info("Trying the EVP_MAC %s test", expected->mac_name);
else
TEST_info("Trying the EVP_MAC %s test with %s",
expected->mac_name, expected->alg);
if (expected->alg != NULL) {
/*
* The underlying algorithm may be a cipher or a digest.
* We don't know which it is, but we can ask the MAC what it
* should be and bet on that.
*/
if (OSSL_PARAM_locate_const(defined_params,
OSSL_MAC_PARAM_CIPHER) != NULL) {
params[params_n++] =
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
expected->alg, 0);
} else if (OSSL_PARAM_locate_const(defined_params,
OSSL_MAC_PARAM_DIGEST) != NULL) {
params[params_n++] =
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
expected->alg, 0);
} else {
t->err = "MAC_BAD_PARAMS";
goto err;
}
}
if (expected->custom != NULL)
params[params_n++] =
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
expected->custom,
expected->custom_len);
if (expected->salt != NULL)
params[params_n++] =
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT,
expected->salt,
expected->salt_len);
if (expected->iv != NULL)
params[params_n++] =
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
expected->iv,
expected->iv_len);
/* Unknown controls. They must match parameters that the MAC recognizes */
if (params_n + sk_OPENSSL_STRING_num(expected->controls)
>= OSSL_NELEM(params)) {
t->err = "MAC_TOO_MANY_PARAMETERS";
goto err;
}
params_n_allocstart = params_n;
for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
char *tmpkey, *tmpval;
char *value = sk_OPENSSL_STRING_value(expected->controls, i);
if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) {
t->err = "MAC_PARAM_ERROR";
goto err;
}
tmpval = strchr(tmpkey, ':');
if (tmpval != NULL)
*tmpval++ = '\0';
if (tmpval == NULL
|| !OSSL_PARAM_allocate_from_text(&params[params_n],
defined_params,
tmpkey, tmpval,
strlen(tmpval), NULL)) {
OPENSSL_free(tmpkey);
t->err = "MAC_PARAM_ERROR";
goto err;
}
params_n++;
OPENSSL_free(tmpkey);
}
params[params_n] = OSSL_PARAM_construct_end();
if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) {
t->err = "MAC_CREATE_ERROR";
goto err;
}
if (!EVP_MAC_init(ctx, expected->key, expected->key_len, params)) {
t->err = "MAC_INIT_ERROR";
goto err;
}
if (expected->output_size >= 0)
*psizes++ = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_SIZE,
&output_size);
if (expected->block_size >= 0)
*psizes++ = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_BLOCK_SIZE,
&block_size);
if (psizes != sizes) {
*psizes = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_MAC_CTX_get_params(ctx, sizes))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->output_size >= 0
&& !TEST_int_eq(output_size, expected->output_size)) {
t->err = "TEST_FAILURE";
goto err;
}
if (expected->block_size >= 0
&& !TEST_int_eq(block_size, expected->block_size)) {
t->err = "TEST_FAILURE";
goto err;
}
}
retry:
if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
t->err = "MAC_UPDATE_ERROR";
goto err;
}
xof = expected->xof;
if (xof) {
if (!TEST_ptr(got = OPENSSL_malloc(expected->output_len))) {
t->err = "TEST_FAILURE";
goto err;
}
if (!EVP_MAC_finalXOF(ctx, got, expected->output_len)
|| !memory_err_compare(t, "TEST_MAC_ERR",
expected->output, expected->output_len,
got, expected->output_len)) {
t->err = "MAC_FINAL_ERROR";
goto err;
}
} else {
if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) {
t->err = "MAC_FINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "TEST_FAILURE";
goto err;
}
if (!EVP_MAC_final(ctx, got, &got_len, got_len)
|| !memory_err_compare(t, "TEST_MAC_ERR",
expected->output, expected->output_len,
got, got_len)) {
t->err = "TEST_MAC_ERR";
goto err;
}
}
if (reinit--) {
OSSL_PARAM ivparams[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
int ret;
/* If the MAC uses IV, we have to set it again */
if (expected->iv != NULL) {
ivparams[0] =
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
expected->iv,
expected->iv_len);
ivparams[1] = OSSL_PARAM_construct_end();
}
ERR_set_mark();
ret = EVP_MAC_init(ctx, NULL, 0, ivparams);
if (expected->no_reinit) {
if (ret) {
ERR_clear_last_mark();
t->err = "MAC_REINIT_SHOULD_FAIL";
goto err;
}
} else if (ret) {
ERR_clear_last_mark();
OPENSSL_free(got);
got = NULL;
goto retry;
} else {
ERR_clear_last_mark();
t->err = "MAC_REINIT_ERROR";
goto err;
}
/* If reinitialization fails, it is unsupported by the algorithm */
ERR_pop_to_mark();
}
t->err = NULL;
/* Test the EVP_Q_mac interface as well */
if (!xof) {
OPENSSL_cleanse(got, got_len);
if (!TEST_true(EVP_Q_mac(libctx, expected->mac_name, NULL,
expected->alg, params,
expected->key, expected->key_len,
expected->input, expected->input_len,
got, got_len, &size))
|| !TEST_mem_eq(got, size,
expected->output, expected->output_len)) {
t->err = "EVP_Q_mac failed";
goto err;
}
}
err:
while (params_n-- > params_n_allocstart) {
OPENSSL_free(params[params_n].data);
}
EVP_MAC_CTX_free(ctx);
OPENSSL_free(got);
return 1;
}
static int mac_test_run(EVP_TEST *t)
{
MAC_DATA *expected = t->data;
if (expected->mac != NULL)
return mac_test_run_mac(t);
return mac_test_run_pkey(t);
}
static const EVP_TEST_METHOD mac_test_method = {
"MAC",
mac_test_init,
mac_test_cleanup,
mac_test_parse,
mac_test_run
};
/**
** PUBLIC KEY TESTS
** These are all very similar and share much common code.
**/
typedef struct pkey_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Key operation to perform */
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen);
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
} PKEY_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int pkey_test_init(EVP_TEST *t, const char *name,
int use_public,
int (*keyopinit) (EVP_PKEY_CTX *ctx),
int (*keyop)(EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs,
size_t tbslen))
{
PKEY_DATA *kdata;
EVP_PKEY *pkey = NULL;
int rv = 0;
if (use_public)
rv = find_key(&pkey, name, public_keys);
if (rv == 0)
rv = find_key(&pkey, name, private_keys);
if (rv == 0 || pkey == NULL) {
TEST_info("skipping, key '%s' is disabled", name);
t->skip = 1;
return 1;
}
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
EVP_PKEY_free(pkey);
return 0;
}
kdata->keyop = keyop;
if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new_from_pkey(libctx, pkey, NULL))) {
EVP_PKEY_free(pkey);
OPENSSL_free(kdata);
return 0;
}
if (keyopinit(kdata->ctx) <= 0)
t->err = "KEYOP_INIT_ERROR";
t->data = kdata;
return 1;
}
static void pkey_test_cleanup(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
OPENSSL_free(kdata->input);
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
const char *value)
{
int rv = 0;
char *p, *tmpval;
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
return 0;
p = strchr(tmpval, ':');
if (p != NULL) {
*p++ = '\0';
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
}
if (rv == -2) {
t->err = "PKEY_CTRL_INVALID";
rv = 1;
} else if (p != NULL && rv <= 0) {
if (is_digest_disabled(p) || is_cipher_disabled(p)) {
TEST_info("skipping, '%s' is disabled", p);
t->skip = 1;
rv = 1;
} else {
t->err = "PKEY_CTRL_ERROR";
rv = 1;
}
}
OPENSSL_free(tmpval);
return rv > 0;
}
static int pkey_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &kdata->input, &kdata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pkey_test_run(EVP_TEST *t)
{
PKEY_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
EVP_PKEY_CTX *copy = NULL;
if (expected->keyop(expected->ctx, NULL, &got_len,
expected->input, expected->input_len) <= 0
|| !TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "KEYOP_LENGTH_ERROR";
goto err;
}
if (expected->keyop(expected->ctx, got, &got_len,
expected->input, expected->input_len) <= 0) {
t->err = "KEYOP_ERROR";
goto err;
}
if (!memory_err_compare(t, "KEYOP_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
OPENSSL_free(got);
got = NULL;
/* Repeat the test on a copy. */
if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->keyop(copy, NULL, &got_len, expected->input,
expected->input_len) <= 0
|| !TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "KEYOP_LENGTH_ERROR";
goto err;
}
if (expected->keyop(copy, got, &got_len, expected->input,
expected->input_len) <= 0) {
t->err = "KEYOP_ERROR";
goto err;
}
if (!memory_err_compare(t, "KEYOP_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
err:
OPENSSL_free(got);
EVP_PKEY_CTX_free(copy);
return 1;
}
static int sign_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
}
static const EVP_TEST_METHOD psign_test_method = {
"Sign",
sign_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_recover_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover);
}
static const EVP_TEST_METHOD pverify_recover_test_method = {
"VerifyRecover",
verify_recover_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int decrypt_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt);
}
static const EVP_TEST_METHOD pdecrypt_test_method = {
"Decrypt",
decrypt_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
}
static int verify_test_run(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
kdata->input, kdata->input_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD pverify_test_method = {
"Verify",
verify_test_init,
pkey_test_cleanup,
pkey_test_parse,
verify_test_run
};
static int pderive_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
}
static int pderive_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
int validate = 0;
if (strcmp(keyword, "PeerKeyValidate") == 0)
validate = 1;
if (validate || strcmp(keyword, "PeerKey") == 0) {
EVP_PKEY *peer;
if (find_key(&peer, value, public_keys) == 0)
return -1;
if (EVP_PKEY_derive_set_peer_ex(kdata->ctx, peer, validate) <= 0) {
t->err = "DERIVE_SET_PEER_ERROR";
return 1;
}
t->err = NULL;
return 1;
}
if (strcmp(keyword, "SharedSecret") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
if (strcmp(keyword, "KDFType") == 0) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
(char *)value, 0);
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_CTX_set_params(kdata->ctx, params) == 0)
return -1;
return 1;
}
if (strcmp(keyword, "KDFDigest") == 0) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
(char *)value, 0);
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_CTX_set_params(kdata->ctx, params) == 0)
return -1;
return 1;
}
if (strcmp(keyword, "CEKAlg") == 0) {
OSSL_PARAM params[2];
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_CEK_ALG,
(char *)value, 0);
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_CTX_set_params(kdata->ctx, params) == 0)
return -1;
return 1;
}
if (strcmp(keyword, "KDFOutlen") == 0) {
OSSL_PARAM params[2];
char *endptr;
size_t outlen = (size_t)strtoul(value, &endptr, 0);
if (endptr[0] != '\0')
return -1;
params[0] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
&outlen);
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_CTX_set_params(kdata->ctx, params) == 0)
return -1;
return 1;
}
return 0;
}
static int pderive_test_run(EVP_TEST *t)
{
EVP_PKEY_CTX *dctx = NULL;
PKEY_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (!TEST_ptr(dctx = EVP_PKEY_CTX_dup(expected->ctx))) {
t->err = "DERIVE_ERROR";
goto err;
}
if (EVP_PKEY_derive(dctx, NULL, &got_len) <= 0
|| !TEST_size_t_ne(got_len, 0)) {
t->err = "DERIVE_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "DERIVE_ERROR";
goto err;
}
if (EVP_PKEY_derive(dctx, got, &got_len) <= 0) {
t->err = "DERIVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
EVP_PKEY_CTX_free(dctx);
return 1;
}
static const EVP_TEST_METHOD pderive_test_method = {
"Derive",
pderive_test_init,
pkey_test_cleanup,
pderive_test_parse,
pderive_test_run
};
/**
** PBE TESTS
**/
typedef enum pbe_type_enum {
PBE_TYPE_INVALID = 0,
PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
} PBE_TYPE;
typedef struct pbe_data_st {
PBE_TYPE pbe_type;
/* scrypt parameters */
uint64_t N, r, p, maxmem;
/* PKCS#12 parameters */
int id, iter;
const EVP_MD *md;
/* password */
unsigned char *pass;
size_t pass_len;
/* salt */
unsigned char *salt;
size_t salt_len;
/* Expected output */
unsigned char *key;
size_t key_len;
} PBE_DATA;
#ifndef OPENSSL_NO_SCRYPT
/* Parse unsigned decimal 64 bit integer value */
static int parse_uint64(const char *value, uint64_t *pr)
{
const char *p = value;
if (!TEST_true(*p)) {
TEST_info("Invalid empty integer value");
return -1;
}
for (*pr = 0; *p; ) {
if (*pr > UINT64_MAX / 10) {
TEST_error("Integer overflow in string %s", value);
return -1;
}
*pr *= 10;
if (!TEST_true(isdigit((unsigned char)*p))) {
TEST_error("Invalid character in string %s", value);
return -1;
}
*pr += *p - '0';
p++;
}
return 1;
}
static int scrypt_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "N") == 0)
return parse_uint64(value, &pdata->N);
if (strcmp(keyword, "p") == 0)
return parse_uint64(value, &pdata->p);
if (strcmp(keyword, "r") == 0)
return parse_uint64(value, &pdata->r);
if (strcmp(keyword, "maxmem") == 0)
return parse_uint64(value, &pdata->maxmem);
return 0;
}
#endif
static int pbkdf2_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "iter") == 0) {
pdata->iter = atoi(value);
if (pdata->iter <= 0)
return -1;
return 1;
}
if (strcmp(keyword, "MD") == 0) {
pdata->md = EVP_get_digestbyname(value);
if (pdata->md == NULL)
return -1;
return 1;
}
return 0;
}
static int pkcs12_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "id") == 0) {
pdata->id = atoi(value);
if (pdata->id <= 0)
return -1;
return 1;
}
return pbkdf2_test_parse(t, keyword, value);
}
static int pbe_test_init(EVP_TEST *t, const char *alg)
{
PBE_DATA *pdat;
PBE_TYPE pbe_type = PBE_TYPE_INVALID;
if (is_kdf_disabled(alg)) {
TEST_info("skipping, '%s' is disabled", alg);
t->skip = 1;
return 1;
}
if (strcmp(alg, "scrypt") == 0) {
pbe_type = PBE_TYPE_SCRYPT;
} else if (strcmp(alg, "pbkdf2") == 0) {
pbe_type = PBE_TYPE_PBKDF2;
} else if (strcmp(alg, "pkcs12") == 0) {
pbe_type = PBE_TYPE_PKCS12;
} else {
TEST_error("Unknown pbe algorithm %s", alg);
return 0;
}
if (!TEST_ptr(pdat = OPENSSL_zalloc(sizeof(*pdat))))
return 0;
pdat->pbe_type = pbe_type;
t->data = pdat;
return 1;
}
static void pbe_test_cleanup(EVP_TEST *t)
{
PBE_DATA *pdat = t->data;
OPENSSL_free(pdat->pass);
OPENSSL_free(pdat->salt);
OPENSSL_free(pdat->key);
}
static int pbe_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "Password") == 0)
return parse_bin(value, &pdata->pass, &pdata->pass_len);
if (strcmp(keyword, "Salt") == 0)
return parse_bin(value, &pdata->salt, &pdata->salt_len);
if (strcmp(keyword, "Key") == 0)
return parse_bin(value, &pdata->key, &pdata->key_len);
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
return pbkdf2_test_parse(t, keyword, value);
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
return pkcs12_test_parse(t, keyword, value);
#ifndef OPENSSL_NO_SCRYPT
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
return scrypt_test_parse(t, keyword, value);
#endif
return 0;
}
static int pbe_test_run(EVP_TEST *t)
{
PBE_DATA *expected = t->data;
unsigned char *key;
EVP_MD *fetched_digest = NULL;
OSSL_LIB_CTX *save_libctx;
save_libctx = OSSL_LIB_CTX_set0_default(libctx);
if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->pbe_type == PBE_TYPE_PBKDF2) {
if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
expected->salt, expected->salt_len,
expected->iter, expected->md,
expected->key_len, key) == 0) {
t->err = "PBKDF2_ERROR";
goto err;
}
#ifndef OPENSSL_NO_SCRYPT
} else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
expected->salt, expected->salt_len,
expected->N, expected->r, expected->p,
expected->maxmem, key, expected->key_len) == 0) {
t->err = "SCRYPT_ERROR";
goto err;
}
#endif
} else if (expected->pbe_type == PBE_TYPE_PKCS12) {
fetched_digest = EVP_MD_fetch(libctx, EVP_MD_get0_name(expected->md),
NULL);
if (fetched_digest == NULL) {
t->err = "PKCS12_ERROR";
goto err;
}
if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
expected->salt, expected->salt_len,
expected->id, expected->iter, expected->key_len,
key, fetched_digest) == 0) {
t->err = "PKCS12_ERROR";
goto err;
}
}
if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
key, expected->key_len))
goto err;
t->err = NULL;
err:
EVP_MD_free(fetched_digest);
OPENSSL_free(key);
OSSL_LIB_CTX_set0_default(save_libctx);
return 1;
}
static const EVP_TEST_METHOD pbe_test_method = {
"PBE",
pbe_test_init,
pbe_test_cleanup,
pbe_test_parse,
pbe_test_run
};
/**
** BASE64 TESTS
**/
typedef enum {
BASE64_CANONICAL_ENCODING = 0,
BASE64_VALID_ENCODING = 1,
BASE64_INVALID_ENCODING = 2
} base64_encoding_type;
typedef struct encode_data_st {
/* Input to encoding */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
base64_encoding_type encoding;
} ENCODE_DATA;
static int encode_test_init(EVP_TEST *t, const char *encoding)
{
ENCODE_DATA *edata;
if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
return 0;
if (strcmp(encoding, "canonical") == 0) {
edata->encoding = BASE64_CANONICAL_ENCODING;
} else if (strcmp(encoding, "valid") == 0) {
edata->encoding = BASE64_VALID_ENCODING;
} else if (strcmp(encoding, "invalid") == 0) {
edata->encoding = BASE64_INVALID_ENCODING;
if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
goto err;
} else {
TEST_error("Bad encoding: %s."
" Should be one of {canonical, valid, invalid}",
encoding);
goto err;
}
t->data = edata;
return 1;
err:
OPENSSL_free(edata);
return 0;
}
static void encode_test_cleanup(EVP_TEST *t)
{
ENCODE_DATA *edata = t->data;
OPENSSL_free(edata->input);
OPENSSL_free(edata->output);
memset(edata, 0, sizeof(*edata));
}
static int encode_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
ENCODE_DATA *edata = t->data;
if (strcmp(keyword, "Input") == 0)
return parse_bin(value, &edata->input, &edata->input_len);
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &edata->output, &edata->output_len);
return 0;
}
static int encode_test_run(EVP_TEST *t)
{
ENCODE_DATA *expected = t->data;
unsigned char *encode_out = NULL, *decode_out = NULL;
int output_len, chunk_len;
EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (expected->encoding == BASE64_CANONICAL_ENCODING) {
if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
|| !TEST_ptr(encode_out =
OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
goto err;
EVP_EncodeInit(encode_ctx);
if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
expected->input, expected->input_len)))
goto err;
output_len = chunk_len;
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
output_len += chunk_len;
if (!memory_err_compare(t, "BAD_ENCODING",
expected->output, expected->output_len,
encode_out, output_len))
goto err;
}
if (!TEST_ptr(decode_out =
OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
goto err;
EVP_DecodeInit(decode_ctx);
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
expected->output_len) < 0) {
t->err = "DECODE_ERROR";
goto err;
}
output_len = chunk_len;
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
t->err = "DECODE_ERROR";
goto err;
}
output_len += chunk_len;
if (expected->encoding != BASE64_INVALID_ENCODING
&& !memory_err_compare(t, "BAD_DECODING",
expected->input, expected->input_len,
decode_out, output_len)) {
t->err = "BAD_DECODING";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(encode_out);
OPENSSL_free(decode_out);
EVP_ENCODE_CTX_free(decode_ctx);
EVP_ENCODE_CTX_free(encode_ctx);
return 1;
}
static const EVP_TEST_METHOD encode_test_method = {
"Encoding",
encode_test_init,
encode_test_cleanup,
encode_test_parse,
encode_test_run,
};
/**
** RAND TESTS
**/
#define MAX_RAND_REPEATS 15
typedef struct rand_data_pass_st {
unsigned char *entropy;
unsigned char *reseed_entropy;
unsigned char *nonce;
unsigned char *pers;
unsigned char *reseed_addin;
unsigned char *addinA;
unsigned char *addinB;
unsigned char *pr_entropyA;
unsigned char *pr_entropyB;
unsigned char *output;
size_t entropy_len, nonce_len, pers_len, addinA_len, addinB_len,
pr_entropyA_len, pr_entropyB_len, output_len, reseed_entropy_len,
reseed_addin_len;
} RAND_DATA_PASS;
typedef struct rand_data_st {
/* Context for this operation */
EVP_RAND_CTX *ctx;
EVP_RAND_CTX *parent;
int n;
int prediction_resistance;
int use_df;
unsigned int generate_bits;
char *cipher;
char *digest;
/* Expected output */
RAND_DATA_PASS data[MAX_RAND_REPEATS];
} RAND_DATA;
static int rand_test_init(EVP_TEST *t, const char *name)
{
RAND_DATA *rdata;
EVP_RAND *rand;
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
unsigned int strength = 256;
if (!TEST_ptr(rdata = OPENSSL_zalloc(sizeof(*rdata))))
return 0;
/* TEST-RAND is available in the FIPS provider but not with "fips=yes" */
rand = EVP_RAND_fetch(libctx, "TEST-RAND", "-fips");
if (rand == NULL)
goto err;
rdata->parent = EVP_RAND_CTX_new(rand, NULL);
EVP_RAND_free(rand);
if (rdata->parent == NULL)
goto err;
*params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
if (!EVP_RAND_CTX_set_params(rdata->parent, params))
goto err;
rand = EVP_RAND_fetch(libctx, name, NULL);
if (rand == NULL)
goto err;
rdata->ctx = EVP_RAND_CTX_new(rand, rdata->parent);
EVP_RAND_free(rand);
if (rdata->ctx == NULL)
goto err;
rdata->n = -1;
t->data = rdata;
return 1;
err:
EVP_RAND_CTX_free(rdata->parent);
OPENSSL_free(rdata);
return 0;
}
static void rand_test_cleanup(EVP_TEST *t)
{
RAND_DATA *rdata = t->data;
int i;
OPENSSL_free(rdata->cipher);
OPENSSL_free(rdata->digest);
for (i = 0; i <= rdata->n; i++) {
OPENSSL_free(rdata->data[i].entropy);
OPENSSL_free(rdata->data[i].reseed_entropy);
OPENSSL_free(rdata->data[i].nonce);
OPENSSL_free(rdata->data[i].pers);
OPENSSL_free(rdata->data[i].reseed_addin);
OPENSSL_free(rdata->data[i].addinA);
OPENSSL_free(rdata->data[i].addinB);
OPENSSL_free(rdata->data[i].pr_entropyA);
OPENSSL_free(rdata->data[i].pr_entropyB);
OPENSSL_free(rdata->data[i].output);
}
EVP_RAND_CTX_free(rdata->ctx);
EVP_RAND_CTX_free(rdata->parent);
}
static int rand_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
RAND_DATA *rdata = t->data;
RAND_DATA_PASS *item;
const char *p;
int n;
if ((p = strchr(keyword, '.')) != NULL) {
n = atoi(++p);
if (n >= MAX_RAND_REPEATS)
return 0;
if (n > rdata->n)
rdata->n = n;
item = rdata->data + n;
if (HAS_PREFIX(keyword, "Entropy."))
return parse_bin(value, &item->entropy, &item->entropy_len);
if (HAS_PREFIX(keyword, "ReseedEntropy."))
return parse_bin(value, &item->reseed_entropy,
&item->reseed_entropy_len);
if (HAS_PREFIX(keyword, "Nonce."))
return parse_bin(value, &item->nonce, &item->nonce_len);
if (HAS_PREFIX(keyword, "PersonalisationString."))
return parse_bin(value, &item->pers, &item->pers_len);
if (HAS_PREFIX(keyword, "ReseedAdditionalInput."))
return parse_bin(value, &item->reseed_addin,
&item->reseed_addin_len);
if (HAS_PREFIX(keyword, "AdditionalInputA."))
return parse_bin(value, &item->addinA, &item->addinA_len);
if (HAS_PREFIX(keyword, "AdditionalInputB."))
return parse_bin(value, &item->addinB, &item->addinB_len);
if (HAS_PREFIX(keyword, "EntropyPredictionResistanceA."))
return parse_bin(value, &item->pr_entropyA, &item->pr_entropyA_len);
if (HAS_PREFIX(keyword, "EntropyPredictionResistanceB."))
return parse_bin(value, &item->pr_entropyB, &item->pr_entropyB_len);
if (HAS_PREFIX(keyword, "Output."))
return parse_bin(value, &item->output, &item->output_len);
} else {
if (strcmp(keyword, "Cipher") == 0)
return TEST_ptr(rdata->cipher = OPENSSL_strdup(value));
if (strcmp(keyword, "Digest") == 0)
return TEST_ptr(rdata->digest = OPENSSL_strdup(value));
if (strcmp(keyword, "DerivationFunction") == 0) {
rdata->use_df = atoi(value) != 0;
return 1;
}
if (strcmp(keyword, "GenerateBits") == 0) {
if ((n = atoi(value)) <= 0 || n % 8 != 0)
return 0;
rdata->generate_bits = (unsigned int)n;
return 1;
}
if (strcmp(keyword, "PredictionResistance") == 0) {
rdata->prediction_resistance = atoi(value) != 0;
return 1;
}
}
return 0;
}
static int rand_test_run(EVP_TEST *t)
{
RAND_DATA *expected = t->data;
RAND_DATA_PASS *item;
unsigned char *got;
size_t got_len = expected->generate_bits / 8;
OSSL_PARAM params[5], *p = params;
int i = -1, ret = 0;
unsigned int strength;
unsigned char *z;
if (!TEST_ptr(got = OPENSSL_malloc(got_len)))
return 0;
*p++ = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_USE_DF, &expected->use_df);
if (expected->cipher != NULL)
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
expected->cipher, 0);
if (expected->digest != NULL)
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_DIGEST,
expected->digest, 0);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_MAC, "HMAC", 0);
*p = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_CTX_set_params(expected->ctx, params)))
goto err;
strength = EVP_RAND_get_strength(expected->ctx);
for (i = 0; i <= expected->n; i++) {
item = expected->data + i;
p = params;
z = item->entropy != NULL ? item->entropy : (unsigned char *)"";
*p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
z, item->entropy_len);
z = item->nonce != NULL ? item->nonce : (unsigned char *)"";
*p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_NONCE,
z, item->nonce_len);
*p = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_instantiate(expected->parent, strength,
0, NULL, 0, params)))
goto err;
z = item->pers != NULL ? item->pers : (unsigned char *)"";
if (!TEST_true(EVP_RAND_instantiate
(expected->ctx, strength,
expected->prediction_resistance, z,
item->pers_len, NULL)))
goto err;
if (item->reseed_entropy != NULL) {
params[0] = OSSL_PARAM_construct_octet_string
(OSSL_RAND_PARAM_TEST_ENTROPY, item->reseed_entropy,
item->reseed_entropy_len);
params[1] = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params)))
goto err;
if (!TEST_true(EVP_RAND_reseed
(expected->ctx, expected->prediction_resistance,
NULL, 0, item->reseed_addin,
item->reseed_addin_len)))
goto err;
}
if (item->pr_entropyA != NULL) {
params[0] = OSSL_PARAM_construct_octet_string
(OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyA,
item->pr_entropyA_len);
params[1] = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params)))
goto err;
}
if (!TEST_true(EVP_RAND_generate
(expected->ctx, got, got_len,
strength, expected->prediction_resistance,
item->addinA, item->addinA_len)))
goto err;
if (item->pr_entropyB != NULL) {
params[0] = OSSL_PARAM_construct_octet_string
(OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyB,
item->pr_entropyB_len);
params[1] = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params)))
goto err;
}
if (!TEST_true(EVP_RAND_generate
(expected->ctx, got, got_len,
strength, expected->prediction_resistance,
item->addinB, item->addinB_len)))
goto err;
if (!TEST_mem_eq(got, got_len, item->output, item->output_len))
goto err;
if (!TEST_true(EVP_RAND_uninstantiate(expected->ctx))
|| !TEST_true(EVP_RAND_uninstantiate(expected->parent))
|| !TEST_true(EVP_RAND_verify_zeroization(expected->ctx))
|| !TEST_int_eq(EVP_RAND_get_state(expected->ctx),
EVP_RAND_STATE_UNINITIALISED))
goto err;
}
t->err = NULL;
ret = 1;
err:
if (ret == 0 && i >= 0)
TEST_info("Error in test case %d of %d\n", i, expected->n + 1);
OPENSSL_free(got);
return ret;
}
static const EVP_TEST_METHOD rand_test_method = {
"RAND",
rand_test_init,
rand_test_cleanup,
rand_test_parse,
rand_test_run
};
/**
** KDF TESTS
**/
typedef struct kdf_data_st {
/* Context for this operation */
EVP_KDF_CTX *ctx;
/* Expected output */
unsigned char *output;
size_t output_len;
OSSL_PARAM params[20];
OSSL_PARAM *p;
} KDF_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int kdf_test_init(EVP_TEST *t, const char *name)
{
KDF_DATA *kdata;
EVP_KDF *kdf;
if (is_kdf_disabled(name)) {
TEST_info("skipping, '%s' is disabled", name);
t->skip = 1;
return 1;
}
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
return 0;
kdata->p = kdata->params;
*kdata->p = OSSL_PARAM_construct_end();
kdf = EVP_KDF_fetch(libctx, name, NULL);
if (kdf == NULL) {
OPENSSL_free(kdata);
return 0;
}
kdata->ctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (kdata->ctx == NULL) {
OPENSSL_free(kdata);
return 0;
}
t->data = kdata;
return 1;
}
static void kdf_test_cleanup(EVP_TEST *t)
{
KDF_DATA *kdata = t->data;
OSSL_PARAM *p;
for (p = kdata->params; p->key != NULL; p++)
OPENSSL_free(p->data);
OPENSSL_free(kdata->output);
EVP_KDF_CTX_free(kdata->ctx);
}
static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
const char *value)
{
KDF_DATA *kdata = t->data;
int rv;
char *p, *name;
const OSSL_PARAM *defs = EVP_KDF_settable_ctx_params(EVP_KDF_CTX_kdf(kctx));
if (!TEST_ptr(name = OPENSSL_strdup(value)))
return 0;
p = strchr(name, ':');
if (p != NULL)
*p++ = '\0';
if (strcmp(name, "r") == 0
&& OSSL_PARAM_locate_const(defs, name) == NULL) {
TEST_info("skipping, setting 'r' is unsupported");
t->skip = 1;
goto end;
}
rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p,
p != NULL ? strlen(p) : 0, NULL);
*++kdata->p = OSSL_PARAM_construct_end();
if (!rv) {
t->err = "KDF_PARAM_ERROR";
OPENSSL_free(name);
return 0;
}
if (p != NULL && strcmp(name, "digest") == 0) {
if (is_digest_disabled(p)) {
TEST_info("skipping, '%s' is disabled", p);
t->skip = 1;
}
goto end;
}
if (p != NULL
&& (strcmp(name, "cipher") == 0
|| strcmp(name, "cekalg") == 0)
&& is_cipher_disabled(p)) {
TEST_info("skipping, '%s' is disabled", p);
t->skip = 1;
goto end;
}
if (p != NULL
&& (strcmp(name, "mac") == 0)
&& is_mac_disabled(p)) {
TEST_info("skipping, '%s' is disabled", p);
t->skip = 1;
}
end:
OPENSSL_free(name);
return 1;
}
static int kdf_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
KDF_DATA *kdata = t->data;
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (HAS_PREFIX(keyword, "Ctrl"))
return kdf_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int kdf_test_run(EVP_TEST *t)
{
KDF_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len = expected->output_len;
EVP_KDF_CTX *ctx;
if (!EVP_KDF_CTX_set_params(expected->ctx, expected->params)) {
t->err = "KDF_CTRL_ERROR";
return 1;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len == 0 ? 1 : got_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if ((ctx = EVP_KDF_CTX_dup(expected->ctx)) != NULL) {
EVP_KDF_CTX_free(expected->ctx);
expected->ctx = ctx;
}
if (EVP_KDF_derive(expected->ctx, got, got_len, NULL) <= 0) {
t->err = "KDF_DERIVE_ERROR";
goto err;
}
if (!memory_err_compare(t, "KDF_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD kdf_test_method = {
"KDF",
kdf_test_init,
kdf_test_cleanup,
kdf_test_parse,
kdf_test_run
};
/**
** PKEY KDF TESTS
**/
typedef struct pkey_kdf_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Expected output */
unsigned char *output;
size_t output_len;
} PKEY_KDF_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
{
PKEY_KDF_DATA *kdata = NULL;
if (is_kdf_disabled(name)) {
TEST_info("skipping, '%s' is disabled", name);
t->skip = 1;
return 1;
}
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
return 0;
kdata->ctx = EVP_PKEY_CTX_new_from_name(libctx, name, NULL);
if (kdata->ctx == NULL
|| EVP_PKEY_derive_init(kdata->ctx) <= 0)
goto err;
t->data = kdata;
return 1;
err:
EVP_PKEY_CTX_free(kdata->ctx);
OPENSSL_free(kdata);
return 0;
}
static void pkey_kdf_test_cleanup(EVP_TEST *t)
{
PKEY_KDF_DATA *kdata = t->data;
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int pkey_kdf_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_KDF_DATA *kdata = t->data;
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &kdata->output, &kdata->output_len);
if (HAS_PREFIX(keyword, "Ctrl"))
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pkey_kdf_test_run(EVP_TEST *t)
{
PKEY_KDF_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len = 0;
/* Find out the KDF output size */
if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
t->err = "INTERNAL_ERROR";
goto err;
}
/*
* We may get an absurd output size, which signals that anything goes.
* If not, we specify a too big buffer for the output, to test that
* EVP_PKEY_derive() can cope with it.
*/
if (got_len == SIZE_MAX || got_len == 0)
got_len = expected->output_len;
else
got_len = expected->output_len * 2;
if (!TEST_ptr(got = OPENSSL_malloc(got_len == 0 ? 1 : got_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
t->err = "KDF_DERIVE_ERROR";
goto err;
}
if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
t->err = "KDF_MISMATCH";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD pkey_kdf_test_method = {
"PKEYKDF",
pkey_kdf_test_init,
pkey_kdf_test_cleanup,
pkey_kdf_test_parse,
pkey_kdf_test_run
};
/**
** KEYPAIR TESTS
**/
typedef struct keypair_test_data_st {
EVP_PKEY *privk;
EVP_PKEY *pubk;
} KEYPAIR_TEST_DATA;
static int keypair_test_init(EVP_TEST *t, const char *pair)
{
KEYPAIR_TEST_DATA *data;
int rv = 0;
EVP_PKEY *pk = NULL, *pubk = NULL;
char *pub, *priv = NULL;
/* Split private and public names. */
if (!TEST_ptr(priv = OPENSSL_strdup(pair))
|| !TEST_ptr(pub = strchr(priv, ':'))) {
t->err = "PARSING_ERROR";
goto end;
}
*pub++ = '\0';
if (!TEST_true(find_key(&pk, priv, private_keys))) {
TEST_info("Can't find private key: %s", priv);
t->err = "MISSING_PRIVATE_KEY";
goto end;
}
if (!TEST_true(find_key(&pubk, pub, public_keys))) {
TEST_info("Can't find public key: %s", pub);
t->err = "MISSING_PUBLIC_KEY";
goto end;
}
if (pk == NULL && pubk == NULL) {
/* Both keys are listed but unsupported: skip this test */
t->skip = 1;
rv = 1;
goto end;
}
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
goto end;
data->privk = pk;
data->pubk = pubk;
t->data = data;
rv = 1;
t->err = NULL;
end:
OPENSSL_free(priv);
return rv;
}
static void keypair_test_cleanup(EVP_TEST *t)
{
OPENSSL_free(t->data);
t->data = NULL;
}
/*
* For tests that do not accept any custom keywords.
*/
static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
{
return 0;
}
static int keypair_test_run(EVP_TEST *t)
{
int rv = 0;
const KEYPAIR_TEST_DATA *pair = t->data;
if (pair->privk == NULL || pair->pubk == NULL) {
/*
* this can only happen if only one of the keys is not set
* which means that one of them was unsupported while the
* other isn't: hence a key type mismatch.
*/
t->err = "KEYPAIR_TYPE_MISMATCH";
rv = 1;
goto end;
}
if ((rv = EVP_PKEY_eq(pair->privk, pair->pubk)) != 1) {
if (0 == rv) {
t->err = "KEYPAIR_MISMATCH";
} else if (-1 == rv) {
t->err = "KEYPAIR_TYPE_MISMATCH";
} else if (-2 == rv) {
t->err = "UNSUPPORTED_KEY_COMPARISON";
} else {
TEST_error("Unexpected error in key comparison");
rv = 0;
goto end;
}
rv = 1;
goto end;
}
rv = 1;
t->err = NULL;
end:
return rv;
}
static const EVP_TEST_METHOD keypair_test_method = {
"PrivPubKeyPair",
keypair_test_init,
keypair_test_cleanup,
void_test_parse,
keypair_test_run
};
/**
** KEYGEN TEST
**/
typedef struct keygen_test_data_st {
EVP_PKEY_CTX *genctx; /* Keygen context to use */
char *keyname; /* Key name to store key or NULL */
} KEYGEN_TEST_DATA;
static int keygen_test_init(EVP_TEST *t, const char *alg)
{
KEYGEN_TEST_DATA *data;
EVP_PKEY_CTX *genctx;
int nid = OBJ_sn2nid(alg);
if (nid == NID_undef) {
nid = OBJ_ln2nid(alg);
if (nid == NID_undef)
return 0;
}
if (is_pkey_disabled(alg)) {
t->skip = 1;
return 1;
}
if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, alg, NULL)))
goto err;
if (EVP_PKEY_keygen_init(genctx) <= 0) {
t->err = "KEYGEN_INIT_ERROR";
goto err;
}
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
goto err;
data->genctx = genctx;
data->keyname = NULL;
t->data = data;
t->err = NULL;
return 1;
err:
EVP_PKEY_CTX_free(genctx);
return 0;
}
static void keygen_test_cleanup(EVP_TEST *t)
{
KEYGEN_TEST_DATA *keygen = t->data;
EVP_PKEY_CTX_free(keygen->genctx);
OPENSSL_free(keygen->keyname);
OPENSSL_free(t->data);
t->data = NULL;
}
static int keygen_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
KEYGEN_TEST_DATA *keygen = t->data;
if (strcmp(keyword, "KeyName") == 0)
return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, keygen->genctx, value);
return 0;
}
static int keygen_test_run(EVP_TEST *t)
{
KEYGEN_TEST_DATA *keygen = t->data;
EVP_PKEY *pkey = NULL;
int rv = 1;
if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
t->err = "KEYGEN_GENERATE_ERROR";
goto err;
}
if (!evp_pkey_is_provided(pkey)) {
TEST_info("Warning: legacy key generated %s", keygen->keyname);
goto err;
}
if (keygen->keyname != NULL) {
KEY_LIST *key;
rv = 0;
if (find_key(NULL, keygen->keyname, private_keys)) {
TEST_info("Duplicate key %s", keygen->keyname);
goto err;
}
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
goto err;
key->name = keygen->keyname;
keygen->keyname = NULL;
key->key = pkey;
key->next = private_keys;
private_keys = key;
rv = 1;
} else {
EVP_PKEY_free(pkey);
}
t->err = NULL;
err:
return rv;
}
static const EVP_TEST_METHOD keygen_test_method = {
"KeyGen",
keygen_test_init,
keygen_test_cleanup,
keygen_test_parse,
keygen_test_run,
};
/**
** DIGEST SIGN+VERIFY TESTS
**/
typedef struct {
int is_verify; /* Set to 1 if verifying */
int is_oneshot; /* Set to 1 for one shot operation */
const EVP_MD *md; /* Digest to use */
EVP_MD_CTX *ctx; /* Digest context */
EVP_PKEY_CTX *pctx;
STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
unsigned char *osin; /* Input data if one shot */
size_t osin_len; /* Input length data if one shot */
unsigned char *output; /* Expected output */
size_t output_len; /* Expected output length */
} DIGESTSIGN_DATA;
static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
int is_oneshot)
{
const EVP_MD *md = NULL;
DIGESTSIGN_DATA *mdat;
if (strcmp(alg, "NULL") != 0) {
if (is_digest_disabled(alg)) {
t->skip = 1;
return 1;
}
md = EVP_get_digestbyname(alg);
if (md == NULL)
return 0;
}
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
return 0;
mdat->md = md;
if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
OPENSSL_free(mdat);
return 0;
}
mdat->is_verify = is_verify;
mdat->is_oneshot = is_oneshot;
t->data = mdat;
return 1;
}
static int digestsign_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 0, 0);
}
static void digestsigver_test_cleanup(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
EVP_MD_CTX_free(mdata->ctx);
sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
OPENSSL_free(mdata->osin);
OPENSSL_free(mdata->output);
OPENSSL_free(mdata);
t->data = NULL;
}
static int digestsigver_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
DIGESTSIGN_DATA *mdata = t->data;
if (strcmp(keyword, "Key") == 0) {
EVP_PKEY *pkey = NULL;
int rv = 0;
const char *name = mdata->md == NULL ? NULL : EVP_MD_get0_name(mdata->md);
if (mdata->is_verify)
rv = find_key(&pkey, value, public_keys);
if (rv == 0)
rv = find_key(&pkey, value, private_keys);
if (rv == 0 || pkey == NULL) {
t->skip = 1;
return 1;
}
if (mdata->is_verify) {
if (!EVP_DigestVerifyInit_ex(mdata->ctx, &mdata->pctx, name, libctx,
NULL, pkey, NULL))
t->err = "DIGESTVERIFYINIT_ERROR";
return 1;
}
if (!EVP_DigestSignInit_ex(mdata->ctx, &mdata->pctx, name, libctx, NULL,
pkey, NULL))
t->err = "DIGESTSIGNINIT_ERROR";
return 1;
}
if (strcmp(keyword, "Input") == 0) {
if (mdata->is_oneshot)
return parse_bin(value, &mdata->osin, &mdata->osin_len);
return evp_test_buffer_append(value, &mdata->input);
}
if (strcmp(keyword, "Output") == 0)
return parse_bin(value, &mdata->output, &mdata->output_len);
if (!mdata->is_oneshot) {
if (strcmp(keyword, "Count") == 0)
return evp_test_buffer_set_count(value, mdata->input);
if (strcmp(keyword, "Ncopy") == 0)
return evp_test_buffer_ncopy(value, mdata->input);
}
if (strcmp(keyword, "Ctrl") == 0) {
if (mdata->pctx == NULL)
return -1;
return pkey_test_ctrl(t, mdata->pctx, value);
}
return 0;
}
static int digestsign_update_fn(void *ctx, const unsigned char *buf,
size_t buflen)
{
return EVP_DigestSignUpdate(ctx, buf, buflen);
}
static int digestsign_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
expected->ctx)) {
t->err = "DIGESTUPDATE_ERROR";
goto err;
}
if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "MALLOC_FAILURE";
goto err;
}
if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
t->err = "DIGESTSIGNFINAL_ERROR";
goto err;
}
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD digestsign_test_method = {
"DigestSign",
digestsign_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
digestsign_test_run
};
static int digestverify_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 1, 0);
}
static int digestverify_update_fn(void *ctx, const unsigned char *buf,
size_t buflen)
{
return EVP_DigestVerifyUpdate(ctx, buf, buflen);
}
static int digestverify_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
t->err = "DIGESTUPDATE_ERROR";
return 1;
}
if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
mdata->output_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD digestverify_test_method = {
"DigestVerify",
digestverify_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
digestverify_test_run
};
static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 0, 1);
}
static int oneshot_digestsign_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *expected = t->data;
unsigned char *got = NULL;
size_t got_len;
if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
expected->osin, expected->osin_len)) {
t->err = "DIGESTSIGN_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
t->err = "MALLOC_FAILURE";
goto err;
}
if (!EVP_DigestSign(expected->ctx, got, &got_len,
expected->osin, expected->osin_len)) {
t->err = "DIGESTSIGN_ERROR";
goto err;
}
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
expected->output, expected->output_len,
got, got_len))
goto err;
t->err = NULL;
err:
OPENSSL_free(got);
return 1;
}
static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
"OneShotDigestSign",
oneshot_digestsign_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
oneshot_digestsign_test_run
};
static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
{
return digestsigver_test_init(t, alg, 1, 1);
}
static int oneshot_digestverify_test_run(EVP_TEST *t)
{
DIGESTSIGN_DATA *mdata = t->data;
if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
mdata->osin, mdata->osin_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
"OneShotDigestVerify",
oneshot_digestverify_test_init,
digestsigver_test_cleanup,
digestsigver_test_parse,
oneshot_digestverify_test_run
};
/**
** PARSING AND DISPATCH
**/
static const EVP_TEST_METHOD *evp_test_list[] = {
&rand_test_method,
&cipher_test_method,
&digest_test_method,
&digestsign_test_method,
&digestverify_test_method,
&encode_test_method,
&kdf_test_method,
&pkey_kdf_test_method,
&keypair_test_method,
&keygen_test_method,
&mac_test_method,
&oneshot_digestsign_test_method,
&oneshot_digestverify_test_method,
&pbe_test_method,
&pdecrypt_test_method,
&pderive_test_method,
&psign_test_method,
&pverify_recover_test_method,
&pverify_test_method,
NULL
};
static const EVP_TEST_METHOD *find_test(const char *name)
{
const EVP_TEST_METHOD **tt;
for (tt = evp_test_list; *tt; tt++) {
if (strcmp(name, (*tt)->name) == 0)
return *tt;
}
return NULL;
}
static void clear_test(EVP_TEST *t)
{
test_clearstanza(&t->s);
ERR_clear_error();
if (t->data != NULL) {
if (t->meth != NULL)
t->meth->cleanup(t);
OPENSSL_free(t->data);
t->data = NULL;
}
OPENSSL_free(t->expected_err);
t->expected_err = NULL;
OPENSSL_free(t->reason);
t->reason = NULL;
/* Text literal. */
t->err = NULL;
t->skip = 0;
t->meth = NULL;
}
/* Check for errors in the test structure; return 1 if okay, else 0. */
static int check_test_error(EVP_TEST *t)
{
unsigned long err;
const char *reason;
if (t->err == NULL && t->expected_err == NULL)
return 1;
if (t->err != NULL && t->expected_err == NULL) {
if (t->aux_err != NULL) {
TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
t->s.test_file, t->s.start, t->aux_err, t->err);
} else {
TEST_info("%s:%d: Source of above error; unexpected error %s",
t->s.test_file, t->s.start, t->err);
}
return 0;
}
if (t->err == NULL && t->expected_err != NULL) {
TEST_info("%s:%d: Succeeded but was expecting %s",
t->s.test_file, t->s.start, t->expected_err);
return 0;
}
if (strcmp(t->err, t->expected_err) != 0) {
TEST_info("%s:%d: Expected %s got %s",
t->s.test_file, t->s.start, t->expected_err, t->err);
return 0;
}
if (t->reason == NULL)
return 1;
if (t->reason == NULL) {
TEST_info("%s:%d: Test is missing function or reason code",
t->s.test_file, t->s.start);
return 0;
}
err = ERR_peek_error();
if (err == 0) {
TEST_info("%s:%d: Expected error \"%s\" not set",
t->s.test_file, t->s.start, t->reason);
return 0;
}
reason = ERR_reason_error_string(err);
if (reason == NULL) {
TEST_info("%s:%d: Expected error \"%s\", no strings available."
" Assuming ok.",
t->s.test_file, t->s.start, t->reason);
return 1;
}
if (strcmp(reason, t->reason) == 0)
return 1;
TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
t->s.test_file, t->s.start, t->reason, reason);
return 0;
}
/* Run a parsed test. Log a message and return 0 on error. */
static int run_test(EVP_TEST *t)
{
if (t->meth == NULL)
return 1;
t->s.numtests++;
if (t->skip) {
t->s.numskip++;
} else {
/* run the test */
if (t->err == NULL && t->meth->run_test(t) != 1) {
TEST_info("%s:%d %s error",
t->s.test_file, t->s.start, t->meth->name);
return 0;
}
if (!check_test_error(t)) {
TEST_openssl_errors();
t->s.errors++;
}
}
/* clean it up */
return 1;
}
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
{
for (; lst != NULL; lst = lst->next) {
if (strcmp(lst->name, name) == 0) {
if (ppk != NULL)
*ppk = lst->key;
return 1;
}
}
return 0;
}
static void free_key_list(KEY_LIST *lst)
{
while (lst != NULL) {
KEY_LIST *next = lst->next;
EVP_PKEY_free(lst->key);
OPENSSL_free(lst->name);
OPENSSL_free(lst);
lst = next;
}
}
/*
* Is the key type an unsupported algorithm?
*/
static int key_unsupported(void)
{
long err = ERR_peek_last_error();
int lib = ERR_GET_LIB(err);
long reason = ERR_GET_REASON(err);
if ((lib == ERR_LIB_EVP && reason == EVP_R_UNSUPPORTED_ALGORITHM)
|| (lib == ERR_LIB_EVP && reason == EVP_R_DECODE_ERROR)
|| reason == ERR_R_UNSUPPORTED) {
ERR_clear_error();
return 1;
}
#ifndef OPENSSL_NO_EC
/*
* If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
* hint to an unsupported algorithm/curve (e.g. if binary EC support is
* disabled).
*/
if (lib == ERR_LIB_EC
&& (reason == EC_R_UNKNOWN_GROUP
|| reason == EC_R_INVALID_CURVE)) {
ERR_clear_error();
return 1;
}
#endif /* OPENSSL_NO_EC */
return 0;
}
/* NULL out the value from |pp| but return it. This "steals" a pointer. */
static char *take_value(PAIR *pp)
{
char *p = pp->value;
pp->value = NULL;
return p;
}
#if !defined(OPENSSL_NO_FIPS_SECURITYCHECKS)
static int securitycheck_enabled(void)
{
static int enabled = -1;
if (enabled == -1) {
if (OSSL_PROVIDER_available(libctx, "fips")) {
OSSL_PARAM params[2];
OSSL_PROVIDER *prov = NULL;
int check = 1;
prov = OSSL_PROVIDER_load(libctx, "fips");
if (prov != NULL) {
params[0] =
OSSL_PARAM_construct_int(OSSL_PROV_PARAM_SECURITY_CHECKS,
&check);
params[1] = OSSL_PARAM_construct_end();
OSSL_PROVIDER_get_params(prov, params);
OSSL_PROVIDER_unload(prov);
}
enabled = check;
return enabled;
}
enabled = 0;
}
return enabled;
}
#endif
/*
* Return 1 if one of the providers named in the string is available.
* The provider names are separated with whitespace.
* NOTE: destructive function, it inserts '\0' after each provider name.
*/
static int prov_available(char *providers)
{
char *p;
int more = 1;
while (more) {
for (; isspace(*providers); providers++)
continue;
if (*providers == '\0')
break; /* End of the road */
for (p = providers; *p != '\0' && !isspace(*p); p++)
continue;
if (*p == '\0')
more = 0;
else
*p = '\0';
if (OSSL_PROVIDER_available(libctx, providers))
return 1; /* Found one */
}
return 0;
}
/* Read and parse one test. Return 0 if failure, 1 if okay. */
static int parse(EVP_TEST *t)
{
KEY_LIST *key, **klist;
EVP_PKEY *pkey;
PAIR *pp;
int i, skip_availablein = 0;
top:
do {
if (BIO_eof(t->s.fp))
return EOF;
clear_test(t);
if (!test_readstanza(&t->s))
return 0;
} while (t->s.numpairs == 0);
pp = &t->s.pairs[0];
/* Are we adding a key? */
klist = NULL;
pkey = NULL;
start:
if (strcmp(pp->key, "PrivateKey") == 0) {
pkey = PEM_read_bio_PrivateKey_ex(t->s.key, NULL, 0, NULL, libctx, NULL);
if (pkey == NULL && !key_unsupported()) {
EVP_PKEY_free(pkey);
TEST_info("Can't read private key %s", pp->value);
TEST_openssl_errors();
return 0;
}
klist = &private_keys;
} else if (strcmp(pp->key, "PublicKey") == 0) {
pkey = PEM_read_bio_PUBKEY_ex(t->s.key, NULL, 0, NULL, libctx, NULL);
if (pkey == NULL && !key_unsupported()) {
EVP_PKEY_free(pkey);
TEST_info("Can't read public key %s", pp->value);
TEST_openssl_errors();
return 0;
}
klist = &public_keys;
} else if (strcmp(pp->key, "PrivateKeyRaw") == 0
|| strcmp(pp->key, "PublicKeyRaw") == 0) {
char *strnid = NULL, *keydata = NULL;
unsigned char *keybin;
size_t keylen;
int nid;
if (strcmp(pp->key, "PrivateKeyRaw") == 0)
klist = &private_keys;
else
klist = &public_keys;
strnid = strchr(pp->value, ':');
if (strnid != NULL) {
*strnid++ = '\0';
keydata = strchr(strnid, ':');
if (keydata != NULL)
*keydata++ = '\0';
}
if (keydata == NULL) {
TEST_info("Failed to parse %s value", pp->key);
return 0;
}
nid = OBJ_txt2nid(strnid);
if (nid == NID_undef) {
TEST_info("Unrecognised algorithm NID");
return 0;
}
if (!parse_bin(keydata, &keybin, &keylen)) {
TEST_info("Failed to create binary key");
return 0;
}
if (klist == &private_keys)
pkey = EVP_PKEY_new_raw_private_key_ex(libctx, strnid, NULL, keybin,
keylen);
else
pkey = EVP_PKEY_new_raw_public_key_ex(libctx, strnid, NULL, keybin,
keylen);
if (pkey == NULL && !key_unsupported()) {
TEST_info("Can't read %s data", pp->key);
OPENSSL_free(keybin);
TEST_openssl_errors();
return 0;
}
OPENSSL_free(keybin);
} else if (strcmp(pp->key, "Availablein") == 0) {
if (!prov_available(pp->value)) {
TEST_info("skipping, '%s' provider not available: %s:%d",
pp->value, t->s.test_file, t->s.start);
t->skip = 1;
return 0;
}
skip_availablein++;
pp++;
goto start;
}
/* If we have a key add to list */
if (klist != NULL) {
if (find_key(NULL, pp->value, *klist)) {
TEST_info("Duplicate key %s", pp->value);
return 0;
}
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
return 0;
key->name = take_value(pp);
key->key = pkey;
key->next = *klist;
*klist = key;
/* Go back and start a new stanza. */
if ((t->s.numpairs - skip_availablein) != 1)
TEST_info("Line %d: missing blank line\n", t->s.curr);
goto top;
}
/* Find the test, based on first keyword. */
if (!TEST_ptr(t->meth = find_test(pp->key)))
return 0;
if (!t->meth->init(t, pp->value)) {
TEST_error("unknown %s: %s\n", pp->key, pp->value);
return 0;
}
if (t->skip == 1) {
/* TEST_info("skipping %s %s", pp->key, pp->value); */
return 0;
}
for (pp++, i = 1; i < (t->s.numpairs - skip_availablein); pp++, i++) {
if (strcmp(pp->key, "Securitycheck") == 0) {
#if defined(OPENSSL_NO_FIPS_SECURITYCHECKS)
#else
if (!securitycheck_enabled())
#endif
{
TEST_info("skipping, Securitycheck is disabled: %s:%d",
t->s.test_file, t->s.start);
t->skip = 1;
return 0;
}
} else if (strcmp(pp->key, "Availablein") == 0) {
TEST_info("Line %d: 'Availablein' should be the first option",
t->s.curr);
return 0;
} else if (strcmp(pp->key, "Result") == 0) {
if (t->expected_err != NULL) {
TEST_info("Line %d: multiple result lines", t->s.curr);
return 0;
}
t->expected_err = take_value(pp);
} else if (strcmp(pp->key, "Function") == 0) {
/* Ignore old line. */
} else if (strcmp(pp->key, "Reason") == 0) {
if (t->reason != NULL) {
TEST_info("Line %d: multiple reason lines", t->s.curr);
return 0;
}
t->reason = take_value(pp);
} else {
/* Must be test specific line: try to parse it */
int rv = t->meth->parse(t, pp->key, pp->value);
if (rv == 0) {
TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
return 0;
}
if (rv < 0) {
TEST_info("Line %d: error processing keyword %s = %s\n",
t->s.curr, pp->key, pp->value);
return 0;
}
}
}
return 1;
}
static int run_file_tests(int i)
{
EVP_TEST *t;
const char *testfile = test_get_argument(i);
int c;
if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
return 0;
if (!test_start_file(&t->s, testfile)) {
OPENSSL_free(t);
return 0;
}
while (!BIO_eof(t->s.fp)) {
c = parse(t);
if (t->skip) {
t->s.numskip++;
continue;
}
if (c == 0 || !run_test(t)) {
t->s.errors++;
break;
}
}
test_end_file(&t->s);
clear_test(t);
free_key_list(public_keys);
free_key_list(private_keys);
BIO_free(t->s.key);
c = t->s.errors;
OPENSSL_free(t);
return c == 0;
}
const OPTIONS *test_get_options(void)
{
static const OPTIONS test_options[] = {
OPT_TEST_OPTIONS_WITH_EXTRA_USAGE("[file...]\n"),
{ "config", OPT_CONFIG_FILE, '<',
"The configuration file to use for the libctx" },
{ OPT_HELP_STR, 1, '-', "file\tFile to run tests on.\n" },
{ NULL }
};
return test_options;
}
int setup_tests(void)
{
size_t n;
char *config_file = NULL;
OPTION_CHOICE o;
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_CONFIG_FILE:
config_file = opt_arg();
break;
case OPT_TEST_CASES:
break;
default:
case OPT_ERR:
return 0;
}
}
/*
* Load the provider via configuration into the created library context.
* Load the 'null' provider into the default library context to ensure that
* the tests do not fallback to using the default provider.
*/
if (!test_get_libctx(&libctx, &prov_null, config_file, NULL, NULL))
return 0;
n = test_get_argument_count();
if (n == 0)
return 0;
ADD_ALL_TESTS(run_file_tests, n);
return 1;
}
void cleanup_tests(void)
{
OSSL_PROVIDER_unload(prov_null);
OSSL_LIB_CTX_free(libctx);
}
static int is_digest_disabled(const char *name)
{
#ifdef OPENSSL_NO_BLAKE2
if (HAS_CASE_PREFIX(name, "BLAKE"))
return 1;
#endif
#ifdef OPENSSL_NO_MD2
if (OPENSSL_strcasecmp(name, "MD2") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_MDC2
if (OPENSSL_strcasecmp(name, "MDC2") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_MD4
if (OPENSSL_strcasecmp(name, "MD4") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_MD5
if (OPENSSL_strcasecmp(name, "MD5") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_RMD160
if (OPENSSL_strcasecmp(name, "RIPEMD160") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_SM3
if (OPENSSL_strcasecmp(name, "SM3") == 0)
return 1;
#endif
#ifdef OPENSSL_NO_WHIRLPOOL
if (OPENSSL_strcasecmp(name, "WHIRLPOOL") == 0)
return 1;
#endif
return 0;
}
static int is_pkey_disabled(const char *name)
{
#ifdef OPENSSL_NO_EC
if (HAS_CASE_PREFIX(name, "EC"))
return 1;
#endif
#ifdef OPENSSL_NO_DH
if (HAS_CASE_PREFIX(name, "DH"))
return 1;
#endif
#ifdef OPENSSL_NO_DSA
if (HAS_CASE_PREFIX(name, "DSA"))
return 1;
#endif
return 0;
}
static int is_mac_disabled(const char *name)
{
#ifdef OPENSSL_NO_BLAKE2
if (HAS_CASE_PREFIX(name, "BLAKE2BMAC")
|| HAS_CASE_PREFIX(name, "BLAKE2SMAC"))
return 1;
#endif
#ifdef OPENSSL_NO_CMAC
if (HAS_CASE_PREFIX(name, "CMAC"))
return 1;
#endif
#ifdef OPENSSL_NO_POLY1305
if (HAS_CASE_PREFIX(name, "Poly1305"))
return 1;
#endif
#ifdef OPENSSL_NO_SIPHASH
if (HAS_CASE_PREFIX(name, "SipHash"))
return 1;
#endif
return 0;
}
static int is_kdf_disabled(const char *name)
{
#ifdef OPENSSL_NO_SCRYPT
if (HAS_CASE_SUFFIX(name, "SCRYPT"))
return 1;
#endif
return 0;
}
static int is_cipher_disabled(const char *name)
{
#ifdef OPENSSL_NO_ARIA
if (HAS_CASE_PREFIX(name, "ARIA"))
return 1;
#endif
#ifdef OPENSSL_NO_BF
if (HAS_CASE_PREFIX(name, "BF"))
return 1;
#endif
#ifdef OPENSSL_NO_CAMELLIA
if (HAS_CASE_PREFIX(name, "CAMELLIA"))
return 1;
#endif
#ifdef OPENSSL_NO_CAST
if (HAS_CASE_PREFIX(name, "CAST"))
return 1;
#endif
#ifdef OPENSSL_NO_CHACHA
if (HAS_CASE_PREFIX(name, "CHACHA"))
return 1;
#endif
#ifdef OPENSSL_NO_POLY1305
if (HAS_CASE_SUFFIX(name, "Poly1305"))
return 1;
#endif
#ifdef OPENSSL_NO_DES
if (HAS_CASE_PREFIX(name, "DES"))
return 1;
if (HAS_CASE_SUFFIX(name, "3DESwrap"))
return 1;
#endif
#ifdef OPENSSL_NO_OCB
if (HAS_CASE_SUFFIX(name, "OCB"))
return 1;
#endif
#ifdef OPENSSL_NO_IDEA
if (HAS_CASE_PREFIX(name, "IDEA"))
return 1;
#endif
#ifdef OPENSSL_NO_RC2
if (HAS_CASE_PREFIX(name, "RC2"))
return 1;
#endif
#ifdef OPENSSL_NO_RC4
if (HAS_CASE_PREFIX(name, "RC4"))
return 1;
#endif
#ifdef OPENSSL_NO_RC5
if (HAS_CASE_PREFIX(name, "RC5"))
return 1;
#endif
#ifdef OPENSSL_NO_SEED
if (HAS_CASE_PREFIX(name, "SEED"))
return 1;
#endif
#ifdef OPENSSL_NO_SIV
if (HAS_CASE_SUFFIX(name, "SIV"))
return 1;
#endif
#ifdef OPENSSL_NO_SM4
if (HAS_CASE_PREFIX(name, "SM4"))
return 1;
#endif
return 0;
}